1887

Abstract

Antifungal drugs have had a tremendous impact on human health and the yields of crops. However, in recent years, due to usage both in a health setting and in agriculture, there has been a rapid emergence of antifungal drug resistance that has outpaced novel compound discovery. It is now globally recognized that new strategies to tackle fungal infection are urgently needed, with such approaches requiring the cooperation of both sectors and the development of robust antifungal stewardship rationales. In this review, we examine the current antifungal regimes in clinical and agricultural settings, focusing on two pathogens of importance, and examining their drivers of antifungal resistance, the impact of dual-use azoles and the impact agricultural practices have on driving the emergence of resistance. Finally, we postulate that a One Health approach could offer a viable alternative to prolonging the efficacy of current antifungal agents.

Keyword(s): AFR , AMR , Aspergillus , azoles , Candida , One Health and resistance
Funding
This study was supported by the:
  • Biotechnology and Biological Sciences Research Council (Award BB/W009625/1)
    • Principle Award Recipient: JaneUsher
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001512
2024-10-30
2024-11-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/170/10/mic001512.html?itemId=/content/journal/micro/10.1099/mic.0.001512&mimeType=html&fmt=ahah

References

  1. Fisher MC, Hawkins NJ, Sanglard D, Gurr SJ. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 2018; 360:739–742 [View Article]
    [Google Scholar]
  2. Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC et al. Emerging fungal threats to animal, plant and ecosystem health. Nature 2012; 484:186–194 [View Article] [PubMed]
    [Google Scholar]
  3. Perlin DS, Rautemaa-Richardson R, Alastruey-Izquierdo A. The global problem of antifungal resistance: prevalence, mechanisms, and management. Lancet Infect Dis 2017; 17:e383–e392 [View Article] [PubMed]
    [Google Scholar]
  4. Kettles GJ, Luna E. Food security in 2044: How do we control the fungal threat?. Fungal Biol 2019; 123:558–564 [View Article] [PubMed]
    [Google Scholar]
  5. Banerjee S, Denning DW, Chakrabarti A. One Health aspects & priority roadmap for fungal diseases : a mini-review. Indian J Med Res 2021; 153:311–319 [View Article] [PubMed]
    [Google Scholar]
  6. Perfect JR. The antifungal pipeline: a reality check. Nat Rev Drug Discov 2017; 16:603–616 [View Article] [PubMed]
    [Google Scholar]
  7. Berger S, El Chazli Y, Babu AF, Coste AT. Azole resistance in Aspergillus fumigatus: a consequence of antifungal use in agriculture?. Front Microbiol 2017; 8:1024 [View Article] [PubMed]
    [Google Scholar]
  8. Ramy SY, Osama FA. In vitro study of the antifungal efficacy of zinc oxide nanoparticles against Fusarium oxysporum and Penicilium expansum. Afr J Microbiol Res 2013; 7:1917–1923 [View Article]
    [Google Scholar]
  9. de AG, Santos J, Soares A, Nunes B. Ecotoxicological effects of the azole antifungal agent clotrimazole on the macrophyte species lemna minor and lemna gibba. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 2020; 237:108835
    [Google Scholar]
  10. Assress HA, Nyoni H, Mamba BB, Msagati TAM. Occurrence and risk assessment of azole antifungal drugs in water and wastewater. Ecotoxicol Environ Saf 2020; 187:109868 [View Article] [PubMed]
    [Google Scholar]
  11. Lockhart SR, Etienne KA, Vallabhaneni S, Farooqi J, Chowdhary A et al. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin Infect Dis 2017; 64:134–140 [View Article] [PubMed]
    [Google Scholar]
  12. Geddes-McAlister J, Shapiro RS. New pathogens, new tricks: emerging, drug-resistant fungal pathogens and future prospects for antifungal therapeutics. Ann N Y Acad Sci 2019; 1435:57–78 [View Article] [PubMed]
    [Google Scholar]
  13. Stevenson EM, Gaze WH, Gow NAR, Hart A, Schmidt W et al. Antifungal exposure and resistance development: defining minimal selective antifungal concentrations and testing methodologies. Front Fungal Biol 2022; 3:918717 [View Article] [PubMed]
    [Google Scholar]
  14. Zeng Q, Morales AJ, Cottarel G. Fungi and humans: closer than you think. Trends Genet 2001; 17:682–684 [View Article] [PubMed]
    [Google Scholar]
  15. Cui X, Wang L, Y, Yue C. Development and research progress of anti-drug resistant fungal drugs. J Infect Public Health 2022; 15:986–1000 [View Article] [PubMed]
    [Google Scholar]
  16. Zheng YH, Ma YY, Ding Y, Chen XQ, Gao GX. An insight into new strategies to combat antifungal drug resistance. Drug Des Devel Ther 2018; 12:3807–3816 [View Article] [PubMed]
    [Google Scholar]
  17. Mota Fernandes C, Dasilva D, Haranahalli K, McCarthy JB, Mallamo J et al. The future of antifungal drug therapy: novel compounds and targets. Antimicrob Agents Chemother 2021; 65:e01719-20 [View Article] [PubMed]
    [Google Scholar]
  18. World Health Organization World Malaria Report 2022 Geneva: World Health Organization; 2022Licence: CC BY-NC-SA 3.0 IGO
    [Google Scholar]
  19. World Health Organization Global Tuberculosis Report 2022 Geneva: World Health Organization; 2022
    [Google Scholar]
  20. Denning DW. Global incidence and mortality of severe fungal disease. Lancet Infect Dis 2024; 24:e428–e438 [View Article] [PubMed]
    [Google Scholar]
  21. Morishita N, Sei Y. Microreview of Pityriasis versicolor and Malassezia species. Mycopathologia 2006; 162:373–376 [View Article] [PubMed]
    [Google Scholar]
  22. Thomas J, Jacobson GA, Narkowicz CK, Peterson GM, Burnet H et al. Toenail onychomycosis: an important global disease burden. J Clin Pharm Ther 2010; 35:497–519 [View Article] [PubMed]
    [Google Scholar]
  23. Denning DW, Kneale M, Sobel JD, Rautemaa-Richardson R. Global burden of recurrent vulvovaginal candidiasis: a systematic review. Lancet Infect Dis 2018; 18:e339–e347 [View Article] [PubMed]
