Skip to content
1887

Abstract

The bacterial stringent response (SR) is a conserved transcriptional reprogramming pathway mediated by the nucleotide signalling alarmones, (pp)pGpp. The SR has been implicated in antibiotic survival in , a biofilm- and spore-forming pathogen that causes resilient, highly recurrent infections. The role of the SR in other processes and the effectors by which it regulates physiology are unknown. RelQ is a clostridial alarmone synthetase. Deletion of dysregulates growth in unstressed conditions, affects susceptibility to antibiotic and oxidative stressors and drastically reduces biofilm formation. While wild-type displays increased biofilm formation in the presence of sublethal stress, the Δ strain cannot upregulate biofilm production in response to stress. Deletion of slows spore accumulation in planktonic cultures but accelerates it in biofilms. This work establishes biofilm formation and spore accumulation as alarmone-mediated processes in and reveals the importance of RelQ in stress-induced biofilm regulation.

Funding
This study was supported by the:
  • Old Dominion University
    • Principle Award Recipient: AreejMalik
  • Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (Award 1 R15 AI156650-01)
    • Principle Award Recipient: ErinB. Purcell
  • National Science Foundation (Award 2213353)
    • Principle Award Recipient: ErinB. Purcell
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001479
2024-07-19
2025-07-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/170/7/mic001479.html?itemId=/content/journal/micro/10.1099/mic.0.001479&mimeType=html&fmt=ahah

References

  1. James GA, Chesnel L, Boegli L, deLancey Pulcini E, Fisher S et al. Analysis of Clostridium difficile biofilms: imaging and antimicrobial treatment. J Antimicrob Chemother 2018; 73:102–108 [View Article] [PubMed]
    [Google Scholar]
  2. Tsigrelis C. Recurrent Clostridioides difficile infection: recognition, management, prevention. Cleve Clin J Med 2020; 87:347–359 [View Article] [PubMed]
    [Google Scholar]
  3. Normington C, Moura IB, Bryant JA, Ewin DJ, Clark EV et al. Biofilms harbour Clostridioides difficile, serving as a reservoir for recurrent infection. NPJ Biofilms Microbiomes 2021; 7:16 [View Article] [PubMed]
    [Google Scholar]
  4. Guh AY, Mu Y, Winston LG, Johnston H, Olson D et al. Trends in US burden of Clostridioides difficile infection and outcomes. N Engl J Med 2020; 382:1320–1330
    [Google Scholar]
  5. Okumura H, Fukushima A, Taieb V, Shoji S, English M. Fidaxomicin compared with vancomycin and metronidazole for the treatment of Clostridioides (Clostridium) difficile infection: a network meta-analysis. J Infect Chemother 2020; 26:43–50 [View Article] [PubMed]
    [Google Scholar]
  6. Irving SE, Corrigan RM. Triggering the stringent response: signals responsible for activating (p)ppGpp synthesis in bacteria. Microbiology. 018; 164:268–276 [View Article] [PubMed]
    [Google Scholar]
  7. Dalebroux ZD, Svensson SL, Gaynor EC, Swanson MS. ppGpp conjures bacterial virulence. Microbiol Mol Biol Rev 2010; 74:171–199 [View Article] [PubMed]
    [Google Scholar]
  8. Irving SE, Choudhury NR, Corrigan RM. The stringent response and physiological roles of (pp)pGpp in bacteria. Nat Rev Microbiol 2021; 19:256–271 [View Article] [PubMed]
    [Google Scholar]
  9. Hauryliuk V, Atkinson GC, Murakami KS, Tenson T, Gerdes K. Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nat Rev Microbiol 2015; 13:298–309 [View Article] [PubMed]
    [Google Scholar]
  10. Malik A, Hept MA, Purcell EB. Sound the (smaller) alarm: the triphosphate magic spot nucleotide pGpp. Infect Immun 2023; 91:e00432-22 [View Article] [PubMed]
