1887

Abstract

Riboswitches are 5′ RNA regulatory elements that are capable of binding to various ligands, such as small metabolites, ions and tRNAs, leading to conformational changes and affecting gene transcription or translation. They are widespread in bacteria and frequently control genes that are essential for the survival or virulence of major pathogens. As a result, they represent promising targets for the development of new antimicrobial treatments. , a leading cause of antibiotic-associated nosocomial diarrhoea in adults, possesses numerous riboswitches in its genome. Accumulating knowledge of riboswitch-based regulatory mechanisms provides insights into the potential therapeutic targets for treating infections. This review offers an in-depth examination of the current state of knowledge regarding riboswitch-mediated regulation in , highlighting their importance in bacterial adaptability and pathogenicity. Particular attention is given to the ligand specificity and function of known riboswitches in this bacterium. The review also discusses the recent progress that has been made in the development of riboswitch-targeting compounds as potential treatments for infections. Future research directions are proposed, emphasizing the need for detailed structural and functional analyses of riboswitches to fully harness their regulatory capabilities for developing new antimicrobial strategies.

Funding
This study was supported by the:
  • DIM-1health (Award RPH21003DDP)
    • Principle Award Recipient: JohannPeltier
  • Agence Nationale de la Recherche (Award ANR-20-CE15-0003-DIFFICROSS)
    • Principle Award Recipient: JohannPeltier
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001508
2024-10-15
2024-11-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/170/10/mic001508.html?itemId=/content/journal/micro/10.1099/mic.0.001508&mimeType=html&fmt=ahah

References

  1. Fang FC, Frawley ER, Tapscott T, Vázquez-Torres A. Discrimination and integration of stress signals by pathogenic bacteria. Cell Host Microbe 2016; 20:144–153 [View Article]
    [Google Scholar]
  2. Desgranges E, Marzi S, Moreau K, Romby P, Caldelari I. Noncoding RNA. Microbiol Spectr 2019; 7: [View Article] [PubMed]
    [Google Scholar]
  3. Kavita K, Breaker RR. Discovering riboswitches: the past and the future. Trends Biochem Sci 2023; 48:119–141 [View Article]
    [Google Scholar]
  4. Serganov A, Nudler E. A decade of riboswitches. Cell 2013; 152:17–24 [View Article]
    [Google Scholar]
  5. Aboul‐ela F, Huang W, Abd Elrahman M, Boyapati V, Li P. Linking aptamer‐ligand binding and expression platform folding in riboswitches: prospects for mechanistic modeling and design. WIREs RNA 2015; 6:631–650 [View Article]
    [Google Scholar]
  6. Pavlova N, Kaloudas D, Penchovsky R. Riboswitch distribution, structure, and function in bacteria. Gene 2019; 708:38–48 [View Article] [PubMed]
    [Google Scholar]
  7. Arnvig KB. Riboswitches: choosing the best platform. Biochem Soc Trans 2019; 47:1091–1099 [View Article] [PubMed]
    [Google Scholar]
  8. Nudler E, Mironov AS. The riboswitch control of bacterial metabolism. Trends Biochem Sci 2004; 29:11–17 [View Article] [PubMed]
    [Google Scholar]
  9. Sherwood AV, Henkin TM. Riboswitch-mediated gene regulation: novel RNA architectures dictate gene expression responses. Annu Rev Microbiol 2016; 70:361–374 [View Article] [PubMed]
    [Google Scholar]
  10. Breaker RR. Riboswitches and translation control. Cold Spring Harb Perspect Biol 2018; 10:a032797 [View Article] [PubMed]
    [Google Scholar]
  11. Zhang J, Ferré-D’Amaré AR. Structure and mechanism of the T-box riboswitches. Wiley Interdiscip Rev RNA 2015; 6:419–433 [View Article] [PubMed]
    [Google Scholar]
  12. Breaker RR. The biochemical landscape of riboswitch ligands. Biochemistry 2022; 61:137–149 [View Article] [PubMed]
    [Google Scholar]
  13. Soutourina OA, Monot M, Boudry P, Saujet L, Pichon C et al. Genome-wide identification of regulatory RNAs in the human pathogen Clostridium difficile. PLoS Genet 2013; 9:e1003493 [View Article] [PubMed]
    [Google Scholar]
  14. Fuchs M, Lamm-Schmidt V, Lenče T, Sulzer J, Bublitz A et al. A network of small RNAs regulates sporulation initiation in Clostridioides difficile. EMBO J 2023; 42:e112858 [View Article] [PubMed]
    [Google Scholar]
  15. Fuchs M, Lamm-Schmidt V, Sulzer J, Ponath F, Jenniches L et al. An RNA-centric global view of Clostridioides difficile reveals broad activity of Hfq in a clinically important gram-positive bacterium. Proc Natl Acad Sci U S A 2021; 118:e2103579118 [View Article] [PubMed]
    [Google Scholar]
  16. Smits WK, Lyras D, Lacy DB, Wilcox MH, Kuijper EJ. Clostridium difficile infection. Nat Rev Dis Primers 2016; 2:16020 [View Article] [PubMed]
    [Google Scholar]
  17. Boudry P, Piattelli E, Drouineau E, Peltier J, Boutserin A et al. Identification of RNAs bound by Hfq reveals widespread RNA partners and a sporulation regulator in the human pathogen Clostridioides difficile. RNA Biol 2021; 18:1931–1952 [View Article] [PubMed]
    [Google Scholar]