    [Google Scholar]
  24. Kainz K, Bauer MA, Madeo F, Carmona-Gutierrez D. Fungal infections in humans: the silent crisis. Microb Cell 2020; 7:143–145 [View Article] [PubMed]
    [Google Scholar]
  25. Denning DW, Bromley MJ. How to bolster the antifungal pipeline. Science 2015; 347:1414–1416 [View Article]
    [Google Scholar]
  26. Enoch DA, Yang H, Aliyu SH, Micallef C. The Changing Epidemiology of Invasive Fungal Infections. In: Lion T, editor. Human Fungal Pathogen Identification [Internet]. New York, NY: Springer New York; 2017 [cited 2023 Sep 17]. p. 17–65. http://link.springer.com/10.1007/978-1-4939-6515-1_2
  27. Friedman DZP, Schwartz IS. Emerging fungal infections: new patients, new patterns, and new pathogens. JoF 2019; 5:67 [View Article]
    [Google Scholar]
  28. Berman J, Krysan DJ. Drug resistance and tolerance in fungi. Nat Rev Microbiol 2020; 18:319–331 [View Article] [PubMed]
    [Google Scholar]
  29. Vandeputte P, Ferrari S, Coste AT. Antifungal resistance and new strategies to control fungal infections. Int J Microbiol 2012; 2012:713687 [View Article] [PubMed]
    [Google Scholar]
  30. Bennett JE. Antifungal agents. Antifungal Agents 1990361–370
    [Google Scholar]
  31. Waldorf AR, Polak A. Mechanisms of action of 5-fluorocytosine. Antimicrob Agents Chemother 1983; 23:79–85 [View Article]
    [Google Scholar]
  32. Anderson TM, Clay MC, Cioffi AG, Diaz KA, Hisao GS et al. Amphotericin forms an extramembranous and fungicidal sterol sponge. Nat Chem Biol 2014; 10:400–406 [View Article] [PubMed]
    [Google Scholar]
  33. Lemke A, Kiderlen AF, Kayser O. Amphotericin B. Appl Microbiol Biotechnol 2005; 68:151–162 [View Article] [PubMed]
    [Google Scholar]
  34. Zotchev SB. Polyene macrolide antibiotics and their applications in human therapy. Curr Med Chem 2003; 10:211–223 [View Article] [PubMed]
    [Google Scholar]
  35. Denning DW. Echinocandins: a new class of antifungal. J Antimicrob Chemother 2002; 49:889–891 [View Article] [PubMed]
    [Google Scholar]
  36. Chandrasekar PH, Sobel JD. Micafungin: a new echinocandin. Clin Infect Dis 2006; 42:1171–1178 [View Article] [PubMed]
    [Google Scholar]
  37. Vazquez JA, Sobel JD. Anidulafungin: a novel echinocandin. Clin Infect Dis 2006; 43:215–222 [View Article] [PubMed]
    [Google Scholar]
  38. Kurtz MB, Douglas CM. Lipopeptide inhibitors of fungal glucan synthase. J Med Vet Mycol 1997; 35:79–86 [View Article] [PubMed]
    [Google Scholar]
  39. Feldmesser M, Kress Y, Mednick A, Casadevall A. The effect of the echinocandin analogue caspofungin on cell wall glucan synthesis by Cryptococcus neoformans. J Infect Dis 2000; 182:1791–1795 [View Article] [PubMed]
    [Google Scholar]
  40. Oakley KL, Moore CB, Denning DW. In vitro activity of the echinocandin antifungal agent LY303,366 in comparison with itraconazole and amphotericin B against Aspergillus spp. Antimicrob Agents Chemother 1998; 42:2726–2730 [View Article] [PubMed]
    [Google Scholar]
  41. Moore CB, Oakley KL, Denning DW. In vitro activity of a new echinocandin, LY303366, and comparison with fluconazole, flucytosine and amphotericin B against Candida species† †This study was presented, in part, at the 37th ICAAC in Toronto, Canada, 28th September – 1st October 1997. Clin Microbiol Infect 2001; 7:11–16 [View Article]
    [Google Scholar]
  42. Maertens JA. History of the development of azole derivatives. Clin Microbiol Infect 2004; 10:1–10 [View Article]
    [Google Scholar]
  43. Carrillo-Muñoz AJ, Giusiano G, Ezkurra PA, Quindós G. Antifungal agents: mode of action in yeast cells. Rev Esp Quimioter 2006; 19:130–139 [PubMed]
    [Google Scholar]
  44. Sabo JA, Abdel-Rahman SM. Voriconazole: a new triazole antifungal. Ann Pharmacother 2000; 34:1032–1043 [View Article] [PubMed]
    [Google Scholar]
  45. Resendiz-Sharpe A, Mercier T, Lestrade PPA, van der Beek MT, von dem Borne PA et al. Prevalence of voriconazole-resistant invasive aspergillosis and its impact on mortality in haematology patients. J Antimicrob Chemother 2019; 74:2759–2766 [View Article] [PubMed]
    [Google Scholar]
  46. Lamoth F, Lockhart SR, Berkow EL, Calandra T. Changes in the epidemiological landscape of invasive candidiasis. J Antimicrob Chemother 2018; 73:i4–i13 [View Article]
    [Google Scholar]
  47. Pfaller MA, Diekema DJ, Turnidge JD, Castanheira M, Jones RN. Twenty Years of the SENTRY Antifungal Surveillance Program: Results for Candida Species from 1997–2016 In Oxford University Press US; 2019 pp S79–94 [View Article]
    [Google Scholar]
  48. Latgé JP, Chamilos G. Aspergillus fumigatus and Aspergillosis in 2019. Clin Microbiol Rev 2019; 33:10–1128 [View Article] [PubMed]
    [Google Scholar]
  49. Healey KR, Perlin DS. Fungal resistance to echinocandins and the MDR phenomenon in Candida glabrata. J Fungi 2018; 4:105 [View Article] [PubMed]
    [Google Scholar]
  50. Verweij PE, Zhang J, Debets AJM, Meis JF, van de Veerdonk FL et al. In-host adaptation and acquired triazole resistance in Aspergillus fumigatus: a dilemma for clinical management. Lancet Infect Dis 2016; 16:e251–e260 [View Article] [PubMed]
    [Google Scholar]
  51. Papadimitriou-Olivgeris M, Andrianaki AM, Marangos M, Sipsas N, Apostolidi EA et al. Hospital-wide antifungal prescription in Greek hospitals: a multicenter repeated point-prevalence study. Eur J Clin Microbiol Infect Dis 2020; 39:243–248 [View Article]
    [Google Scholar]
  52. Valerio M, Rodriguez-Gonzalez CG, Muñoz P, Caliz B, Sanjurjo M et al. Evaluation of antifungal use in a tertiary care institution: antifungal stewardship urgently needed. J Antimicrob Chemother 2014; 69:1993–1999 [View Article] [PubMed]
    [Google Scholar]
  53. Fournier P, Schwebel C, Maubon D, Vesin A, Lebeau B et al. Antifungal use influences Candida species distribution and susceptibility in the intensive care unit. J Antimicrob Chemother 2011; 66:2880–2886 [View Article] [PubMed]