    [Google Scholar]
  11. Atkinson GC, Tenson T, Hauryliuk V. The RelA/SpoT homolog (RSH) superfamily: distribution and functional evolution of ppGpp synthetases and hydrolases across the tree of life. PLoS One 2011; 6:e23479 [View Article] [PubMed]
    [Google Scholar]
  12. Ma Z, King K, Alqahtani M, Worden M, Muthuraman P et al. Stringent response governs the oxidative stress resistance and virulence of Francisella tularensis. PLoS One 2019; 14:e0224094 [View Article]
    [Google Scholar]
  13. Schäfer H, Beckert B, Frese CK, Steinchen W, Nuss AM et al. The alarmones (p)ppGpp are part of the heat shock response of Bacillus subtilis. PLoS Genet 2020; 16:e1008275 [View Article]
    [Google Scholar]
  14. Poudel A, Pokhrel A, Oludiran A, Coronado EJ, Alleyne K et al. Unique features of alarmone metabolism in Clostridioides difficile. J Bacteriol 2022; 204:e00575-21 [View Article] [PubMed]
    [Google Scholar]
  15. Pokhrel A, Poudel A, Castro KB, Celestine MJ, Oludiran A et al. The (p)ppGpp synthetase RSH mediates stationary-phase onset and antibiotic stress survival in Clostridioides difficile. J Bacteriol 2020; 202:e00377-20 [View Article] [PubMed]
    [Google Scholar]
  16. Flemming H-C, Wingender J. The biofilm matrix. Nat. Publ. Gr. 2010; 8:623–633 [View Article]
    [Google Scholar]
  17. Ðapa T, Leuzzi R, Ng YK, Baban ST, Adamo R et al. Multiple factors modulate biofilm formation by the anaerobic pathogen Clostridium difficile. J Bacteriol 2013; 195:545–555 [View Article] [PubMed]
    [Google Scholar]
  18. Semenyuk EG, Laning ML, Foley J, Johnston PF, Knight KL et al. Spore formation and toxin production in Clostridium difficile biofilms. PLoS One 2014; 9:e87757 [View Article] [PubMed]
    [Google Scholar]
  19. Abebe GM. The role of bacterial biofilm in antibiotic resistance and food contamination. Int J Microbiol 2020; 2020:1705814 [View Article] [PubMed]
    [Google Scholar]
  20. Soavelomandroso AP, Gaudin F, Hoys S, Nicolas V, Vedantam G et al. Biofilm structures in a mono-associated mouse model of Clostridium difficile infection. Front Microbiol 2017; 8:2086 [View Article] [PubMed]
    [Google Scholar]
  21. Dawson LF, Valiente E, Faulds-Pain A, Donahue EH, Wren BW. Characterisation of Clostridium difficile biofilm formation, a role for Spo0A. PLoS One 2012; 7:e50527 [View Article] [PubMed]
    [Google Scholar]
  22. Mathur H, Rea MC, Cotter PD, Hill C, Ross RP. The efficacy of thuricin CD, tigecycline, vancomycin, teicoplanin, rifampicin and nitazoxanide, independently and in paired combinations against Clostridium difficile biofilms and planktonic cells. Gut Pathog 2016; 8:1–10 [View Article] [PubMed]
    [Google Scholar]
  23. Tijerina-Rodríguez L, Villarreal-Treviño L, Baines SD, Morfín-Otero R, Camacho-Ortíz A et al. High sporulation and overexpression of virulence factors in biofilms and reduced susceptibility to vancomycin and linezolid in recurrent Clostridium [Clostridioides] difficile infection isolates. PLoS One 2019; 14:e0220671 [View Article] [PubMed]
    [Google Scholar]
  24. Meza-Torres J, Auria E, Dupuy B, Tremblay YDN. Wolf in sheep’s clothing: Clostridioides difficile biofilm as a reservoir for recurrent infections. Microorganisms 2021; 9:1922 [View Article] [PubMed]
    [Google Scholar]
  25. Vuotto C, Moura I, Barbanti F, Donelli G, Spigaglia P. Subinhibitory concentrations of metronidazole increase biofilm formation in Clostridium difficile strains. FEMS Pathog Dis 2016; 74:ftv114 [View Article]
    [Google Scholar]