  18. Theriot CM, Young VB. Interactions between the gastrointestinal microbiome and Clostridium difficile. Annu Rev Microbiol 2015; 69:445–461
    [Google Scholar]
  19. Chumbler NM, Farrow MA, Lapierre LA, Franklin JL, Lacy DB. Clostridium difficile toxins TcdA and TcdB cause colonic tissue damage by distinct mechanisms. Infect Immun 2016; 84:2871–2877 [View Article] [PubMed]
    [Google Scholar]
  20. Panchal V, Brenk R. Riboswitches as drug targets for antibiotics. Antibiotics 2021; 10:45 [View Article] [PubMed]
    [Google Scholar]
  21. Peltier J, Soutourina O. Identification of c-di-GMP-responsive riboswitches. Methods Mol Biol 2017; 1657:377–402 [View Article] [PubMed]
    [Google Scholar]
  22. Regulski EE, Moy RH, Weinberg Z, Barrick JE, Yao Z et al. A widespread riboswitch candidate that controls bacterial genes involved in molybdenum cofactor and tungsten cofactor metabolism. Mol Microbiol 2008; 68:918–932 [View Article] [PubMed]
    [Google Scholar]
  23. Trausch JJ, Ceres P, Reyes FE, Batey RT. The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer. Structure 2011; 19:1413–1423 [View Article] [PubMed]
    [Google Scholar]
  24. Chen X, Mirihana Arachchilage G, Breaker RR. Biochemical validation of a second class of tetrahydrofolate riboswitches in bacteria. RNA 2019; 25:1091–1097 [View Article] [PubMed]
    [Google Scholar]
  25. Wang JX, Lee ER, Morales DR, Lim J, Breaker RR. Riboswitches that sense S-adenosylhomocysteine and activate genes involved in coenzyme recycling. Mol Cell 2008; 29:691–702 [View Article] [PubMed]
    [Google Scholar]
  26. Malkowski SN, Spencer TCJ, Breaker RR. Evidence that the nada motif is a bacterial riboswitch for the ubiquitous enzyme cofactor NAD(+). Rna 2019; 25:1616–1627
    [Google Scholar]
  27. Winkler WC, Cohen-Chalamish S, Breaker RR. An mRNA structure that controls gene expression by binding FMN. Proc Natl Acad Sci U S A 2002; 99:15908–15913 [View Article] [PubMed]
    [Google Scholar]
  28. Abbas CA, Sibirny AA. Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers. Microbiol Mol Biol Rev 2011; 75:321–360 [View Article] [PubMed]
    [Google Scholar]
  29. Vogl C, Grill S, Schilling O, Stülke J, Mack M et al. Characterization of riboflavin (vitamin B2) transport proteins from Bacillus subtilis and Corynebacterium glutamicum. J Bacteriol 2007; 189:7367–7375 [View Article] [PubMed]
    [Google Scholar]
  30. Atilho RM, Perkins KR, Breaker RR. Rare variants of the FMN riboswitch class in Clostridium difficile and other bacteria exhibit altered ligand specificity. RNA 2019; 25:23–34 [View Article] [PubMed]
    [Google Scholar]
  31. Gutiérrez-Preciado A, Torres AG, Merino E, Bonomi HR, Goldbaum FA et al. Extensive identification of bacterial riboflavin transporters and their distribution across bacterial species. PLoS One 2015; 10:e0126124 [View Article] [PubMed]
    [Google Scholar]
  32. Ott E, Stolz J, Lehmann M, Mack M. The RFN riboswitch of Bacillus subtilis is a target for the antibiotic roseoflavin produced by Streptomyces davawensis. RNA Biol 2009; 6:276–280 [View Article] [PubMed]
    [Google Scholar]
  33. Lee ER, Blount KF, Breaker RR. Roseoflavin is a natural antibacterial compound that binds to FMN riboswitches and regulates gene expression. RNA Biol 2009; 6:187–194 [View Article] [PubMed]
    [Google Scholar]
  34. Mansjö M, Johansson J. The riboflavin analog roseoflavin targets an FMN-riboswitch and blocks Listeria monocytogenes growth, but also stimulates virulence gene-expression and infection. RNA Biol 2011; 8:674–680 [View Article] [PubMed]
    [Google Scholar]
  35. Blount KF, Breaker RR. Riboswitches as antibacterial drug targets. Nat Biotechnol 2006; 24:1558–1564 [View Article] [PubMed]
    [Google Scholar]
  36. Serganov A, Huang L, Patel DJ. Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch. Nature 2009; 458:233–237 [View Article] [PubMed]
    [Google Scholar]
  37. Blount KF, Megyola C, Plummer M, Osterman D, O’Connell T et al. Novel riboswitch-binding flavin analog that protects mice against Clostridium difficile infection without inhibiting cecal flora. Antimicrob Agents Chemother 2015; 59:5736–5746 [View Article]
    [Google Scholar]
  38. Vicens Q, Mondragón E, Reyes FE, Coish P, Aristoff P et al. Structure-activity relationship of flavin analogues that target the flavin mononucleotide riboswitch. ACS Chem Biol 2018; 13:2908–2919 [View Article] [PubMed]
    [Google Scholar]
  39. Wakchaure PD, Ganguly B. Deciphering the mechanism of action of 5FDQD and the design of new neutral analogues for the FMN riboswitch: a well-tempered metadynamics simulation study. Phys Chem Chem Phys 2022; 24:817–828 [View Article] [PubMed]
    [Google Scholar]
  40. Traykovska M, Penchovsky R. Engineering antisense oligonucleotides as antibacterial agents that target FMN riboswitches and inhibit the growth of Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli. ACS Synth Biol 2022; 11:1845–1855 [View Article] [PubMed]
    [Google Scholar]
  41. Berthold PR, Shiraishi T, Nielsen PE. Cellular delivery and antisense effects of peptide nucleic acid conjugated to polyethyleneimine via disulfide linkers. Bioconjug Chem 2010; 21:1933–1938 [View Article] [PubMed]
    [Google Scholar]