    [Google Scholar]
  54. Verma SB. Topical corticosteroid misuse in India is harmful and out of control. BMJ 2015h6079 [View Article]
    [Google Scholar]
  55. Kano R, Kimura U, Kakurai M, Hiruma J, Kamata H et al. Trichophyton indotineae sp. nov.: a new highly terbinafine-resistant anthropophilic dermatophyte species. Mycopathologia 2020; 185:947–958 [View Article]
    [Google Scholar]
  56. Brown GD. Innate antifungal immunity: the key role of phagocytes. Annu Rev Immunol 2011; 29:1–21 [View Article] [PubMed]
    [Google Scholar]
  57. Gold KM, Hitchins VM. Cleaning assessment of disinfectant cleaning wipes on an external surface of a medical device contaminated with artificial blood or Streptococcus pneumoniae. Am J Infect Control 2013; 41:901–907 [View Article] [PubMed]
    [Google Scholar]
  58. Rutala WA, Weber DJ. Disinfection, sterilization, and antisepsis: an overview. Am J Infect Control 2019; 47S:A3–A9 [View Article] [PubMed]
    [Google Scholar]
  59. Hawser SP, Douglas LJ. Resistance of Candida albicans biofilms to antifungal agents in vitro. Antimicrob Agents Chemother 1995; 39:2128–2131 [View Article] [PubMed]
    [Google Scholar]
  60. Richards MJ, Edwards JR, Culver DH, Gaynes RP. Nosocomial infections in medical intensive care units in the United States. Critical Care Med 1999; 27:887–892 [View Article]
    [Google Scholar]
  61. Joly V, Belmatoug N, Leperre A, Robert J, Jault F et al. Pacemaker endocarditis due to Candida albicans: case report and review. Clin Infect Dis 1997; 25:1359–1362 [View Article] [PubMed]
    [Google Scholar]
  62. Melgar GR, Nasser RM, Gordon SM, Lytle BW, Keys TF et al. Fungal prosthetic valve endocarditis in 16 patients an 11-year experience in a Tertiary Care Hospital. Medicine 1997; 76:94–103 [View Article]
    [Google Scholar]
  63. Nucci M, Anaissie E. Should vascular catheters be removed from all patients with candidemia? An evidence-based review. Clin Infect Dis 2002; 34:591–599 [View Article] [PubMed]
    [Google Scholar]
  64. Lim EV, Stern PJ. Candida infection after implant arthroplasty. A case report. J Bone Joint Surg Am 1986; 68:143–145 [PubMed]
    [Google Scholar]
  65. Casadevall A, Kontoyiannis DP, Robert V. On the emergence of Candida auris: climate change, azoles, swamps, and birds. mBio 2019; 10:01397–19 [View Article] [PubMed]
    [Google Scholar]
  66. Satoh K, Makimura K, Hasumi Y, Nishiyama Y, Uchida K et al. Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiol Immunol 2009; 53:41–44 [View Article] [PubMed]
    [Google Scholar]
  67. Burrack LS, Todd RT, Soisangwan N, Wiederhold NP, Selmecki A. Genomic diversity across candida auris clinical isolates shapes rapid development of antifungal resistance in vitro and in vivo. Heitman J, editor. mBio 2022; 13:e00842–22 [View Article]
    [Google Scholar]
  68. Healey KR, Kordalewska M, Jiménez Ortigosa C, Singh A, Berrío I et al. Limited ERG11 mutations identified in isolates of Candida auris directly contribute to reduced azole susceptibility. Antimicrob Agents Chemother 2018; 62:e01427–18 [View Article]
    [Google Scholar]
  69. Chatterjee S, Alampalli SV, Nageshan RK, Chettiar ST, Joshi S et al. Draft genome of a commonly misdiagnosed multidrug resistant pathogen Candida auris. BMC Genomics 2015; 16:686 [View Article] [PubMed]
    [Google Scholar]
  70. Rybak JM, Doorley LA, Nishimoto AT, Barker KS, Palmer GE et al. Abrogation of triazole resistance upon deletion of CDR1 in a clinical isolate of Candida auris. Antimicrob Agents Chemother 2019; 63:e00057–19
    [Google Scholar]
  71. Sharma C, Kumar N, Pandey R, Meis JF, Chowdhary A. Whole genome sequencing of emerging multidrug resistant Candida auris isolates in India demonstrates low genetic variation. New Microbes New Infect 2016; 13:77–82 [View Article] [PubMed]
    [Google Scholar]
  72. Rybak JM, Muñoz JF, Barker KS, Parker JE, Esquivel BD et al. Mutations in TAC1B: a novel genetic determinant of clinical fluconazole resistance in Candida auris. mBio 2020; 11:e00365-20 [View Article] [PubMed]
    [Google Scholar]
  73. Kean R, Sherry L, Townsend E, McKloud E, Short B et al. Surface disinfection challenges for Candida auris: an in-vitro study. J Hosp Infect 2018; 98:433–436 [View Article] [PubMed]
    [Google Scholar]
  74. Brown JKM, Chartrain L, Lasserre-Zuber P, Saintenac C. Genetics of resistance to Zymoseptoria tritici and applications to wheat breeding. Fungal Genet Biol 2015; 79:33–41 [View Article] [PubMed]
    [Google Scholar]
  75. Savary S, Willocquet L, Pethybridge SJ, Esker P, McRoberts N et al. The global burden of pathogens and pests on major food crops. Nat Ecol Evol 2019; 3:430–439 [View Article]
    [Google Scholar]
  76. Fones H, Gurr S. The impact of Septoria tritici blotch disease on wheat: an EU perspective. Fungal Genet Biol 2015; 79:3–7 [View Article] [PubMed]
    [Google Scholar]
  77. Chen Y, Dong F, Zhao J, Fan H, Qin C et al. High azole resistance in Aspergillus fumigatus isolates from strawberry fields, China, 2018. Emerg Infect Dis 2020; 26:81–89 [View Article] [PubMed]
    [Google Scholar]
  78. Price CL, Parker JE, Warrilow AGS, Kelly DE, Kelly SL. Azole fungicides - understanding resistance mechanisms in agricultural fungal pathogens. Pest Manag Sci 2015; 71:1054–1058 [View Article] [PubMed]
    [Google Scholar]
  79. European Centre for Disease Prevention and Control Risk assessment on the impact of environmental usage of traizoles on the development and spread of resistance to medical triazoles in aspergillus species; 2013 https://data.europa.eu/doi/10.2900/76274
  80. Garcia-Rubio R, Gonzalez-Jimenez I, Lucio J, Mellado E. Aspergillus fumigatus cross-resistance between clinical and demethylase inhibitor azole drugs. Appl Environ Microbiol 2021; 87:e02539–20 [View Article]
