Skip to content
1887

Abstract

In this opinion piece, we consider the meaning of the term ‘wild type’ in the context of microbiology. This is especially pertinent in the post-genomic era, where we have a greater awareness of species diversity than ever before. Genomic heterogeneity, evolution/selection pressures, definition of ‘the wild’, the size and importance of the pan-genome, gene–gene interactions (epistasis), and the nature of the ‘wild-type gene’ are all discussed. We conclude that wild type is an outdated and even misleading phrase that should be gradually phased out.

Funding
This study was supported by the:
  • Blavatnik Family Foundation
    • Principal Award Recipient: SivanNir
  • Herchel Smith Foundation
    • Principal Award Recipient: LeonardoMancini
  • Cystic Fibrosis Trust
    • Principal Award Recipient: JemimaE.V. Swain
  • Oliver Gatty
    • Principal Award Recipient: ÉvaBernadett Bényei
  • Benn W. Levy
    • Principal Award Recipient: RahanRudland Nazeer
  • BBSRC
    • Principal Award Recipient: JemimaE.V. Swain
  • Leverhulme Trust
    • Principal Award Recipient: MartinWelch
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001495
2024-08-30
2025-11-16

Metrics

Loading full text...

Full text loading...

/deliver/fulltext/micro/170/8/mic001495.html?itemId=/content/journal/micro/10.1099/mic.0.001495&mimeType=html&fmt=ahah