  42. Mukherjee S, Retwitzer MD, Barash D, Sengupta S. Phylogenomic and comparative analysis of the distribution and regulatory patterns of TPP riboswitches in fungi. Sci Rep 2018; 8:5563 [View Article] [PubMed]
    [Google Scholar]
  43. Croft MT, Moulin M, Webb ME, Smith AG. Thiamine biosynthesis in algae is regulated by riboswitches. Proc Natl Acad Sci U S A 2007; 104:20770–20775 [View Article] [PubMed]
    [Google Scholar]
  44. Bocobza S, Adato A, Mandel T, Shapira M, Nudler E et al. Riboswitch-dependent gene regulation and its evolution in the plant kingdom. Genes Dev 2007; 21:2874–2879 [View Article]
    [Google Scholar]
  45. Pohl M, Sprenger GA, Müller M. A new perspective on thiamine catalysis. Curr Opin Biotechnol 2004; 15:335–342 [View Article] [PubMed]
    [Google Scholar]
  46. Sudarsan N, Cohen-Chalamish S, Nakamura S, Emilsson GM, Breaker RR. Thiamine pyrophosphate riboswitches are targets for the antimicrobial compound pyrithiamine. Chem Biol 2005; 12:1325–1335 [View Article] [PubMed]
    [Google Scholar]
  47. Chen L, Cressina E, Dixon N, Erixon K, Agyei-Owusu K et al. Probing riboswitch–ligand interactions using thiamine pyrophosphate analogues. Org Biomol Chem 2012; 10:5924 [View Article]
    [Google Scholar]
  48. Lünse CE, Scott FJ, Suckling CJ, Mayer G. Novel TPP-riboswitch activators bypass metabolic enzyme dependency. Front Chem 2014; 2:53 [View Article] [PubMed]
    [Google Scholar]
  49. Traykovska M, Otcheva LA, Penchovsky R. Targeting TPP riboswitches using chimeric antisense oligonucleotide technology for antibacterial drug development. ACS Appl Bio Mater 2022 [View Article] [PubMed]
    [Google Scholar]
  50. Nahvi A, Sudarsan N, Ebert MS, Zou X, Brown KL et al. Genetic control by a metabolite binding mRNA. Chem Biol 2002; 9:1043 [View Article] [PubMed]
    [Google Scholar]
  51. Vitreschak AG, Rodionov DA, Mironov AA, Gelfand MS. Regulation of the vitamin B12 metabolism and transport in bacteria by a conserved RNA structural element. RNA 2003; 9:1084–1097 [View Article] [PubMed]
    [Google Scholar]
  52. Santillán M, Mackey MC. Dynamic behaviour of the B12 riboswitch. Phys Biol 2005; 2:29–35 [View Article] [PubMed]
    [Google Scholar]
  53. Martens JH, Barg H, Warren MJ, Jahn D. Microbial production of vitamin B12. Appl Microbiol Biotechnol 2002; 58:275–285 [View Article] [PubMed]
    [Google Scholar]
  54. Kozlowski PM, Garabato BD, Lodowski P, Jaworska M. Photolytic properties of cobalamins: a theoretical perspective. Dalton Trans 2016; 45:4457–4470 [View Article] [PubMed]
    [Google Scholar]
  55. Polaski JT, Webster SM, Johnson Jr. JE, Batey RT. Cobalamin riboswitches exhibit a broad range of ability to discriminate between methylcobalamin and adenosylcobalamin. J Biol Chem 2017; 292:11650–11658 [View Article] [PubMed]
    [Google Scholar]
  56. DeVeaux LC, Kadner RJ. Transport of vitamin B12 in Escherichia coli: cloning of the btuCD region. J Bacteriol 1985; 162:888–896 [View Article] [PubMed]
    [Google Scholar]
  57. Lennon SR, Wierzba AJ, Siwik SH, Gryko D, Palmer AE et al. Targeting riboswitches with beta-axial-substituted cobalamins. ACS Chem Biol 2023; 18:1136–1147 [View Article]
    [Google Scholar]
  58. Serganov A, Patel DJ. Amino acid recognition and gene regulation by riboswitches. Biochim Biophys Acta 2009; 1789:592–611 [View Article] [PubMed]
    [Google Scholar]
  59. Mandal M, Lee M, Barrick JE, Weinberg Z, Emilsson GM et al. A glycine-dependent riboswitch that uses cooperative binding to control gene expression. Science 2004; 306:275–279 [View Article] [PubMed]
    [Google Scholar]
  60. Klähn S, Bolay P, Wright PR, Atilho RM, Brewer KI et al. A glutamine riboswitch is a key element for the regulation of glutamine synthetase in cyanobacteria. Nucleic Acids Res 2018; 46:10082–10094 [View Article] [PubMed]
    [Google Scholar]
  61. Fontecave M, Atta M, Mulliez E. S-adenosylmethionine: nothing goes to waste. Trends Biochem Sci 2004; 29:243–249 [View Article] [PubMed]
    [Google Scholar]
  62. Wang JX, Breaker RR. Riboswitches that sense S-adenosylmethionine and S-adenosylhomocysteine. Biochem Cell Biol 2008; 86:157–168 [View Article] [PubMed]
    [Google Scholar]
  63. Hammes W, Schleifer KH, Kandler O. Mode of action of glycine on the biosynthesis of peptidoglycan. J Bacteriol 1973; 116:1029–1053 [View Article] [PubMed]
    [Google Scholar]
  64. Babina AM, Lea NE, Meyer MM. In vivo behavior of the tandem glycine riboswitch in Bacillus subtilis. mBio 2017; 8:
    [Google Scholar]
  65. Tezuka T, Ohnishi Y. Two glycine riboswitches activate the glycine cleavage system essential for glycine detoxification in Streptomyces griseus. J Bacteriol 2014; 196:1369–1376 [View Article] [PubMed]
    [Google Scholar]
  66. Stickland LH. Studies in the metabolism of the strict anaerobes (genus Clostridium): the chemical reactions by which cl. sporogenes obtains its energy. Biochem J 1934; 28:1746–1759
    [Google Scholar]
  67. Pavao A, Graham M, Arrieta-Ortiz ML, Immanuel SRC, Baliga NS et al. Reconsidering the in vivo functions of Clostridial Stickland amino acid fermentations. Anaerobe 2022; 76:102600 [View Article]