    [Google Scholar]
  81. Becher R, Wirsel SGR. Fungal cytochrome P450 sterol 14α-demethylase (CYP51) and azole resistance in plant and human pathogens. Appl Microbiol Biotechnol 2012; 95:825–840 [View Article] [PubMed]
    [Google Scholar]
  82. Jørgensen LN, Heick TM. Azole use in agriculture, horticulture, and wood preservation - is it indispensable?. Front Cell Infect Microbiol 2021; 11:730297 [View Article] [PubMed]
    [Google Scholar]
  83. Heick TM, Justesen AF, Jørgensen LN. Resistance of wheat pathogen Zymoseptoria tritici to DMI and QoI fungicides in the nordic-baltic region - a status. Eur J Plant Pathol 2017; 149:669–682 [View Article]
    [Google Scholar]
  84. Jørgensen LN, Matzen N, Hansen JG, Semaskiene R, Korbas M et al. Four azoles’ profile in the control of Septoria, yellow rust and brown rust in wheat across Europe. Crop Protection 2018; 105:16–27 [View Article]
    [Google Scholar]
  85. Mohd-Assaad N, McDonald BA, Croll D. Multilocus resistance evolution to azole fungicides in fungal plant pathogen populations. Mol Ecol 2016; 25:6124–6142 [View Article] [PubMed]
    [Google Scholar]
  86. Klink H, Verreet JA, Hasler M, Birr T. Will triazoles still be of importance in disease control of Zymoseptoria tritici in the future?. Agronomy 2021; 11:933 [View Article]
    [Google Scholar]
  87. Torriani SF, Brunner PC, McDonald BA, Sierotzki H. QoI resistance emerged independently at least 4 times in European populations of Mycosphaerella graminicola. Pest Manag Sci 2009; 65:155–162 [View Article] [PubMed]
    [Google Scholar]
  88. Cools HJ, Fraaije BA. Update on mechanisms of azole resistance in Mycosphaerella graminicola and implications for future control. Pest Manag Sci 2013; 69:150–155 [View Article] [PubMed]
    [Google Scholar]
  89. Dooley H, Shaw MW, Spink J, Kildea S. Effect of azole fungicide mixtures, alternations and dose on azole sensitivity in the wheat pathogen Zymoseptoria tritici. Plant Pathol 2016; 65:124–136 [View Article]
    [Google Scholar]
  90. Blake JJ, Gosling P, Fraaije BA, Burnett FJ, Knight SM et al. Changes in field dose-response curves for demethylation inhibitor (DMI) and quinone outside inhibitor (QoI) fungicides against Zymoseptoria tritici, related to laboratory sensitivity phenotyping and genotyping assays. Pest Manag Sci 2018; 74:302–313 [View Article] [PubMed]
    [Google Scholar]
  91. Heick TM, Matzen N, Jørgensen LN. Reduced field efficacy and sensitivity of demethylation inhibitors in the Danish and Swedish Zymoseptoria tritici populations. Eur J Plant Pathol 2020; 157:625–636 [View Article]
    [Google Scholar]
  92. Degeling C, Hall J. Governing antibiotic risks in Australian agriculture: sustaining conflicting common goods through competing compliance mechanisms. Public Health Ethics 2023; 16:9–21 [View Article]
    [Google Scholar]
  93. Wellings CR. Puccinia striiformis in Australia: a review of the incursion, evolution, and adaptation of stripe rust in the period 1979–2006. Aust J Agric Res 2007; 58:567 [View Article]
    [Google Scholar]
  94. McDonald MC, Renkin M, Spackman M, Orchard B, Croll D et al. Rapid parallel evolution of azole fungicide resistance in Australian populations of the wheat pathogen Zymoseptoria tritici. Appl Environ Microbiol 2019; 85:e01908–18 [View Article]
    [Google Scholar]
  95. Milgate A, Adorada D, Orchard B, Pattemore J. First report of resistance to DMI fungicides in Australian populations of the wheat pathogen Zymoseptoria tritici. Plant Dis 2016; 100:522 [View Article] [PubMed]
    [Google Scholar]
  96. Leroux P, Albertini C, Gautier A, Gredt M, Walker AS. Mutations in the CYP51 gene correlated with changes in sensitivity to sterol 14 alpha-demethylation inhibitors in field isolates of Mycosphaerella graminicola. Pest Manag Sci 2007; 63:688–698 [View Article] [PubMed]
    [Google Scholar]
  97. Zulak KG, Cox BA, Tucker MA, Oliver RP, Lopez-Ruiz FJ. Improved detection and monitoring of fungicide resistance in Blumeria graminis f. sp. hordei with high-throughput genotype quantification by digital PCR. Front Microbiol 2018; 9:706 [View Article] [PubMed]
    [Google Scholar]
  98. Meyers E, Arellano C. Sensitivity of the U.S. Blumeria graminis f. sp. tritici population to demethylation inhibitor fungicides. Plant Dis 2019; 103:3108–3116
    [Google Scholar]
  99. Bowen KL. Reduction in Yield of Winter Wheat in North Carolina Due to Powdery Mildew and Leaf Rust. Phytopathology 1991; 81:503 [View Article]
    [Google Scholar]
  100. Vielba-Fernández A, Polonio Á, Ruiz-Jiménez L, de Vicente A, Pérez-García A et al. Fungicide resistance in powdery mildew Fungi. Microorganisms 2020; 8:1431 [View Article] [PubMed]
    [Google Scholar]
  101. Reis EM, Basso DF, Zanatta M. Loss of sensitivity of Blumeria graminis f. sp. tritici to triadimenol applied as seed treatment. Trop Plant Pathol 2013; 38:55–57 [View Article]
    [Google Scholar]
  102. Yan L, Yang Q, Zhou Y, Duan X, Ma Z. A real-time PCR assay for quantification of the Y136F allele in the CYP51 gene associated with Blumeria graminis f.sp. tritici resistance to sterol demethylase inhibitors. Crop Protection 2009; 28:376–380 [View Article]
    [Google Scholar]
  103. Švec M, Miklovičová M, Sýkora M, Krippel E. Fungicide sensitivity of populations of wheat powdery mildew (Erysiphe graminis f.sp. tritici) in Central Europe in 1993. Pestic Sci 1995; 43:47–52 [View Article]
    [Google Scholar]
  104. Hermann D, Stenzel K. FRAC Mode-of-action Classification and Resistance Risk of Fungicides. In: Modern Crop Protection Compounds [Internet]. John Wiley & Sons, Ltd; 2019 [cited 2023 Mar 2]. p. 589–608. https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527699261.ch14
  105. Esquivel BD, White TC. Accumulation of azole drugs in the fungal plant pathogen Magnaporthe oryzae is the result of facilitated diffusion influx. Front Microbiol 2017; 8:1320 [View Article] [PubMed]
