1887

Abstract

Next-generation sequencing methods have become essential for studying bacterial biology and pathogenesis, often depending on high-quality, closed genomes. In this study, we utilized a hybrid sequencing approach to assemble the genome of C6706, a widely used model strain. We present a manually curated annotation of the genome, enhancing user accessibility by linking each coding sequence to its counterpart in N16961, the first sequenced isolate and a commonly used reference genome. Comparative genomic analysis between C6706 and N16961 uncovered multiple genetic differences in genes associated with key biological functions. To determine whether these genetic variations result in phenotypic differences, we compared several phenotypes relevant to pathogenicity like genetic stability, acid sensitivity, biofilm formation and motility. Notably, N16961 exhibited greater motility and reduced biofilm formation compared to C6706. These phenotypic differences appear to be mediated by variations in quorum sensing and cyclic di-GMP signalling pathways between the strains. This study provides valuable insights into the regulation of biofilm formation and motility in .

Funding
This study was supported by the:
  • Norges Forskningsråd (Award 249979)
    • Principle Award Recipient: SörenAbel
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001502
2024-09-23
2024-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/170/9/mic001502.html?itemId=/content/journal/micro/10.1099/mic.0.001502&mimeType=html&fmt=ahah

References

  1. Kanungo S, Azman AS, Ramamurthy T, Deen J, Cholera DS. Lancet 2022; 399:1429–1440
    [Google Scholar]
  2. Ali M, Nelson AR, Lopez AL, Sack DA. Updated global burden of cholera in endemic countries. PLoS Negl Trop Dis 2015; 9:e0003832 [View Article]
    [Google Scholar]
  3. Barua D. History of cholera. In Barua D, Greenough WB. eds Cholera Boston, MA: Springer US; pp 1–36 [View Article]
    [Google Scholar]
  4. Mutreja A, Kim DW, Thomson NR, Connor TR, Lee JH et al. Evidence for several waves of global transmission in the seventh cholera pandemic. Nature 2011; 477:462–465 [View Article] [PubMed]
    [Google Scholar]
  5. Yildiz FH, Schoolnik GK. Role of rpoS in stress survival and virulence of Vibrio cholerae. J Bacteriol 1998; 180:773–784 [View Article] [PubMed]
    [Google Scholar]
  6. Thelin KH, Taylor RK. Toxin-coregulated pilus, but not mannose-sensitive hemagglutinin, is required for colonization by Vibrio cholerae O1 El Tor biotype and O139 strains. Infect Immun 1996; 64:2853–2856 [View Article] [PubMed]
    [Google Scholar]
  7. Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML et al. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. . Nature 2000; 406:477–483 [View Article] [PubMed]
    [Google Scholar]
  8. Miller VL, DiRita VJ, Mekalanos JJ. Identification of toxS, a regulatory gene whose product enhances toxR-mediated activation of the cholera toxin promoter. J Bacteriol 1989; 171:1288–1293 [View Article] [PubMed]
    [Google Scholar]
  9. Reimer A, Domselaar G, Stroika S, Walker M, Kent H et al. Comparative genomics of Vibrio cholerae from Haiti, Asia, and Africa. Emerg Infect Dis 2011; 17:2113 [View Article]
    [Google Scholar]
  10. Matthey N, Drebes Dörr NC, Blokesch M. Long-read-based genome sequences of pandemic and environmental Vibrio cholerae strains. Microbiol Resour Announc 2018; 7:e01574-18 [View Article] [PubMed]
    [Google Scholar]
  11. Weng Y, Bina XR, Bina JE. Complete genome sequence of Vibrio cholerae O1 El Tor strain C6706. Microbiol Resour Announc 2021; 10: [View Article]
    [Google Scholar]
  12. Creasy-Marrazzo A, Saber MM, Kamat M, Bailey LS, Brinkley L et al. Genome-wide association studies reveal distinct genetic correlates and increased heritability of antimicrobial resistance in Vibrio cholerae under anaerobic conditions. Microb Genom 2022; 8:mgen000905 [View Article] [PubMed]