References

  1. Demerec M, Adelberg EA, Clark AJ, Hartman PE. A proposal for a uniform nomenclature in bacterial genetics. Genetics 1966; 54:61–76 [View Article] [PubMed]
    [Google Scholar]
  2. Holmes T. The wild type as concept and in experimental practice: a history of its role in classical genetics and evolutionary theory. Stud Hist Philos Biol Biomed Sci 2017; 63:15–27 [View Article] [PubMed]
    [Google Scholar]
  3. Bachmann BJ. Pedigrees of some mutant strains of Escherichia coli K-12. Bacteriol Rev 1972; 36:525–557 [View Article] [PubMed]
    [Google Scholar]
  4. Salisbury V, Hedges RW, Datta N. Two modes of “curing” transmissible bacterial plasmids. J Gen Microbiol 1972; 70:443–452 [View Article] [PubMed]
    [Google Scholar]
  5. Smith HW. Is it safe to use Escherichia coli K12 in recombinant DNA experiments?. J Infect Dis 1978; 137:655–660 [View Article]
    [Google Scholar]
  6. Jensen KF. The Escherichia coli K-12 “wild types” W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE expression levels. J Bacteriol 1993; 175:3401–3407 [View Article] [PubMed]
    [Google Scholar]
  7. d’Herelle F. Sûr le rôle du microbe filtrant bactériophage dans la dysentérie bacillaire. Comptes Rendus de l’Académie des Sciences 1918; 167:970–972
    [Google Scholar]
  8. Daegelen P, Studier FW, Lenski RE, Cure S, Kim JF. Tracing ancestors and relatives of Escherichia coli B, and the derivation of B strains REL606 and BL21(DE3). J Mol Biol 2009; 394:634–643 [View Article] [PubMed]
    [Google Scholar]
  9. Holloway BW. Genetic recombination in Pseudomonas aeruginosa. J Gen Microbiol 1955; 13:572–581 [View Article] [PubMed]
    [Google Scholar]
  10. Lee S, Gallagher L, Manoil C. Reconstructing a wild type Pseudomonas aeruginosa reference strain PAO1. J Bacteriol 2021; 203:e0017921 [View Article] [PubMed]
    [Google Scholar]
  11. Sobel ML, Neshat S, Poole K. Mutations in PA2491 (mexS) promote MexT-dependent mexEF-oprN expression and multidrug resistance in a clinical strain of Pseudomonas aeruginosa. J Bacteriol 2005; 187:1246–1253 [View Article] [PubMed]
    [Google Scholar]
  12. Mathee K. Forensic investigation into the origin of Pseudomonas aeruginosa PA14 - old but not lost. J Med Microbiol 2018; 67:1019–1021 [View Article] [PubMed]
    [Google Scholar]
  13. Mikkelsen H, McMullan R, Filloux A. The Pseudomonas aeruginosa reference strain PA14 displays increased virulence due to a mutation in ladS. PLoS One 2011; 6:e29113 [View Article] [PubMed]
    [Google Scholar]
  14. Singh VK, Almpani M, Maura D, Kitao T, Ferrari L et al. Tackling recalcitrant Pseudomonas aeruginosa infections in critical illness via anti-virulence monotherapy. Nat Commun 2022; 13:5103 [View Article] [PubMed]
    [Google Scholar]
  15. Wiehlmann L, Wagner G, Cramer N, Siebert B, Gudowius P et al. Population structure of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2007; 104:8101–8106 [View Article] [PubMed]
    [Google Scholar]
  16. Freschi L, Vincent AT, Jeukens J, Emond-Rheault J-G, Kukavica-Ibrulj I et al. The Pseudomonas aeruginosa pan-genome provides new insights on its population structure, horizontal gene transfer, and pathogenicity. Genome Biol Evol 2019; 11:109–120 [View Article] [PubMed]
    [Google Scholar]
  17. Wolfgang MC, Kulasekara BR, Liang X, Boyd D, Wu K et al. Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2003; 100:8484–8489 [View Article] [PubMed]
    [Google Scholar]
  18. Kung VL, Ozer EA, Hauser AR. The accessory genome of Pseudomonas aeruginosa. Microbiol Mol Biol Rev 2010; 74:621–641 [View Article] [PubMed]
    [Google Scholar]
  19. Chung JCS, Becq J, Fraser L, Schulz-Trieglaff O, Bond NJ et al. Genomic variation among contemporary Pseudomonas aeruginosa isolates from chronically infected cystic fibrosis patients. J Bacteriol 2012; 194:4857–4866 [View Article] [PubMed]
    [Google Scholar]
  20. Yang L, Jelsbak L, Marvig RL, Damkiær S, Workman CT et al. Evolutionary dynamics of bacteria in a human host environment. Proc Natl Acad Sci U S A 2011; 108:7481–7486 [View Article] [PubMed]
    [Google Scholar]