    [Google Scholar]
  106. Martin-Urdiroz M, Oses-Ruiz M, Ryder LS, Talbot NJ. Investigating the biology of plant infection by the rice blast fungus Magnaporthe oryzae. Fungal Genet Biol 2016; 90:61–68 [View Article] [PubMed]
    [Google Scholar]
  107. Yan X, Talbot NJ. Investigating the cell biology of plant infection by the rice blast fungus Magnaporthe oryzae. Curr Opin Microbiol 2016; 34:147–153 [View Article] [PubMed]
    [Google Scholar]
  108. Liu J, Wang X, Mitchell T, Hu Y, Liu X et al. Recent progress and understanding of the molecular mechanisms of the rice-Magnaporthe oryzae interaction. Mol Plant Pathol 2010; 11:419–427 [View Article] [PubMed]
    [Google Scholar]
  109. Talbot NJ. On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu Rev Microbiol 2003; 57:177–202 [View Article]
    [Google Scholar]
  110. Thornton CR, Wills OE. Immunodetection of fungal and oomycete pathogens: established and emerging threats to human health, animal welfare and global food security. Crit Rev Microbiol 2015; 41:27–51 [View Article] [PubMed]
    [Google Scholar]
  111. Lehoczki-Krsjak S, Varga M, Mesterházy Á. Distribution of prothioconazole and tebuconazole between wheat ears and flag leaves following fungicide spraying with different nozzle types at flowering. Pest Manag Sci 2015; 71:105–113 [View Article]
    [Google Scholar]
  112. Lehoczki-Krsjak S, Varga M, Szabó-Hevér Á, Mesterházy Á. Translocation and degradation of tebuconazole and prothioconazole in wheat following fungicide treatment at flowering. Pest Manag Sci 2013; 69:1216–1224 [View Article] [PubMed]
    [Google Scholar]
  113. Cai M, Miao J, Chen F, Li B, Liu X. Survival cost and diverse molecular mechanisms of Magnaporthe oryzae isolate resistance to epoxiconazole. Plant Dis 2021; 105:473–480 [View Article] [PubMed]
    [Google Scholar]
  114. Chen Y, Yao J, Wang W-X, Gao T-C, Yang X et al. Effect of epoxiconazole on rice blast and rice grain yield in China. Eur J Plant Pathol 2013; 135:675–682 [View Article]
    [Google Scholar]
  115. Yan X, Ma W-B, Li Y, Wang H, Que Y-W et al. A sterol 14α-demethylase is required for conidiation, virulence and for mediating sensitivity to sterol demethylation inhibitors by the rice blast fungus Magnaporthe oryzae. Fungal Genet Biol 2011; 48:144–153 [View Article] [PubMed]
    [Google Scholar]
  116. Scoping review into environmental selection for antifungal resistance and testing methodology [Internet]. GOV.UK. [cited 2023 Sep 18]. n.d https://www.gov.uk/government/publications/scoping-review-into-environmental-selection-for-antifungal-resistance-and-testing-methodology
  117. Snelders E, Huis In't Veld RAG, Rijs AJMM, Kema GHJ, Melchers WJG et al. Possible environmental origin of resistance of Aspergillus fumigatus to medical triazoles. Appl Environ Microbiol 2009; 75:4053–4057 [View Article] [PubMed]
    [Google Scholar]
  118. Zhang J, van den Heuvel J, Debets AJM, Verweij PE, Melchers WJG et al. Evolution of cross-resistance to medical triazoles in Aspergillus fumigatus through selection pressure of environmental fungicides. Proc Biol Sci 2017; 284:20170635 [View Article] [PubMed]
    [Google Scholar]
  119. Snelders E, Camps SMT, Karawajczyk A, Schaftenaar G, Kema GHJ et al. Triazole fungicides can induce cross-resistance to medical triazoles in Aspergillus fumigatus. PLoS One 2012; 7:e31801 [View Article]
    [Google Scholar]
  120. van de Veerdonk FL, Gresnigt MS, Romani L, Netea MG, Latgé J-P. Aspergillus fumigatus morphology and dynamic host interactions. Nat Rev Microbiol 2017; 15:661–674 [View Article] [PubMed]
    [Google Scholar]
  121. Mba IE, Nweze EI, Eze EA, Anyaegbunam ZKG. Genome plasticity in Candida albicans: a cutting-edge strategy for evolution, adaptation, and survival. Infect Genet Evol 2022; 99:105256 [View Article] [PubMed]
    [Google Scholar]
  122. Omrane S, Audéon C, Ignace A, Duplaix C, Aouini L et al. Plasticity of the MFS1 promoter leads to multidrug resistance in the wheat pathogen zymoseptoria tritici. mSphere 2017; 2:10
    [Google Scholar]
  123. Mellado E, Diaz-Guerra TM, Cuenca-Estrella M, Rodriguez-Tudela JL. Identification of two different 14-alpha sterol demethylase-related genes (cyp51A and cyp51B) in Aspergillus fumigatus and other Aspergillus species. J Clin Microbiol 2001; 39:2431–2438 [View Article] [PubMed]
    [Google Scholar]
  124. Warrilow AGS, Parker JE, Price CL, Nes WD, Kelly SL et al. In vitro biochemical study of CYP51-mediated azole resistance in Aspergillus fumigatus. Antimicrob Agents Chemother 2015; 59:7771–7778 [View Article] [PubMed]
    [Google Scholar]
  125. Rhodes J, Abdolrasouli A, Dunne K, Sewell TR, Zhang Y et al. Population genomics confirms acquisition of drug-resistant Aspergillus fumigatus infection by humans from the environment. Nat Microbiol 2022; 7:663–674 [View Article] [PubMed]
    [Google Scholar]
  126. Zhang J, Snelders E, Zwaan BJ, Schoustra SE, Meis JF et al. A novel environmental azole resistance mutation in Aspergillus fumigatus and a possible role of sexual reproduction in its emergence. mBio 2017; 8:e00791-17 [View Article] [PubMed]
    [Google Scholar]
  127. Fraczek MG, Bromley M, Buied A, Moore CB, Rajendran R et al. The cdr1B efflux transporter is associated with non-cyp51a-mediated itraconazole resistance in Aspergillus fumigatus. J Antimicrob Chemother 2013; 68:1486–1496 [View Article] [PubMed]
    [Google Scholar]
  128. Holmes AR, Cardno TS, Strouse JJ, Ivnitski-Steele I, Keniya MV et al. Targeting efflux pumps to overcome antifungal drug resistance. Future Med Chem 2016; 8:1485–1501 [View Article]
    [Google Scholar]
  129. Snelders E, van der Lee HAL, Kuijpers J, Rijs AJMM, Varga J et al. Emergence of azole resistance in Aspergillus fumigatus and spread of a single resistance mechanism. PLoS Med 2008; 5:e219 [View Article]
    [Google Scholar]