    [Google Scholar]
  13. Rivera-Chávez F, Mekalanos JJ. Cholera toxin promotes pathogen acquisition of host-derived nutrients. Nature 2019; 572:244–248 [View Article] [PubMed]
    [Google Scholar]
  14. Sit B, Srisuknimit V, Bueno E, Zingl FG, Hullahalli K et al. Undecaprenyl phosphate translocases confer conditional microbial fitness. Nature 2023; 613:721–728 [View Article] [PubMed]
    [Google Scholar]
  15. Dalia AB, McDonough E, Camilli A. Multiplex genome editing by natural transformation. Proc Natl Acad Sci USA 2014; 111:8937–8942 [View Article]
    [Google Scholar]
  16. Jaskólska M, Adams DW, Blokesch M. Two defence systems eliminate plasmids from seventh pandemic Vibrio cholerae. Nature 2022; 604:323–329 [View Article] [PubMed]
    [Google Scholar]
  17. Vidakovic L, Mikhaleva S, Jeckel H, Nisnevich V, Strenger K et al. Biofilm formation on human immune cells is a multicellular predation strategy of Vibrio cholerae. Cell 2023; 186:2690–2704 [View Article] [PubMed]
    [Google Scholar]
  18. Prentice JA, van de Weerd R, Bridges AA. Cell-lysis sensing drives biofilm formation in Vibrio cholerae. Nat Commun 2024; 15:2018 [View Article] [PubMed]
    [Google Scholar]
  19. Bridges AA, Prentice JA, Wingreen NS, Bassler BL. Signal transduction network principles underlying bacterial collective behaviors. Annu Rev Microbiol 2022; 76:235–257 [View Article] [PubMed]
    [Google Scholar]
  20. Conner JG, Teschler JK, Jones CJ, Yildiz FH. Staying alive: Vibrio cholerae’s cycle of environmental survival, transmission, and dissemination. Microbiol Spectr 2016; 4: [View Article] [PubMed]
    [Google Scholar]
  21. Silva AJ, Benitez JA. Vibrio cholerae biofilms and cholera pathogenesis. PLoS Negl Trop Dis 2016; 10:e0004330 [View Article] [PubMed]
    [Google Scholar]
  22. Zhu J, Mekalanos JJ. Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. . Dev Cell 2003; 5:647–656 [View Article] [PubMed]
    [Google Scholar]
  23. Gallego-Hernandez AL, DePas WH, Park JH, Teschler JK, Hartmann R et al. Upregulation of virulence genes promotes Vibrio cholerae biofilm hyperinfectivity. Proc Natl Acad Sci U S A 2020; 117:11010–11017 [View Article] [PubMed]
    [Google Scholar]
  24. Rita T, Bharathi P, Andrew C. Growth in a biofilm induces a hyperinfectious phenotype in Vibrio cholerae. Infect Immun 2010; 78:3560–3569 [View Article]
    [Google Scholar]
  25. Faruque SM, Biswas K, Udden SMN, Ahmad QS, Sack DA et al. Transmissibility of cholera: In vivo -formed biofilms and their relationship to infectivity and persistence in the environment. Proc Natl Acad Sci USA 2006; 103:6350–6355 [View Article]
    [Google Scholar]
  26. Waters CM, Bassler BL. QUORUM SENSING: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 2005; 21:319–346 [View Article] [PubMed]
    [Google Scholar]
  27. Bridges AA, Bassler BL. The intragenus and interspecies quorum-sensing autoinducers exert distinct control over Vibrio cholerae biofilm formation and dispersal. PLoS Biol 2019; 17:e3000429 [View Article] [PubMed]
    [Google Scholar]
  28. Hammer BK, Bassler BL. Quorum sensing controls biofilm formation in Vibrio cholerae. Mol Microbiol 2003; 50:101–104 [View Article] [PubMed]
    [Google Scholar]
  29. Rutherford ST, van Kessel JC, Shao Y, Bassler BL. AphA and LuxR/HapR reciprocally control quorum sensing in vibrios. Genes Dev 2011; 25:397–408 [View Article] [PubMed]
    [Google Scholar]
  30. Stutzmann S, Blokesch M. Circulation of a quorum-sensing-impaired variant of Vibrio cholerae strain C6706 masks important phenotypes. mSphere 2016; 1:e00098-16 [View Article] [PubMed]
    [Google Scholar]