  21. Winstanley C, O’Brien S, Brockhurst MA. Pseudomonas aeruginosa evolutionary adaptation and diversification in cystic fibrosis chronic lung infections. Trends Microbiol 2016; 24:327–337 [View Article] [PubMed]
    [Google Scholar]
  22. Jorth P, Staudinger BJ, Wu X, Hisert KB, Hayden H et al. Regional isolation drives bacterial diversification within cystic fibrosis lungs. Cell Host Microbe 2015; 18:307–319 [View Article]
    [Google Scholar]
  23. Kordes A, Preusse M, Willger SD, Braubach P, Jonigk D et al. Genetically diverse Pseudomonas aeruginosa populations display similar transcriptomic profiles in a cystic fibrosis explanted lung. Nat Commun 2019; 10:3397 [View Article] [PubMed]
    [Google Scholar]
  24. Tuffs A. Bean sprouts are identified as cause of E. coli outbreak. BMJ 2011; 342:d3737 [View Article] [PubMed]
    [Google Scholar]
  25. Crone S, Vives‐Flórez M, Kvich L, Saunders AM, Malone M et al. The environmental occurrence of Pseudomonas aeruginosa. APMIS J 2020; 128:220–231 [View Article]
    [Google Scholar]
  26. West PT, Chanin RB, Bhatt AS. From genome structure to function: insights into structural variation in microbiology. Curr Opin Microbiol 2022; 69:102192 [View Article] [PubMed]
    [Google Scholar]
  27. Diggle SP, Whiteley M. Microbe profile: Pseudomonas aeruginosa: opportunistic pathogen and lab rat. Microbiology 2020; 166:30–33 [View Article] [PubMed]
    [Google Scholar]
  28. Tantoso E, Eisenhaber B, Kirsch M, Shitov V, Zhao Z et al. To kill or to be killed: pangenome analysis of Escherichia coli strains reveals a tailocin specific for pandemic ST131. BMC Biol 2022; 20:146 [View Article] [PubMed]
    [Google Scholar]
  29. Coulthurst SJ, Williamson NR, Harris AKP, Spring DR, Salmond GPC. Metabolic and regulatory engineering of Serratia marcescens: mimicking phage-mediated horizontal acquisition of antibiotic biosynthesis and quorum-sensing capacities. Microbiology 2006; 152:1899–1911 [View Article] [PubMed]
    [Google Scholar]
  30. Secor PR, Burgener EB, Kinnersley M, Jennings LK, Roman-Cruz V et al. Pf bacteriophage and their impact on Pseudomonas virulence, mammalian immunity, and chronic infections. Front Immunol 2020; 11:244 [View Article] [PubMed]
    [Google Scholar]
  31. Schmidt AK, Schwartzkopf CM, Pourtois JD, Burgener EB, Faith DR et al. Targeted deletion of Pf prophages from diverse Pseudomonas aeruginosa isolates has differential impacts on quorum sensing and virulence traits. J Bacteriol 2024; 206:e0040223 [View Article] [PubMed]
    [Google Scholar]
  32. Hao W. Extensive genomic variation within clonal bacterial groups resulted from homologous recombination. Mob Genet Elements 2013; 3:e23463 [View Article] [PubMed]
    [Google Scholar]
  33. Wawire SA, Reva ON, O’Brien TJ, Figueroa W, Dinda V et al. Virulence and antimicrobial resistance genes are enriched in the plasmidome of clinical Escherichia coli isolates compared with wastewater isolates from western Kenya. Infect Genet Evol 2021; 91:104784 [View Article] [PubMed]
    [Google Scholar]
  34. Rousset F, Cabezas-Caballero J, Piastra-Facon F, Fernández-Rodríguez J, Clermont O et al. The impact of genetic diversity on gene essentiality within the Escherichia coli species. Nat Microbiol 2021; 6:301–312 [View Article] [PubMed]
    [Google Scholar]
  35. Poulsen BE, Yang R, Clatworthy AE, White T, Osmulski SJ et al. Defining the core essential genome of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2019; 116:10072–10080 [View Article] [PubMed]
    [Google Scholar]
  36. On YY, Welch M. The methylation-independent mismatch repair machinery in Pseudomonas aeruginosa. Microbiology 2021; 167:001120 [View Article] [PubMed]
    [Google Scholar]
  37. Klockgether J, Munder A, Neugebauer J, Davenport CF, Stanke F et al. Genome diversity of Pseudomonas aeruginosa PAO1 laboratory strains. J Bacteriol 2010; 192:1113–1121 [View Article] [PubMed]
    [Google Scholar]
  38. Chandler CE, Horspool AM, Hill PJ, Wozniak DJ, Schertzer JW et al. Genomic and phenotypic diversity among ten laboratory isolates of Pseudomonas aeruginosa PAO1. J Bacteriol 2019; 201:e00595-18 [View Article] [PubMed]
    [Google Scholar]