  130. Verweij PE, Snelders E, Kema GHJ, Mellado E, Melchers WJG. Azole resistance in Aspergillus fumigatus: a side-effect of environmental fungicide use?. Lancet Infect Dis 2009; 9:789–795 [View Article] [PubMed]
    [Google Scholar]
  131. Verweij PE, Chowdhary A, Melchers WJG, Meis JF. Azole resistance in Aspergillus fumigatus: can we retain the clinical use of mold-active antifungal azoles?. Clin Infect Dis 2016; 62:362–368 [View Article] [PubMed]
    [Google Scholar]
  132. Meis JF, Chowdhary A, Rhodes JL, Fisher MC, Verweij PE. Clinical implications of globally emerging azole resistance in Aspergillus fumigatus. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150460 [View Article] [PubMed]
    [Google Scholar]
  133. Pelaez T, Gijón P, Bunsow E, Bouza E, Sánchez-Yebra W et al. Resistance to voriconazole due to a G448S substitution in Aspergillus fumigatus in a patient with cerebral aspergillosis. J Clin Microbiol 2012; 50:2531–2534 [View Article] [PubMed]
    [Google Scholar]
  134. Singh A, Sharma B, Mahto KK, Meis JF, Chowdhary A. High-frequency direct detection of triazole resistance in Aspergillus fumigatus from patients with chronic pulmonary fungal diseases in India. J Fungi 2020; 6:67 [View Article] [PubMed]
    [Google Scholar]
  135. Bader O, Tünnermann J, Dudakova A, Tangwattanachuleeporn M, Weig M et al. Environmental isolates of azole-resistant Aspergillus fumigatus in Germany. Antimicrob Agents Chemother 2015; 59:4356–4359 [View Article] [PubMed]
    [Google Scholar]
  136. Sharma C, Hagen F, Moroti R, Meis JF, Chowdhary A. Triazole-resistant Aspergillus fumigatus harbouring G54 mutation: is it de novo or environmentally acquired?. J Glob Antimicrob Resist 2015; 3:69–74 [View Article] [PubMed]
    [Google Scholar]
  137. Deng S, Zhang L, Ji Y, Verweij PE, Tsui KM et al. Triazole phenotypes and genotypic characterization of clinical Aspergillus fumigatus isolates in China. Emerg Microbes Infect 2017; 6:e109 [View Article] [PubMed]
    [Google Scholar]
  138. Resendiz Sharpe A, Lagrou K, Meis JF, Chowdhary A, Lockhart SR et al. Triazole resistance surveillance in Aspergillus fumigatus. Med Mycol Open Access 2018; 56:S83–S92 [View Article]
    [Google Scholar]
  139. Schoustra SE, Debets AJM, Rijs AJMM, Zhang J, Snelders E et al. Environmental hotspots for azole resistance selection of Aspergillus fumigatus, the Netherlands. Emerg Infect Dis 2019; 25:1347–1353 [View Article] [PubMed]
    [Google Scholar]
  140. Shelton JMG, Collins R, Uzzell CB, Alghamdi A, Dyer PS et al. Citizen science surveillance of triazole-resistant Aspergillus fumigatus in United Kingdom residential garden soils. Appl Environ Microbiol 2022; 88:e0206121 [View Article] [PubMed]
    [Google Scholar]
  141. Sewell TR, Zhu J, Rhodes J, Hagen F, Meis JF et al. Nonrandom distribution of azole resistance across the global population of Aspergillus fumigatus. mBio 2019; 10:00392–19 [View Article] [PubMed]
    [Google Scholar]
  142. van der Linden JWM, Camps SMT, Kampinga GA, Arends JPA, Debets-Ossenkopp YJ et al. Aspergillosis due to voriconazole highly resistant Aspergillus fumigatus and recovery of genetically related resistant isolates from domiciles. Clin Infect Dis 2013; 57:513–520 [View Article] [PubMed]
    [Google Scholar]
  143. Mellado E, Garcia-Effron G, Alcázar-Fuoli L, Melchers WJG, Verweij PE et al. A new Aspergillus fumigatus resistance mechanism conferring in vitro cross-resistance to azole antifungals involves a combination of cyp51A alterations. Antimicrob Agents Chemother 2007; 51:1897–1904 [View Article] [PubMed]
    [Google Scholar]
  144. Alvarez-Moreno C, Lavergne RA, Hagen F, Morio F, Meis JF et al. Azole-resistant Aspergillus fumigatus harboring TR34/L98H, TR46/Y121F/T289A and TR53 mutations related to flower fields in Colombia. Sci Rep 2017; 7:45631 [View Article] [PubMed]
    [Google Scholar]
  145. Cho S-Y, Lee D-G, Kim W-B, Chun H-S, Park C et al. Epidemiology and antifungal susceptibility profile of Aspergillus species: comparison between environmental and clinical isolates from patients with hematologic malignancies. J Clin Microbiol 2019; 57:02023–18 [View Article] [PubMed]
    [Google Scholar]
  146. Rivero-Menendez O, Alastruey-Izquierdo A, Mellado E, Cuenca-Estrella M. Triazole resistance in Aspergillus spp.: a worldwide problem?. J Fungi 2016; 2:21 [View Article]
    [Google Scholar]
  147. Zhang Y, Brackin AP, Shelton JMG, Rhodes J et al. Elevated prevalence of azole-resistant Aspergillus fumigatus in Urban versus rural environments in the United Kingdom. Antimicrob Agents Chemother 2019; 63:00548–19 [View Article]
    [Google Scholar]
  148. Astvad KMT, Jensen RH, Hassan TM, Mathiasen EG, Thomsen GM et al. First detection of TR 46 /Y121F/T289A and TR 34 /L98H alterations in Aspergillus fumigatus isolates from azole-naive patients in Denmark despite negative findings in the environment. Antimicrob Agents Chemother 2014; 58:5096–5101 [View Article]
    [Google Scholar]
  149. Snelders E, Camps SMT, Karawajczyk A, Rijs AJMM, Zoll J et al. Genotype-phenotype complexity of the TR46/Y121F/T289A cyp51A azole resistance mechanism in Aspergillus fumigatus. Fungal Genet Biol 2015; 82:129–135 [View Article] [PubMed]
    [Google Scholar]
  150. Chen Y, Wang H, Lu Z, Li P, Zhang Q et al. Emergence of TR46/Y121F/T289A in an Aspergillus fumigatus isolate from a Chinese patient. Antimicrob Agents Chemother 2015; 59:7148–7150 [View Article]
    [Google Scholar]
  151. Wiederhold NP, Gil VG, Gutierrez F, Lindner JR, Albataineh MT et al. First detection of TR34 L98H and TR46 Y121F T289A Cyp51 mutations in Aspergillus fumigatus isolates in the United States. J Clin Microbiol 2016; 54:168–171 [View Article] [PubMed]
    [Google Scholar]