  31. Meibom KL, Blokesch M, Dolganov NA, Wu C-Y, Schoolnik GK. Chitin induces natural competence in Vibrio cholerae. Science 2005; 310:1824–1827 [View Article]
    [Google Scholar]
  32. Waters CM, Lu W, Rabinowitz JD, Bassler BL. Quorum sensing controls biofilm formation in Vibrio cholerae through modulation of cyclic di-GMP levels and repression of vpsT. J Bacteriol 2008; 190:2527–2536 [View Article] [PubMed]
    [Google Scholar]
  33. Hammer BK, Bassler BL. Distinct sensory pathways in Vibrio cholerae El Tor and classical biotypes modulate cyclic dimeric GMP levels to control biofilm formation. J Bacteriol 2009; 191:169–177 [View Article] [PubMed]
    [Google Scholar]
  34. Zhao X, Koestler BJ, Waters CM, Hammer BK. Post-transcriptional activation of a diguanylate cyclase by quorum sensing small RNAs promotes biofilm formation in Vibrio cholerae. Mol Microbiol 2013; 89:989–1002 [View Article] [PubMed]
    [Google Scholar]
  35. Hengge R. Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 2009; 7:263–273 [View Article] [PubMed]
    [Google Scholar]
  36. Conner JG, Zamorano-Sánchez D, Park JH, Sondermann H, Yildiz FH. The ins and outs of cyclic di-GMP signaling in Vibrio cholerae. Curr Opin Microbiol 2017; 36:20–29 [View Article] [PubMed]
    [Google Scholar]
  37. Römling U, Galperin MY, Gomelsky M. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 2013; 77:1–52 [View Article] [PubMed]
    [Google Scholar]
  38. Hornick RB, Music SI, Wenzel R, Cash R, Libonati JP et al. The broad street pump revisited: response of volunteers to ingested cholera vibrios. Bull NY Acad Med 1971; 47:1181–1191
    [Google Scholar]
  39. Merrell DS, Camilli A. The cadA gene of Vibrio cholerae is induced during infection and plays a role in acid tolerance. Mol Microbiol 1999; 34:836–849 [View Article] [PubMed]
    [Google Scholar]
  40. Singh A, Barnard TG. Surviving the acid barrier: responses of pathogenic Vibrio cholerae to simulated gastric fluid. Appl Microbiol Biotechnol 2015; 100:815–824 [View Article] [PubMed]
    [Google Scholar]
  41. Meng SY, Bennett GN. Nucleotide sequence of the Escherichia coli cad operon: a system for neutralization of low extracellular pH. J Bacteriol 1992; 174:2659–2669 [View Article] [PubMed]
    [Google Scholar]
  42. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595–e1005595. [View Article] [PubMed]
    [Google Scholar]
  43. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  44. Wattam AR, Abraham D, Dalay O, Disz TL, Driscoll T et al. PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res 2014; 42:D581–D591 [View Article] [PubMed]
    [Google Scholar]
  45. Madden T. The BLAST Sequence Analysis Tool. 2002 Oct 9. The NCBI Handbook. Bethesda (MD): National Center for Biotechnology Information (US); 2002
  46. O’Toole GA. Microtiter dish biofilm formation assay. JoVE 2011e2437 [View Article]
    [Google Scholar]
  47. Zhu J, Miller MB, Vance RE, Dziejman M, Bassler BL et al. Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci USA 2002; 99:3129–3134 [View Article]
    [Google Scholar]
  48. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M et al. Fiji: an open-source platform for biological-image analysis. Nat Methods 2012; 9:676–682 [View Article] [PubMed]
    [Google Scholar]
  49. Darling AE, Mau B, Perna NT. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 2010; 5:1–17 [View Article] [PubMed]
    [Google Scholar]
  50. Hall BM, Ma C-X, Liang P, Singh KK. Fluctuation analysis CalculatOR: a web tool for the determination of mutation rate using Luria-Delbruck fluctuation analysis. Bioinformatics 2009; 25:1564–1565 [View Article] [PubMed]
    [Google Scholar]
  51. Rosche WA, Foster PL. Determining mutation rates in bacterial populations. Methods 2000; 20:4–17 [View Article] [PubMed]
    [Google Scholar]