  26. Frost LR, Cheng JK, Unnikrishnan M. Clostridioides difficile biofilms: a mechanism of persistence in the gut?. PLoS Pathog 2021; 17:e1009348 [View Article] [PubMed]
    [Google Scholar]
  27. Deakin LJ, Clare S, Fagan RP, Dawson LF, Pickard DJ et al. The Clostridium difficile spo0A gene is a persistence and transmission factor. Infect Immun 2012; 80:2704–2711 [View Article] [PubMed]
    [Google Scholar]
  28. Paredes-Sabja D, Shen A, Sorg JA. Clostridium difficile spore biology: sporulation, germination, and spore structural proteins. Trends Microbiol 2014; 22:406–416 [View Article] [PubMed]
    [Google Scholar]
  29. Driks A. The dynamic spore. Proc Natl Acad Sci USA 2003; 100:3007–3009 [View Article]
    [Google Scholar]
  30. Setlow P. Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J Appl Microbiol 2006; 101:514–525 [View Article] [PubMed]
    [Google Scholar]
  31. Setlow P. Spore resistance properties. In The Bacterial Spore: From Molecules to Systems 2016 pp 201–215
    [Google Scholar]
  32. Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 2000; 64:548–572 [View Article] [PubMed]
    [Google Scholar]
  33. Popham DL. Specialized peptidoglycan of the bacterial endospore: the inner wall of the lockbox. Cell Mol Life Sci 2002; 59:426–433 [View Article] [PubMed]
    [Google Scholar]
  34. Pizarro-Guajardo M, Calderón-Romero P, Castro-Córdova P, Mora-Uribe P, Paredes-Sabja D. Ultrastructural variability of the exosporium layer of Clostridium difficile spores. Appl Environ Microbiol 2016; 82:2202–2209 [View Article] [PubMed]
    [Google Scholar]
  35. Barra-Carrasco J, Olguín-Araneda V, Plaza-Garrido A, Miranda-Cárdenas C, Cofré-Araneda G et al. The Clostridium difficile exosporium cysteine (CdeC)-rich protein is required for exosporium morphogenesis and coat assembly. J Bacteriol 2013; 195:3863–3875 [View Article] [PubMed]
    [Google Scholar]
  36. Louie A, VanScoy BD, Brown DL, Kulawy RW, Heine HS et al. Impact of spores on the comparative efficacies of five antibiotics for treatment of Bacillus anthracis in an in vitro hollow fiber pharmacodynamic model. Antimicrob Agents Chemother 2012; 56:1229–1239 [View Article]
    [Google Scholar]
  37. Fekety R, Kim KH, Brown D, Batts DH, Cudmore M et al. Epidemiology of antibiotic-associated colitis; isolation of Clostridium difficile from the hospital environment. Am J Med 1981; 70:906–908 [View Article] [PubMed]
    [Google Scholar]
  38. Sorg JA, Sonenshein AL. Bile salts and glycine as cogerminants for Clostridium difficile spores. J Bacteriol 2008; 190:2505–2512 [View Article] [PubMed]
    [Google Scholar]
  39. Asempa TE, Nicolau DP. Clostridium difficile infection in the elderly: an update on management. Clin Interv Aging 2017; 12:1799–1809 [View Article] [PubMed]
    [Google Scholar]
  40. Abbas A, Zackular JP. Microbe-microbe interactions during Clostridioides difficile infection. Curr Opin Microbiol 2020; 53:19–25 [View Article] [PubMed]
    [Google Scholar]
  41. Rashid T, Haghighi F, Hasan I, Bassères E, Alam MJ et al. Activity of hospital disinfectants against vegetative cells and spores of Clostridioides difficile embedded in biofilms. Antimicrob Agents Chemother 2019; 64:01031-19 [View Article]
    [Google Scholar]
  42. Lawler AJ, Lambert PA, Worthington T. A revised understanding of Clostridioides difficile spore germination. Trends Microbiol 2020; 28:744–752 [View Article] [PubMed]
    [Google Scholar]
  43. Purcell EB. Second messenger signaling in Clostridioides difficile. Curr Opin Microbiol 2022; 65:138–144 [View Article] [PubMed]
    [Google Scholar]