  152. Patterson TF, Thompson GR 3rd, Denning DW, Fishman JA, Hadley S et al. Executive summary: practice guidelines for the diagnosis and management of Aspergillosis: 2016 update by the infectious diseases society of America. Clin Infect Dis 2016; 63:433–442 [View Article] [PubMed]
    [Google Scholar]
  153. van Paassen J, Russcher A, in’t Veld - van Wingerden AW, Verweij PE, Kuijper EJ. Emerging aspergillosis by azole-resistant Aspergillus fumigatus at an intensive care unit in the Netherlands, 2010 to 2013. Euro Surveill 2016; 21:30300 [View Article]
    [Google Scholar]
  154. van Rhijn N, Storer ISR, Birch M, Oliver JD, Bottery MJ et al. Aspergillus fumigatus strains that evolve resistance to the agrochemical fungicide ipflufenoquin in vitro are also resistant to olorofim. Nat Microbiol 2024; 9:29–34 [View Article] [PubMed]
    [Google Scholar]
  155. Buil JB, Snelders E, Denardi LB, Melchers WJG, Verweij PE. Trends in azole resistance in Aspergillus fumigatus, the Netherlands, 1994–2016. Emerg Infect Dis 2019; 25:176–178 [View Article] [PubMed]
    [Google Scholar]
  156. Maertens JA, Verweij PE, Lanuza EF, Harvey EL, Dane A et al. 870. Olorofim for the treatment of invasive mould infections in patients with limited or no treatment options: Comparison of interim results from a Phase 2B open-label study with outcomes in historical control populations (NCT03583164, FORMULA-OLS, Study 32). Open Forum Infect Dis 2022; 9:063 [View Article]
    [Google Scholar]
  157. du Pré S, Beckmann N, Almeida MC, Sibley GEM, Law D et al. Effect of the novel antifungal drug F901318 (Olorofim) on growth and viability of Aspergillus fumigatus. Antimicrob Agents Chemother 2018; 62:00231–18 [View Article] [PubMed]
    [Google Scholar]
  158. Oliver JD, Sibley GEM, Beckmann N, Dobb KS, Slater MJ et al. F901318 represents a novel class of antifungal drug that inhibits dihydroorotate dehydrogenase. Proc Natl Acad Sci U S A 2016; 113:12809–12814 [View Article] [PubMed]
    [Google Scholar]
  159. Umetsu N, Shirai Y. Development of novel pesticides in the 21st century. J Pestic Sci 2020; 45:54–74 [View Article] [PubMed]
    [Google Scholar]
  160. Verweij PE, Arendrup MC, Alastruey-Izquierdo A, Gold JAW, Lockhart SR et al. Dual use of antifungals in medicine and agriculture: how do we help prevent resistance developing in human pathogens?. Drug Resist Updat 2022; 65:100885 [View Article] [PubMed]
    [Google Scholar]
  161. Jeschke P. Recent developments in fluorine-containing pesticides. Pest Management Science [Internet]. n.d https://onlinelibrary.wiley.com/doi/abs/10.1002/ps.7921 accessed 4 February 2024
  162. Hirayama K. Curative effects of fungicides against Venturia inaequalis causing apple scab. J Gen Plant Pathol 2022; 88:264–269 [View Article]
    [Google Scholar]
  163. Hof H. Critical annotations to the use of azole antifungals for plant protection. Antimicrob Agents Chemother 2001; 45:2987–2990 [View Article]
    [Google Scholar]
  164. Edwards PG, Murphy TM, Lydy MJ. Fate and transport of agriculturally applied fungicidal compounds, azoxystrobin and propiconazole. Chemosphere 2016; 146:450–457 [View Article] [PubMed]
    [Google Scholar]
  165. van den Bosch F, Oliver R, van den Berg F, Paveley N. Governing principles can guide fungicide-resistance management tactics. Annu Rev Phytopathol 2014; 52:175–195 [View Article] [PubMed]
    [Google Scholar]
  166. Murray AK, Stanton I, Gaze WH, Snape J. Dawning of a new ERA: environmental risk assessment of antibiotics and their potential to select for antimicrobial resistance. Water Res 2021; 200:117233 [View Article]
    [Google Scholar]
  167. Azevedo M-M, Faria-Ramos I, Cruz LC, Pina-Vaz C, Rodrigues AG. Genesis of azole antifungal resistance from agriculture to clinical settings. J Agric Food Chem 2015; 63:7463–7468 [View Article] [PubMed]
    [Google Scholar]
  168. Kousik C (Shaker), Ji P, Egel DS, Quesada-Ocampo LM. Fungicide rotation programs for managing phytophthora fruit rot of watermelon in Southeastern United States. Plant Health Progress 2017; 18:28–34 [View Article]
    [Google Scholar]
  169. Fisher MC, Alastruey-Izquierdo A, Berman J, Bicanic T, Bignell EM et al. Tackling the emerging threat of antifungal resistance to human health. Nat Rev Microbiol 2022; 20:557–571 [View Article]
    [Google Scholar]
  170. Cao D, Wu R, Dong S, Wang F, Ju C et al. Triazole resistance in Aspergillus fumigatus in crop plant soil after tebuconazole applications. Environmental Pollution 2020; 266:115124 [View Article]
    [Google Scholar]
  171. Toyotome T, Hagiwara D, Kida H, Ogi T, Watanabe A et al. First clinical isolation report of azole-resistant Aspergillus fumigatus with TR34/L98H-type mutation in Japan. J Infect Chemother 2017; 23:579–581 [View Article] [PubMed]
    [Google Scholar]
  172. Jørgensen LN, Matzen N, Heick TM, Havis N, Holdgate S et al. Decreasing azole sensitivity of Z. tritici in Europe contributes to reduced and varying field efficacy. J Plant Dis Prot 2021; 128:287–301 [View Article]
    [Google Scholar]
  173. Ishii H, Bryson PK, Kayamori M, Miyamoto T, Yamaoka Y et al. Cross-resistance to the new fungicide mefentrifluconazole in DMI-resistant fungal pathogens. Pestic Biochem Physiol 2021; 171:104737 [View Article] [PubMed]
    [Google Scholar]
  174. Jørgensen LN, Matzen N, Heick TM, O’Driscoll A, Clark B et al. Shifting sensitivity of septoria tritici blotch compromises field performance and yield of main fungicides in Europe. Front Plant Sci 2022; 13:1060428 [View Article]
    [Google Scholar]
  175. Nnadi NE, Carter DA. Climate change and the emergence of fungal pathogens. PLoS Pathog 2021; 17:e1009503 [View Article]
    [Google Scholar]
  176. Garcia-Bustos V, Cabañero-Navalon MD, Ruiz-Gaitán A, Salavert M, Tormo-Mas et al. Climate change, animals, and Candida auris: insights into the ecological niche of a new species from a one health approach. Clin Microbiol Infect 2023; 29:858–862 [View Article] [PubMed]
    [Google Scholar]