    [Google Scholar]
  68. Rizvi A, Vargas-Cuebas G, Edwards AN, DiCandia MA, Carter ZA et al. Glycine fermentation by C. difficile promotes virulence and spore formation, and is induced by host cathelicidin. Infect Immun 2023; 91:e0031923 [View Article] [PubMed]
    [Google Scholar]
  69. Torgerson CD, Hiller DA, Strobel SA. The asymmetry and cooperativity of tandem glycine riboswitch aptamers. RNA 2020; 26:564–580 [View Article] [PubMed]
    [Google Scholar]
  70. Barrick JE, Corbino KA, Winkler WC, Nahvi A, Mandal M et al. New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. Proc Natl Acad Sci USA 2004; 101:6421–6426 [View Article]
    [Google Scholar]
  71. Wargel RJ, Shadur CA, Neuhaus FC. Mechanism of D-cycloserine action: transport systems for D-alanine, D-cycloserine, L-alanine, and glycine. J Bacteriol 1970; 103:778–788 [View Article] [PubMed]
    [Google Scholar]
  72. Bualuang A, Kageyama H, Tanaka Y, Incharoensakdi A, Takabe T. Functional characterization of a member of alanine or glycine: cation symporter family in halotolerant cyanobacterium Aphanothece halophytica. Biosci Biotechnol Biochem 2015; 79:230–235 [View Article] [PubMed]
    [Google Scholar]
  73. Ruff KM, Strobel SA. Ligand binding by the tandem glycine riboswitch depends on aptamer dimerization but not double ligand occupancy. RNA 2014; 20:1775–1788 [View Article] [PubMed]
    [Google Scholar]
  74. Khani A, Popp N, Kreikemeyer B, Patenge N. A glycine riboswitch in Streptococcus pyogenes controls expression of a sodium:alanine symporter family protein gene. Front Microbiol 2018; 9:200 [View Article] [PubMed]
    [Google Scholar]
  75. Pavlova N, Penchovsky R. Bioinformatics and genomic analyses of the suitability of eight riboswitches for antibacterial drug targets. Antibiotics 2022; 11:1177 [View Article] [PubMed]
    [Google Scholar]
  76. Mukherjee S, Barash D, Sengupta S. Comparative genomics and phylogenomic analyses of lysine riboswitch distributions in bacteria. PLoS One 2017; 12:e0184314 [View Article] [PubMed]
    [Google Scholar]
  77. Caron M-P, Bastet L, Lussier A, Simoneau-Roy M, Massé E et al. Dual-acting riboswitch control of translation initiation and mRNA decay. Proc Natl Acad Sci U S A 2012; 109:E3444–E3453 [View Article] [PubMed]
    [Google Scholar]
  78. Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS. Regulation of lysine biosynthesis and transport genes in bacteria: yet another RNA riboswitch?. Nucleic Acids Res 2003; 31:6748–6757 [View Article] [PubMed]
    [Google Scholar]
  79. Sudarsan N, Wickiser JK, Nakamura S, Ebert MS, Breaker RR. An mRNA structure in bacteria that controls gene expression by binding lysine. Genes Dev 2003; 17:2688–2697 [View Article]
    [Google Scholar]
  80. Blount KF, Wang JX, Lim J, Sudarsan N, Breaker RR. Antibacterial lysine analogs that target lysine riboswitches. Nat Chem Biol 2007; 3:44–49 [View Article] [PubMed]
    [Google Scholar]
  81. Ataide SF, Wilson SN, Dang S, Rogers TE, Roy B et al. Mechanisms of resistance to an amino acid antibiotic that targets translation. ACS Chem Biol 2007; 2:819–827 [View Article] [PubMed]
    [Google Scholar]
  82. Vendeville A, Winzer K, Heurlier K, Tang CM, Hardie KR. Making “sense” of metabolism: autoinducer-2, LuxS and pathogenic bacteria. Nat Rev Microbiol 2005; 3:383–396 [View Article] [PubMed]
    [Google Scholar]
  83. Slater RT, Frost LR, Jossi SE, Millard AD, Unnikrishnan M. Clostridioides difficile LuxS mediates inter-bacterial interactions within biofilms. Sci Rep 2019; 9:9903 [View Article] [PubMed]
    [Google Scholar]
  84. Elkholy N, Hassan R, Bedda L, Elrefaiy MA, Arafa RK. Exploration of SAM-I riboswitch inhibitors: In-Silico discovery of ligands to a new target employing multistage CADD approaches. Artif Intell Chem 2024; 2:100044 [View Article]
    [Google Scholar]
  85. Traykovska M, Penchovsky R. Targeting SAM-I riboswitch using antisense oligonucleotide technology for inhibiting the growth of Staphylococcus aureus and Listeria monocytogenes. Antibiotics 2022; 11:1662 [View Article] [PubMed]
    [Google Scholar]
  86. Kim JN, Breaker RR. Purine sensing by riboswitches. Biol Cell 2008; 100:1–11 [View Article] [PubMed]
    [Google Scholar]
  87. Hamal Dhakal S, Panchapakesan SSS, Slattery P, Roth A, Breaker RR. Variants of the guanine riboswitch class exhibit altered ligand specificities for xanthine, guanine, or 2’-deoxyguanosine. Proc Natl Acad Sci U S A 2022; 119:e2120246119 [View Article] [PubMed]
    [Google Scholar]
  88. Batey RT. Structure and mechanism of purine-binding riboswitches. Q Rev Biophys 2012; 45:345–381 [View Article] [PubMed]
    [Google Scholar]
  89. Matyjasik MM, Batey RT. Structural basis for 2’-deoxyguanosine recognition by the 2’-dG-II class of riboswitches. Nucleic Acids Res 2019; 47:10931–10941 [View Article] [PubMed]
    [Google Scholar]
  90. McCown PJ, Liang JJ, Weinberg Z, Breaker RR. Structural, functional, and taxonomic diversity of three preQ1 riboswitch classes. Chem Biol 2014; 21:880–889 [View Article] [PubMed]
    [Google Scholar]
  91. Lee ER, Baker JL, Weinberg Z, Sudarsan N, Breaker RR. An allosteric self-splicing ribozyme triggered by a bacterial second messenger. Science 2010; 329:845–848 [View Article]