  39. Dorman MJ, Kane L, Domman D, Turnbull JD, Cormie C et al. The history, genome and biology of NCTC 30: a non-pandemic Vibrio cholerae isolate from World War One. Proc R Soc B 2019; 286:20182025 [View Article]
    [Google Scholar]
  40. Dorman MJ, Thomson NR. “Community evolution” - laboratory strains and pedigrees in the age of genomics. Microbiology 2020; 166:233–238 [View Article] [PubMed]
    [Google Scholar]
  41. Sezonov G, Joseleau-Petit D, D’Ari R. Escherichia coli physiology in Luria-Bertani broth. J Bacteriol 2007; 189:8746–8749 [View Article] [PubMed]
    [Google Scholar]
  42. Pouget C, Dunyach-Remy C, Bernardi T, Provot C, Tasse J et al. A relevant wound-like in vitro media to study bacterial cooperation and biofilm in chronic wounds. Front Microbiol 2022; 13:705479 [View Article] [PubMed]
    [Google Scholar]
  43. Aiyer A, Manos J. The use of artificial sputum media to enhance investigation and subsequent treatment of cystic fibrosis bacterial infections. Microorganisms 2022; 10:1269 [View Article] [PubMed]
    [Google Scholar]
  44. On YY, Figueroa W, Fan C, Ho P-M, Bényei ÉB et al. Impact of transient acquired hypermutability on the inter- and intra-species competitiveness of Pseudomonas aeruginosa. ISME J 2023; 17:1931–1939 [View Article] [PubMed]
    [Google Scholar]
  45. Caglar MU, Houser JR, Barnhart CS, Boutz DR, Carroll SM et al. The E. coli molecular phenotype under different growth conditions. Sci Rep 2017; 7:45303 [View Article]
    [Google Scholar]
  46. Surette MG, Miller MB, Bassler BL. Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc Natl Acad Sci U S A 1999; 96:1639–1644 [View Article] [PubMed]
    [Google Scholar]
  47. LoVullo ED, Schweizer HP. Pseudomonas aeruginosa mexT is an indicator of PAO1 strain integrity. J Med Microbiol 2020; 69:139–145 [View Article] [PubMed]
    [Google Scholar]
  48. Liu Y, Ahator SD, Wang H, Feng Q, Xu Y et al. Microevolution of the mexT and lasR reinforces the bias of quorum sensing system in laboratory strains of Pseudomonas aeruginosa PAO1. Front Microbiol 2022; 13:821895 [View Article]
    [Google Scholar]
  49. Kostylev M, Kim DY, Smalley NE, Salukhe I, Greenberg EP et al. Evolution of the Pseudomonas aeruginosa quorum-sensing hierarchy. Proc Natl Acad Sci U S A 2019; 116:7027–7032 [View Article] [PubMed]
    [Google Scholar]
  50. Oshri RD, Zrihen KS, Shner I, Omer Bendori S, Eldar A. Selection for increased quorum-sensing cooperation in Pseudomonas aeruginosa through the shut-down of a drug resistance pump. ISME J 2018; 12:2458–2469 [View Article] [PubMed]
    [Google Scholar]
  51. Luján AM, Moyano AJ, Segura I, Argaraña CE, Smania AM. Quorum-sensing-deficient (lasR) mutants emerge at high frequency from a Pseudomonas aeruginosa mutS strain. Microbiology 2007; 153:225–237 [View Article] [PubMed]
    [Google Scholar]
  52. Weimann A, Dinan AM, Ruis C, Bernut A, Pont S et al. Evolution and host-specific adaptation of Pseudomonas aeruginosa. Science 2024; 385:eadi0908 [View Article] [PubMed]
    [Google Scholar]
  53. Yamaguchi S, Aizawa S-I, Kihara M, Isomura M, Jones CJ et al. Genetic evidence for a switching and energy-transducing complex in the flagellar motor of Salmonella typhimurium. J Bacteriol 1986; 168:1172–1179 [View Article] [PubMed]
    [Google Scholar]
  54. Mahenthiralingam E, Weiser R, Floto RA, Davies JC, Fothergill JL. Selection of relevant bacterial strains for novel therapeutic testing: a guidance document for priority cystic fibrosis lung pathogens. Curr Clin Micro Rpt 2022; 9:33–45 [View Article]
    [Google Scholar]
  55. Fontana F, Alessandri G, Tarracchini C, Bianchi MG, Rizzo SM et al. Designation of optimal reference strains representing the infant gut bifidobacterial species through a comprehensive multi-omics approach. Environ Microbiol 2022; 24:5825–5839 [View Article] [PubMed]
    [Google Scholar]
  56. Dijkshoorn L, Ursing BM, Ursing JB. Strain, clone and species: comments on three basic concepts of bacteriology. J Med Microbiol 2000; 49:397–401 [View Article] [PubMed]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.001495
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An error occurred
Approval was partially successful, following selected items could not be processed due to error