  177. Ruiz‐Gaitán A, Moret AM, Tasias‐Pitarch M, Aleixandre‐López AI, Martínez‐Morel H et al. An outbreak due to Candida auris with prolonged colonisation and candidaemia in a tertiary care European hospital. Mycoses 2018; 61:498–505 [View Article]
    [Google Scholar]
  178. Sant DG, Tupe SG, Ramana CV, Deshpande MV. Fungal cell membrane-promising drug target for antifungal therapy. J Appl Microbiol 2016; 121:1498–1510 [View Article]
    [Google Scholar]
  179. Gusa A, Williams JD, Cho J-E, Averette AF, Sun S et al. Transposon mobilization in the human fungal pathogen Cryptococcus is mutagenic during infection and promotes drug resistance in vitro. Proc Natl Acad Sci U S A 2020; 117:9973–9980 [View Article] [PubMed]
    [Google Scholar]
  180. Dromer F, Mathoulin-Pélissier S, Launay O, Lortholary O. the French Cryptococcosis Study Group Determinants of disease presentation and outcome during cryptococcosis: the CryptoA/D Study. PLOS Med 2007; 4:e21 [View Article]
    [Google Scholar]
  181. Mat Razali N, Cheah BH, Nadarajah K. Transposable elements adaptive role in genome plasticity, pathogenicity and evolution in fungal phytopathogens. Int J Mol Sci 2019; 20:3597 [View Article]
    [Google Scholar]
  182. Fu C, Davy A, Holmes S, Sun S, Yadav V et al. Dynamic genome plasticity during unisexual reproduction in the human fungal pathogen Cryptococcus deneoformans. PLOS Genet 2021; 17:e1009935 [View Article]
    [Google Scholar]
  183. Forche A. Large-scale chromosomal changes and associated fitness consequences in pathogenic fungi. Curr Fungal Infect Rep 2014; 8:163–170 [View Article] [PubMed]
    [Google Scholar]
  184. Gusa A, Jinks-Robertson S. Mitotic recombination and adaptive genomic changes in human pathogenic fungi. Genes 2019; 10:901 [View Article]
    [Google Scholar]
  185. Priest SJ, Yadav V, Roth C, Dahlmann TA, Kück U et al. Uncontrolled transposition following RNAi loss causes hypermutation and antifungal drug resistance in clinical isolates of Cryptococcus neoformans. Nat Microbiol 2022; 7:1239–1251 [View Article]
    [Google Scholar]
  186. Loftus BJ, Fung E, Roncaglia P, Rowley D, Amedeo P et al. The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans. Science 2005; 307:1321–1324 [View Article] [PubMed]
    [Google Scholar]
  187. Gusa A, Yadav V, Roth C, Williams JD, Shouse EM et al. Genome-wide analysis of heat stress-stimulated transposon mobility in the human fungal pathogen Cryptococcus deneoformans. Proc Natl Acad Sci USA 2023; 120:e2209831120 [View Article]
    [Google Scholar]
  188. Wirth C, Brandt U, Hunte C, Zickermann V. Structure and function of mitochondrial complex I. Biochim Biophys Acta 2016; 1857:902–914 [View Article] [PubMed]
    [Google Scholar]
  189. Joseph-Horne T, Hollomon DW, Wood PM. Fungal respiration: a fusion of standard and alternative components. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2001; 1504:179–195 [View Article]
    [Google Scholar]
  190. Affourtit C, Heaney SP, Moore AL. Mitochondrial electron transfer in the wheat pathogenic fungus Septoria tritici: on the role of alternative respiratory enzymes in fungicide resistance. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2000; 1459:291–298 [View Article]
    [Google Scholar]
  191. Tajeddine N. How do reactive oxygen species and calcium trigger mitochondrial membrane permeabilisation?. Biochimica et Biophysica Acta (BBA) - General Subjects 2016; 1860:1079–1088 [View Article]
    [Google Scholar]
  192. Tramsen L, Schmidt S, Boenig H, Latgé J-P, Lass-Flörl C et al. Clinical-scale generation of multi-specific anti-fungal T cells targeting Candida, Aspergillus and mucormycetes. Cytotherapy 2013; 15:344–351 [View Article] [PubMed]
    [Google Scholar]
  193. Bugli F, Cacaci M, Martini C, Torelli R, Posteraro B et al. Human monoclonal antibody-based therapy in the treatment of invasive candidiasis. Clin Dev Immunol 2013; 2013:403121 [View Article] [PubMed]
    [Google Scholar]
  194. Turnbull C, Lillemo M, Hvoslef-Eide TAK. Global regulation of genetically modified crops amid the gene edited crop boom - A review. Front Plant Sci 2021; 12:630396 [View Article] [PubMed]
    [Google Scholar]
  195. Case NT, Berman J, Blehert DS, Cramer RA, Cuomo C et al. The future of fungi: threats and opportunities. G3 Genes|Genomes|Genetics 2022; 12:jkac224 [View Article] [PubMed]
    [Google Scholar]
  196. Hernández-Soto A, Chacón-Cerdas R. RNAi crop protection advances. Int J Mol Sci 2021; 22:12148 [View Article]
    [Google Scholar]
  197. Wang M, Thomas N, Jin H. Cross-kingdom RNA trafficking and environmental RNAi for powerful innovative pre- and post-harvest plant protection. Curr Opin Plant Biol 2017; 38:133–141 [View Article] [PubMed]
    [Google Scholar]
  198. Sharma RR, Singh D, Singh R. Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biological Control 2009; 50:205–221 [View Article]
    [Google Scholar]
  199. Pappagianis D, Collins MS, Hector R, Remington J. Development of resistance to amphotericin B in Candida lusitaniae infecting a human. Antimicrob Agents Chemother 1979; 16:123–126 [View Article] [PubMed]
    [Google Scholar]
  200. Smith KJ, Warnock DW, Kennedy CT, Johnson EM, Hopwood V et al. Azole resistance in Candida albicans. Med Mycol 1986; 24:133–144 [View Article]
    [Google Scholar]
  201. Moudgal V, Little T, Boikov D, Vazquez JA. Multiechinocandin- and multiazole-resistant Candida parapsilosis isolates serially obtained during therapy for prosthetic valve endocarditis. Antimicrob Agents Chemother 2005; 49:767–769 [View Article] [PubMed]
    [Google Scholar]
  202. Georgopoulos S, Dovas C. A serious outbreak of strains of Cercospora beticola resistant to benzimidazole fungicides in Northern Greece; 1973
/content/journal/micro/10.1099/mic.0.001512
Loading
/content/journal/micro/10.1099/mic.0.001512
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error