    [Google Scholar]
  92. Sudarsan N, Lee ER, Weinberg Z, Moy RH, Kim JN et al. Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 2008; 321:411–413 [View Article] [PubMed]
    [Google Scholar]
  93. Nelson JW, Sudarsan N, Furukawa K, Weinberg Z, Wang JX et al. Riboswitches in eubacteria sense the second messenger c-di-AMP. Nat Chem Biol 2013; 9:834–839 [View Article]
    [Google Scholar]
  94. Nelson JW, Sudarsan N, Phillips GE, Stav S, Lünse CE et al. Control of bacterial exoelectrogenesis by c-AMP-GMP. Proc Natl Acad Sci USA 2015; 112:5389–5394 [View Article]
    [Google Scholar]
  95. Kellenberger CA, Wilson SC, Hickey SF, Gonzalez TL, Su Y et al. GEMM-I riboswitches from Geobacter sense the bacterial second messenger cyclic AMP-GMP. Proc Natl Acad Sci U S A 2015; 112:5383–5388 [View Article] [PubMed]
    [Google Scholar]
  96. Sherlock ME, Sudarsan N, Breaker RR. Riboswitches for the alarmone ppGpp expand the collection of RNA-based signaling systems. Proc Natl Acad Sci U S A 2018; 115:6052–6057 [View Article] [PubMed]
    [Google Scholar]
  97. Kim PB, Nelson JW, Breaker RR. An ancient riboswitch class in bacteria regulates purine biosynthesis and one-carbon metabolism. Mol Cell 2015; 57:317–328 [View Article] [PubMed]
    [Google Scholar]
  98. Smith-Peter E, Séguin DL, St-Pierre É, Sekulovic O, Jeanneau S et al. Inactivation of the riboswitch-controlled GMP synthase GuaA in Clostridioides difficile is associated with severe growth defects and poor infectivity in a mouse model of infection. RNA Biol 2021; 18:699–710 [View Article] [PubMed]
    [Google Scholar]
  99. Christiansen LC, Schou S, Nygaard P, Saxild HH. Xanthine metabolism in Bacillus subtilis: characterization of the xpt-pbuX operon and evidence for purine- and nitrogen-controlled expression of genes involved in xanthine salvage and catabolism. J Bacteriol 1997; 179:2540–2550 [View Article] [PubMed]
    [Google Scholar]
  100. Mäntsälä P, Zalkin H. Cloning and sequence of Bacillus subtilis purA and guaA, involved in the conversion of IMP to AMP and GMP. J Bacteriol 1992; 174:1883–1890 [View Article] [PubMed]
    [Google Scholar]
  101. Hedstrom L. IMP dehydrogenase: structure, mechanism, and inhibition. Chem Rev 2009; 109:2903–2928 [View Article] [PubMed]
    [Google Scholar]
  102. Mulhbacher J, Brouillette E, Allard M, Fortier L-C, Malouin F et al. Novel riboswitch ligand analogs as selective inhibitors of guanine-related metabolic pathways. PLoS Pathog 2010; 6:e1000865 [View Article] [PubMed]
    [Google Scholar]
  103. Kim JN, Blount KF, Puskarz I, Lim J, Link KH et al. Design and antimicrobial action of purine analogues that bind Guanine riboswitches. ACS Chem Biol 2009; 4:915–927 [View Article] [PubMed]
    [Google Scholar]
  104. Krajewski SS, Isoz I, Johansson J. Antibacterial and antivirulence effect of 6-N-hydroxylaminopurine in Listeria monocytogenes. Nucleic Acids Res 2017; 45:1914–1924 [View Article] [PubMed]
    [Google Scholar]
  105. Iwata-Reuyl D. Biosynthesis of the 7-deazaguanosine hypermodified nucleosides of transfer RNA. Bioorg Chem 2003; 31:24–43 [View Article] [PubMed]
    [Google Scholar]
  106. Morris RC, Elliott MS. Queuosine modification of tRNA: a case for convergent evolution. Mol Genet Metab 2001; 74:147–159 [View Article] [PubMed]
    [Google Scholar]
  107. Urbonavicius J, Qian Q, Durand JM, Hagervall TG, Björk GR. Improvement of reading frame maintenance is a common function for several tRNA modifications. EMBO J 2001; 20:4863–4873 [View Article] [PubMed]
    [Google Scholar]
  108. Roth A, Winkler WC, Regulski EE, Lee BWK, Lim J et al. A riboswitch selective for the queuosine precursor preQ1 contains an unusually small aptamer domain. Nat Struct Mol Biol 2007; 14:308–317 [View Article] [PubMed]
    [Google Scholar]
  109. Meyer MM, Roth A, Chervin SM, Garcia GA, Breaker RR. Confirmation of a second natural preQ1 aptamer class in Streptococcaceae bacteria. RNA 2008; 14:685–695 [View Article] [PubMed]
    [Google Scholar]
  110. Connelly CM, Numata T, Boer RE, Moon MH, Sinniah RS et al. Synthetic ligands for PreQ1 riboswitches provide structural and mechanistic insights into targeting RNA tertiary structure. Nat Commun 2019; 10:1501 [View Article] [PubMed]
    [Google Scholar]
  111. Yuan Y, Zallot R, Grove TL, Payan DJ, Martin-Verstraete I et al. Discovery of novel bacterial queuine salvage enzymes and pathways in human pathogens. Proc Natl Acad Sci U S A 2019; 116:19126–19135 [View Article] [PubMed]
    [Google Scholar]
  112. Valentini M, Filloux A. Multiple roles of c-di-GMP signaling in bacterial pathogenesis. Annu Rev Microbiol 2019; 73:387–406 [View Article] [PubMed]
    [Google Scholar]
  113. McKee RW, Harvest CK, Tamayo R. Cyclic diguanylate regulates virulence factor genes via multiple riboswitches in Clostridium difficile. mSphere 2018; 3:e00423-18 [View Article] [PubMed]
    [Google Scholar]
  114. Peltier J, Shaw HA, Couchman EC, Dawson LF, Yu L et al. Cyclic diGMP regulates production of sortase substrates of Clostridium difficile and their surface exposure through ZmpI protease-mediated cleavage. J Biol Chem 2015; 290:24453–24469 [View Article] [PubMed]