  52. Jurasinski G, Koebsch F, Guenther A, Beetz S. Flux rate calculation from dynamic closed chamber. R package version 03-01; 2022 https://cran.r-project.org/package=flux
  53. Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA III et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 2009; 6:343–345 [View Article]
    [Google Scholar]
  54. House BL, Mortimer MW, Kahn ML. New recombination methods for Sinorhizobium meliloti genetics. Appl Environ Microbiol 2004; 70:2806–2815 [View Article] [PubMed]
    [Google Scholar]
  55. Hartley JL, Temple GF, Brasch MA. DNA cloning using in vitro site-specific recombination. Genome Res 2000; 10:1788–1795 [View Article] [PubMed]
    [Google Scholar]
  56. Simon R, Priefer U, Pühler A. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Nat Biotechnol 1983; 1:784–791 [View Article]
    [Google Scholar]
  57. Parrello B, Butler R, Chlenski P, Olson R, Overbeek J et al. A machine learning-based service for estimating quality of genomes using PATRIC. BMC Bioinformatics 2019; 20:486 [View Article] [PubMed]
    [Google Scholar]
  58. Abel S, Abel zur Wiesch P, Chang H-H, Davis BM, Lipsitch M et al. Sequence tag–based analysis of microbial population dynamics. Nat Methods 2015; 12:223–226 [View Article]
    [Google Scholar]
  59. Cameron DE, Urbach JM, Mekalanos JJ. A defined transposon mutant library and its use in identifying motility genes in Vibrio cholerae. Proc Natl Acad Sci USA 2008; 105:8736–8741 [View Article]
    [Google Scholar]
  60. Morais LLC de S, Garza DR, Loureiro ECB, Vale ER, Santos DSA de S et al. Population and genetic study of Vibrio cholerae from the amazon environment confirms that the WASA-1 prophage is the main marker of the epidemic strain that circulated in the region. PLoS One 2013; 8:e81372 [View Article] [PubMed]
    [Google Scholar]
  61. Val M-E, Marbouty M, de Lemos Martins F, Kennedy SP, Kemble H et al. A checkpoint control orchestrates the replication of the two chromosomes of Vibrio cholerae. Sci Adv 2016; 2:e1501914 [View Article] [PubMed]
    [Google Scholar]
  62. Matthey N, Stutzmann S, Stoudmann C, Guex N, Iseli C et al. Neighbor predation linked to natural competence fosters the transfer of large genomic regions in Vibrio cholerae. elife 2019; 8:e48212 [View Article] [PubMed]
    [Google Scholar]
  63. Nusrin S, Gil AI, Bhuiyan NA, Safa A, Asakura M et al. Peruvian Vibrio cholerae O1 El Tor strains possess a distinct region in the Vibrio seventh pandemic island-II that differentiates them from the prototype seventh pandemic El Tor strains. J Med Microbiol 2009; 58:342–354 [View Article] [PubMed]
    [Google Scholar]
  64. Taviani E, Grim CJ, Choi J, Chun J, Haley B et al. Discovery of novel Vibrio cholerae VSP-II genomic islands using comparative genomic analysis. FEMS Microbiol Lett 2010; 308:130–137 [View Article] [PubMed]
    [Google Scholar]
  65. McKee RW, Kariisa A, Mudrak B, Whitaker C, Tamayo R. A systematic analysis of the in vitro and in vivo functions of the HD-GYP domain proteins of Vibrio cholerae. BMC Microbiol 2014; 14:272 [View Article] [PubMed]
    [Google Scholar]
  66. Thi TD, Lopez E, Rodriguez-Rojas A, Rodriguez-Beltran J, Couce A et al. Effect of recA inactivation on mutagenesis of Escherichia coli exposed to sublethal concentrations of antimicrobials. J Antimicrob Chemother 2011; 66:531–538 [View Article]
    [Google Scholar]
  67. Cirz RT, Chin JK, Andes DR, de Crécy-Lagard V, Craig WA et al. Inhibition of mutation and combating the evolution of antibiotic resistance. PLoS Biol 2005; 3:e176 [View Article] [PubMed]
    [Google Scholar]
  68. Friedberg EC, Walker GC, Siede W. DNA Repair and Mutagenesis ASM Press; 2005
    [Google Scholar]
  69. Kanie S, Horibata K, Kawano M, Isogawa A, Sakai A et al. Roles of RecA protein in spontaneous mutagenesis in Escherichia coli. Genes Genet Syst 2007; 82:99–108 [View Article] [PubMed]