    [Google Scholar]
  115. Purcell EB, McKee RW, McBride SM, Waters CM, Tamayo R. Cyclic diguanylate inversely regulates motility and aggregation in Clostridium difficile. J Bacteriol 2012; 194:3307–3316 [View Article] [PubMed]
    [Google Scholar]
  116. Anjuwon-Foster BR, Tamayo R. A genetic switch controls the production of flagella and toxins in Clostridium difficile. PLoS Genet 2017; 13:e1006701 [View Article] [PubMed]
    [Google Scholar]
  117. El Meouche I, Peltier J, Monot M, Soutourina O, Pestel-Caron M et al. Characterization of the SigD regulon of C. difficile and its positive control of toxin production through the regulation of tcdR. PLoS One 2013; 8:e83748 [View Article] [PubMed]
    [Google Scholar]
  118. McKee RW, Mangalea MR, Purcell EB, Borchardt EK, Tamayo R. The second messenger cyclic Di-GMP regulates Clostridium difficile toxin production by controlling expression of sigD. J Bacteriol 2013; 195:5174–5185 [View Article] [PubMed]
    [Google Scholar]
  119. Aubry A, Hussack G, Chen W, KuoLee R, Twine SM et al. Modulation of toxin production by the flagellar regulon in Clostridium difficile. Infect Immun 2012; 80:3521–3532 [View Article] [PubMed]
    [Google Scholar]
  120. Hensbergen PJ, Klychnikov OI, Bakker D, Dragan I, Kelly ML et al. Clostridium difficile secreted Pro-Pro endopeptidase PPEP-1 (ZMP1/CD2830) modulates adhesion through cleavage of the collagen binding protein CD2831. FEBS Lett 2015; 589:3952–3958 [View Article] [PubMed]
    [Google Scholar]
  121. Hensbergen PJ, Klychnikov OI, Bakker D, van Winden VJC, Ras N et al. A novel secreted metalloprotease (CD2830) from Clostridium difficile cleaves specific proline sequences in LPXTG cell surface proteins. Mol Cell Proteomics 2014; 13:1231–1244 [View Article] [PubMed]
    [Google Scholar]
  122. Walden M, Edwards JM, Dziewulska AM, Bergmann R, Saalbach G et al. An internal thioester in a pathogen surface protein mediates covalent host binding. eLife 2015; 4:e06638 [View Article] [PubMed]
    [Google Scholar]
  123. Peltier J, Hamiot A, Garneau JR, Boudry P, Maikova A et al. Type I toxin-antitoxin systems contribute to the maintenance of mobile genetic elements in Clostridioides difficile. Commun Biol 2020; 3:718 [View Article]
    [Google Scholar]
  124. Bordeleau E, Purcell EB, Lafontaine DA, Fortier LC, Tamayo R et al. Cyclic di-GMP riboswitch-regulated type IV pili contribute to aggregation of Clostridium difficile. J Bacteriol 2015; 197:819–832 [View Article] [PubMed]
    [Google Scholar]
  125. Purcell EB, McKee RW, Bordeleau E, Burrus V, Tamayo R. Regulation of type IV pili contributes to surface behaviors of historical and epidemic strains of Clostridium difficile. J Bacteriol 2016; 198:565–577 [View Article] [PubMed]
    [Google Scholar]
  126. McKee RW, Aleksanyan N, Garrett EM, Tamayo R. Type IV pili promote Clostridium difficile adherence and persistence in a mouse model of infection. Infect Immun 2018; 86:e00943-17 [View Article] [PubMed]
    [Google Scholar]
  127. Garrett EM, Sekulovic O, Wetzel D, Jones JB, Edwards AN et al. Phase variation of a signal transduction system controls Clostridioides difficile colony morphology, motility, and virulence. PLoS Biol 2019; 17:e3000379 [View Article] [PubMed]
    [Google Scholar]
  128. Garrett EM, Mehra A, Sekulovic O, Tamayo R. Multiple regulatory mechanisms control the production of CmrRST, an atypical signal transduction system in Clostridioides difficile. mBio 2021; 13:e0296921 [View Article] [PubMed]
    [Google Scholar]
  129. Furukawa K, Gu H, Sudarsan N, Hayakawa Y, Hyodo M et al. Identification of ligand analogues that control c-di-GMP riboswitches. ACS Chem Biol 2012; 7:1436–1443 [View Article] [PubMed]
    [Google Scholar]
  130. Salvail H, Breaker RR. Riboswitches. Curr Biol 2023; 33:R343–R348 [View Article] [PubMed]
    [Google Scholar]
  131. Dambach M, Sandoval M, Updegrove TB, Anantharaman V, Aravind L et al. The ubiquitous yybP-ykoY riboswitch is a manganese-responsive regulatory element. Mol Cell 2015; 57:1099–1109 [View Article] [PubMed]
    [Google Scholar]
  132. Price IR, Gaballa A, Ding F, Helmann JD, Ke A. Mn(2+)-sensing mechanisms of yybP-ykoY orphan riboswitches. Mol Cell 2015; 57:1110–1123 [View Article] [PubMed]
    [Google Scholar]
  133. Baker JL, Sudarsan N, Weinberg Z, Roth A, Stockbridge RB et al. Widespread genetic switches and toxicity resistance proteins for fluoride. Science 2012; 335:233–235 [View Article] [PubMed]
    [Google Scholar]
  134. Dann CE III, Wakeman CA, Sieling CL, Baker SC, Irnov I et al. Structure and mechanism of a metal-sensing regulatory RNA. Cell 2007; 130:878–892 [View Article]
    [Google Scholar]
  135. Cromie MJ, Shi Y, Latifi T, Groisman EA. An RNA sensor for intracellular Mg(2+). Cell 2006; 125:71–84 [View Article] [PubMed]
    [Google Scholar]
  136. White N, Sadeeshkumar H, Sun A, Sudarsan N, Breaker RR. Lithium-sensing riboswitch classes regulate expression of bacterial cation transporter genes. Sci Rep 2022; 12:19145 [View Article] [PubMed]
    [Google Scholar]