    [Google Scholar]
  70. Bell JC, Kowalczykowski SC. RecA: regulation and mechanism of a molecular search engine. Trends Biochem Sci 2016; 41:491–507 [View Article] [PubMed]
    [Google Scholar]
  71. Krašovec R, Richards H, Gomez G, Gifford DR, Mazoyer A et al. Measuring microbial mutation rates with the fluctuation assay. J Vis Exp 2019 [View Article] [PubMed]
    [Google Scholar]
  72. Teschler JK, Nadell CD, Drescher K, Yildiz FH. Mechanisms underlying Vibrio cholerae biofilm formation and dispersion. Annu Rev Microbiol 2022; 76:503–532 [View Article] [PubMed]
    [Google Scholar]
  73. Flemming H-C, Wingender J, Szewzyk U, Steinberg P, Rice SA et al. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 2016; 14:563–575 [View Article] [PubMed]
    [Google Scholar]
  74. Koestler BJ, Waters CM. Bile acids and bicarbonate inversely regulate intracellular cyclic di-GMP in Vibrio cholerae. . Infect Immun 2014; 82:3002–3014 [View Article] [PubMed]
    [Google Scholar]
  75. Rocha EPC, Cornet E, Michel B. Comparative and evolutionary analysis of the bacterial homologous recombination systems. PLoS Genet 2005; 1:e15 [View Article] [PubMed]
    [Google Scholar]
  76. Karlin S, Brocchieri L. Evolutionary conservation of RecA genes in relation to protein structure and function. J Bacteriol 1996; 178:1881–1894 [View Article] [PubMed]
    [Google Scholar]
  77. Ram Y, Hadany L. The evolution of stress-induced hypermutation in asexual populations. Evolution 2012; 66:2315–2328 [View Article] [PubMed]
    [Google Scholar]
  78. Swings T, Van den Bergh B, Wuyts S, Oeyen E, Voordeckers K et al. Adaptive tuning of mutation rates allows fast response to lethal stress in Escherichia coli. elife 2017; 6:e22939 [View Article] [PubMed]
    [Google Scholar]
  79. Taddei F, Radman M, Maynard-Smith J, Toupance B, Gouyon PH et al. Role of mutator alleles in adaptive evolution. Nature 1997; 387:700–702 [View Article] [PubMed]
    [Google Scholar]
  80. Srivastava D, Harris RC, Waters CM. Integration of cyclic di-GMP and quorum sensing in the control of vpsT and aphA in Vibrio cholerae. J Bacteriol 2011; 193:6331–6341 [View Article] [PubMed]
    [Google Scholar]
  81. Hengge R. High-specificity local and global c-di-GMP signaling. Trends Microbiol 2021; 29:993–1003 [View Article] [PubMed]
    [Google Scholar]
  82. Satchell KJF, Jones CJ, Wong J, Queen J, Agarwal S et al. Phenotypic analysis reveals that the 2010 Haiti cholera epidemic is linked to a hypervirulent strain. Infect Immun 2016; 84:2473–2481 [View Article] [PubMed]
    [Google Scholar]
  83. Walker LM, Haycocks JRJ, Van Kessel JC, Dalia TN, Dalia AB et al. A simple mechanism for integration of quorum sensing and cAMP signalling in Vibrio cholerae. elife 2023; 12:RP86699 [View Article] [PubMed]
    [Google Scholar]
  84. Srivastava D, Hsieh M-L, Khataokar A, Neiditch MB, Waters CM. Cyclic di-GMP inhibits Vibrio cholerae motility by repressing induction of transcription and inducing extracellular polysaccharide production. Mol Microbiol 2013; 90:1262–1276 [View Article] [PubMed]
    [Google Scholar]
  85. Platt R, Drescher C, Park SK, Phillips GJ. Genetic system for reversible integration of DNA constructs and lacZ gene fusions into the Escherichia coli chromosome. Plasmid 2000; 43:12–23 [View Article] [PubMed]
    [Google Scholar]
  86. Stothard P, Wishart DS. Circular genome visualization and exploration using CGView. Bioinformatics 2005; 21:537–539 [View Article] [PubMed]
    [Google Scholar]
  87. Grant JR, Stothard P. The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acid Res 2008; 36:W181–W184 [View Article]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.001502
Loading
/content/journal/micro/10.1099/mic.0.001502
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error