  137. Xu J, Cotruvo JA Jr. Reconsidering the czcD (NiCo) riboswitch as an iron riboswitch. ACS Bio Med Chem Au 2022; 2:376–385 [View Article] [PubMed]
    [Google Scholar]
  138. Furukawa K, Ramesh A, Zhou Z, Weinberg Z, Vallery T et al. Bacterial riboswitches cooperatively bind Ni(2+) or Co(2+) ions and control expression of heavy metal transporters. Mol Cell 2015; 57:1088–1098 [View Article] [PubMed]
    [Google Scholar]
  139. White N, Sadeeshkumar H, Sun A, Sudarsan N, Breaker RR. Na+ riboswitches regulate genes for diverse physiological processes in bacteria. Nat Chem Biol 2022; 18:878–885 [View Article] [PubMed]
    [Google Scholar]
  140. Bachas ST, Ferré-D’Amaré AR. Convergent use of heptacoordination for cation selectivity by RNA and protein metalloregulators. Cell Chem Biol 2018; 25:962–973 [View Article] [PubMed]
    [Google Scholar]
  141. Martin JE, Le MT, Bhattarai N, Capdevila DA, Shen J et al. A Mn-sensing riboswitch activates expression of A Mn2+/Ca2+ ATPase transporter in Streptococcus. Nucleic Acids Res 2019; 47:6885–6899 [View Article] [PubMed]
    [Google Scholar]
  142. Stockbridge RB, Lim H-H, Otten R, Williams C, Shane T et al. Fluoride resistance and transport by riboswitch-controlled CLC antiporters. Proc Natl Acad Sci U S A 2012; 109:15289–15294 [View Article] [PubMed]
    [Google Scholar]
  143. Nelson JW, Atilho RM, Sherlock ME, Stockbridge RB, Breaker RR. Metabolism of free guanidine in bacteria is regulated by a widespread riboswitch class. Mol Cell 2017; 65:220–230 [View Article] [PubMed]
    [Google Scholar]
  144. Li S, Hwang XY, Stav S, Breaker RR. The yjdF riboswitch candidate regulates gene expression by binding diverse azaaromatic compounds. RNA 2016; 22:530–541 [View Article] [PubMed]
    [Google Scholar]
  145. Sherlock ME, Breaker RR. Biochemical validation of a third guanidine riboswitch class in bacteria. Biochemistry 2017; 56:359–363 [View Article] [PubMed]
    [Google Scholar]
  146. Sherlock ME, Malkowski SN, Breaker RR. Biochemical validation of a second guanidine riboswitch class in bacteria. Biochemistry 2017; 56:352–358 [View Article] [PubMed]
    [Google Scholar]
  147. Salvail H, Balaji A, Yu D, Roth A, Breaker RR. Biochemical validation of a fourth guanidine riboswitch class in bacteria. Biochemistry 2020; 59:4654–4662 [View Article] [PubMed]
    [Google Scholar]
  148. Lenkeit F, Eckert I, Hartig JS, Weinberg Z. Discovery and characterization of a fourth class of guanidine riboswitches. Nucleic Acids Res 2020; 48:12889–12899 [View Article] [PubMed]
    [Google Scholar]
  149. Kermani AA, Macdonald CB, Gundepudi R, Stockbridge RB. Guanidinium export is the primal function of SMR family transporters. Proc Natl Acad Sci U S A 2018; 115:3060–3065 [View Article] [PubMed]
    [Google Scholar]
  150. Rosenthal GA. The biological effects and mode of action of L-canavanine, a structural analogue of L-arginine. Q Rev Biol 1977; 52:155–178 [View Article] [PubMed]
    [Google Scholar]
  151. Hauth F, Funck D, Hartig JS. A standalone editing protein deacylates mischarged canavanyl-tRNAArg to prevent canavanine incorporation into proteins. Nucleic Acids Res 2023; 51:2001–2010 [View Article] [PubMed]
    [Google Scholar]
  152. McCown PJ, Roth A, Breaker RR. An expanded collection and refined consensus model of glmS ribozymes. RNA 2011; 17:728–736 [View Article] [PubMed]
    [Google Scholar]
  153. Esser A, Mayer G. Characterization of the glmS ribozymes from Listeria monocytogenes and Clostridium difficile. Chemistry 2023; 29:e202202376 [View Article] [PubMed]
    [Google Scholar]
  154. Winkler WC, Nahvi A, Roth A, Collins JA, Breaker RR. Control of gene expression by a natural metabolite-responsive ribozyme. Nature 2004; 428:281–286 [View Article] [PubMed]
    [Google Scholar]
  155. McCown PJ, Winkler WC, Breaker RR. Mechanism and distribution of glmS ribozymes. Methods Mol Biol 2012; 848:113–129 [View Article] [PubMed]
    [Google Scholar]
  156. Collins JA, Irnov I, Baker S, Winkler WC. Mechanism of mRNA destabilization by the glmS ribozyme. Genes Dev 2007; 21:3356–3368 [View Article] [PubMed]
    [Google Scholar]
  157. Schüller A, Matzner D, Lünse CE, Wittmann V, Schumacher C et al. Activation of the glmS ribozyme confers bacterial growth inhibition. Chembiochem 2017; 18:435–440 [View Article] [PubMed]
    [Google Scholar]
  158. Lünse CE, Schmidt MS, Wittmann V, Mayer G. Carba-sugars activate the glmS-riboswitch of Staphylococcus aureus. ACS Chem Biol 2011; 6:675–678 [View Article] [PubMed]
    [Google Scholar]
  159. Matzner D, Schüller A, Seitz T, Wittmann V, Mayer G. Fluoro-carba-sugars are glycomimetic activators of the glmS ribozyme. Chemistry 2017; 23:12604–12612 [View Article] [PubMed]
    [Google Scholar]
  160. Silkenath B, Kläge D, Altwein H, Schmidhäuser N, Mayer G et al. Phosphonate and thiasugar analogues of glucosamine-6-phosphate: activation of the glmS riboswitch and antibiotic activity. ACS Chem Biol 2023; 18:2324–2334 [View Article] [PubMed]
    [Google Scholar]
  161. Stängle D, Silkenath B, Gehle P, Esser A, Mayer G et al. Carba-sugar analogs of glucosamine-6-phosphate: new activators for the glmS riboswitch. Chemistry 2023; 29:e202202378 [View Article] [PubMed]
    [Google Scholar]
  162. Traykovska M, Popova KB, Penchovsky R. Targeting glmS ribozyme with chimeric antisense oligonucleotides for antibacterial drug development. ACS Synth Biol 2021; 10:3167–3176 [View Article] [PubMed]
    [Google Scholar]
  163. Trachman RJ 3rd, Passalacqua LFM, Ferré-D’Amaré AR. The bacterial yjdF riboswitch regulates translation through its tRNA-like fold. J Biol Chem 2022; 298:101934 [View Article] [PubMed]
    [Google Scholar]
  164. Weinberg Z, Lünse CE, Corbino KA, Ames TD, Nelson JW et al. Detection of 224 candidate structured RNAs by comparative analysis of specific subsets of intergenic regions. Nucleic Acids Res 2017; 45:10811–10823 [View Article] [PubMed]
    [Google Scholar]
  165. Mahadevan S, Reynolds AE, Wright A. Positive and negative regulation of the bgl operon in Escherichia coli. J Bacteriol 1987; 169:2570–2578 [View Article] [PubMed]
    [Google Scholar]
  166. Mahadevan S, Wright A. A bacterial gene involved in transcription antitermination: regulation at A rho-independent terminator in the bgl operon of E. coli. Cell 1987; 50:485–494 [View Article] [PubMed]
    [Google Scholar]
  167. Tanaka Y, Teramoto H, Inui M, Yukawa H. Translation efficiency of antiterminator proteins is a determinant for the difference in glucose repression of two β-glucoside phosphotransferase system gene clusters in Corynebacterium glutamicum R. J Bacteriol 2011; 193:349–357 [View Article] [PubMed]
    [Google Scholar]
  168. Agafonov DE, Spirin AS. The ribosome-associated inhibitor a reduces translation errors. Biochem Biophys Res Commun 2004; 320:354–358 [View Article] [PubMed]
    [Google Scholar]
  169. Soares LW, King CG, Fernando CM, Roth A, Breaker RR. Genetic disruption of the bacterial raiA motif noncoding RNA causes defects in sporulation and aggregation. Proc Natl Acad Sci U S A 2024; 121:e2318008121 [View Article] [PubMed]
    [Google Scholar]
  170. Corbino KA, Barrick JE, Lim J, Welz R, Tucker BJ et al. Evidence for a second class of S-adenosylmethionine riboswitches and other regulatory RNA motifs in alpha-proteobacteria. Genome Biol 2005; 6:R70 [View Article] [PubMed]
    [Google Scholar]
  171. Greenlee EB, Stav S, Atilho RM, Brewer KI, Harris KA et al. Challenges of ligand identification for the second wave of orphan riboswitch candidates. RNA Biol 2018; 15:377–390 [View Article] [PubMed]
    [Google Scholar]
  172. Sherwood AV, Grundy FJ, Henkin TM. T box riboswitches in Actinobacteria: translational regulation via novel tRNA interactions. Proc Natl Acad Sci U S A 2015; 112:1113–1118 [View Article] [PubMed]
    [Google Scholar]
  173. Henkin TM. The T box riboswitch: a novel regulatory RNA that utilizes tRNA as its ligand. Biochim Biophys Acta 2014; 1839:959–963 [View Article] [PubMed]
    [Google Scholar]
  174. Grant GA. The ACT domain: a small molecule binding domain and its role as a common regulatory element. J Biol Chem 2006; 281:33825–33829 [View Article] [PubMed]
    [Google Scholar]
  175. Means JA, Hines JV. Fluorescence resonance energy transfer studies of aminoglycoside binding to a T box antiterminator RNA. Bioorg Med Chem Lett 2005; 15:2169–2172 [View Article] [PubMed]
    [Google Scholar]
  176. Orac CM, Zhou S, Means JA, Boehm D, Bergmeier SC et al. Synthesis and stereospecificity of 4,5-disubstituted oxazolidinone ligands binding to T-box riboswitch RNA. J Med Chem 2011; 54:6786–6795 [View Article] [PubMed]
    [Google Scholar]
  177. Frohlich KM, Weintraub SF, Bell JT, Todd GC, Väre VYP et al. Discovery of small-molecule antibiotics against a unique tRNA-mediated regulation of transcription in gram-positive bacteria. Chem Med Chem 2019; 14:758–769 [View Article] [PubMed]
    [Google Scholar]
  178. Väre VYP, Schneider RF, Kim H, Lasek-Nesselquist E, McDonough KA et al. Small-molecule antibiotics inhibiting tRNA-regulated gene expression is a viable strategy for targeting gram-positive bacteria. Antimicrob Agents Chemother 2020; 65: [View Article]
    [Google Scholar]
  179. Ahmad M, Khan AU. Global economic impact of antibiotic resistance: a review. J Glob Antimicrob Resist 2019; 19:313–316 [View Article] [PubMed]
    [Google Scholar]
  180. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 2018; 18:318–327 [View Article] [PubMed]
    [Google Scholar]
  181. Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 2009; 48:1–12 [View Article] [PubMed]
    [Google Scholar]
  182. Pavlova N, Penchovsky R. Genome-wide bioinformatics analysis of FMN, SAM-I, glmS, TPP, lysine, purine, cobalamin, and SAH riboswitches for their applications as allosteric antibacterial drug targets in human pathogenic bacteria. Expert Opin Ther Targets 2019; 23:631–643 [View Article] [PubMed]
    [Google Scholar]
  183. Ster C, Allard M, Boulanger S, Lamontagne Boulet M, Mulhbacher J et al. Experimental treatment of Staphylococcus aureus bovine intramammary infection using a guanine riboswitch ligand analog. J Dairy Sci 2013; 96:1000–1008 [View Article] [PubMed]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.001508
Loading
/content/journal/micro/10.1099/mic.0.001508
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error