  44. Purcell EB, McKee RW, Courson DS, Garrett EM, McBride SM et al. A nutrient-regulated cyclic diguanylate phosphodiesterase controls Clostridium difficile biofilm and toxin production during stationary phase. Infect Immun 2017; 85:00347-17 [View Article] [PubMed]
    [Google Scholar]
  45. Oberkampf M, Hamiot A, Altamirano-Silva P, Bellés-Sancho P, Tremblay YDN et al. c-di-AMP signaling is required for bile salt resistance, osmotolerance, and long-term host colonization by Clostridioides difficile. Sci Signal 2022; 15:eabn8171 [View Article] [PubMed]
    [Google Scholar]
  46. Potrykus K, Cashel M. (p)ppGpp: still magical?. Annu Rev Microbiol 2008; 62:35–51 [View Article] [PubMed]
    [Google Scholar]
  47. Lemos JAC, Brown TA, Burne RA. Effects of RelA on key virulence properties of planktonic and biofilm populations ofStreptococcus mutans. Infect Immun 2004; 72:1431–1440 [View Article]
    [Google Scholar]
  48. Nguyen D, Joshi-Datar A, Lepine F, Bauerle E, Olakanmi O et al. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science 2011; 334:982–986 [View Article] [PubMed]
    [Google Scholar]
  49. Chávez de Paz LE, Lemos JA, Wickström C, Sedgley CM. Role of (p)ppGpp in biofilm formation by Enterococcus faecalis. Appl Environ Microbiol 2012; 78:1627–1630 [View Article] [PubMed]
    [Google Scholar]
  50. He H, Cooper JN, Mishra A, Raskin DM. Stringent response regulation of biofilm formation in Vibrio cholerae. J Bacteriol 2012; 194:2962–2972 [View Article] [PubMed]
    [Google Scholar]
  51. Sugisaki K, Hanawa T, Yonezawa H, Osaki T, Fukutomi T et al. Role of (p)ppGpp in biofilm formation and expression of filamentous structures in Bordetella pertussis. Microbiology 2013; 159:1379–1389 [View Article] [PubMed]
    [Google Scholar]
  52. Aberg A, Shingler V, Balsalobre C. (p)ppGpp regulates type 1 fimbriation of Escherichia coli by modulating the expression of the site-specific recombinase FimB. Mol Microbiol 2006; 60:1520–1533 [View Article] [PubMed]
    [Google Scholar]
  53. Boehm A, Steiner S, Zaehringer F, Casanova A, Hamburger F et al. Second messenger signalling governs Escherichia coli biofilm induction upon ribosomal stress. Mol Microbiol 2009; 72:1500–1516 [View Article] [PubMed]
    [Google Scholar]
  54. Salzer A, Keinhörster D, Kästle C, Kästle B, Wolz C. Small alarmone synthetases RelP and RelQ of Staphylococcus aureus are involved in biofilm formation and maintenance under cell wall stress conditions. Front Microbiol 2020; 11:575882 [View Article] [PubMed]
    [Google Scholar]
  55. Sritharadol R, Hamada M, Kimura S, Ishii Y, Srichana T et al. Mupirocin at subinhibitory concentrations induces biofilm formation in Staphylococcus aureus. Microb Drug Resist 2018; 24:1249–1258 [View Article] [PubMed]
    [Google Scholar]
  56. Jin Y, Guo Y, Zhan Q, Shang Y, Qu D et al. Subinhibitory concentrations of mupirocin stimulate Staphylococcus aureus biofilm formation by upregulating cidA. Antimicrob Agents Chemother 2020; 64:01912–01919 [View Article]
    [Google Scholar]
  57. de la Fuente-Núñez C, Reffuveille F, Haney EF, Straus SK, Hancock REW. Broad-spectrum anti-biofilm peptide that targets a cellular stress response. PLoS Pathog 2014; 10:e1004152 [View Article] [PubMed]
    [Google Scholar]
  58. Ochi K, Kandala JC, Freese E. Initiation of Bacillus subtilis sporulation by the stringent response to partial amino acid deprivation. J Biol Chem 1981; 256:6866–6875 [PubMed]
    [Google Scholar]
  59. Kint N, Alves Feliciano C, Martins MC, Morvan C, Fernandes SF et al. How the anaerobic enteropathogen Clostridioides difficile tolerates low O2 tensions. Mbio 2020; 11:01559-20 [View Article]
    [Google Scholar]
  60. Oludiran A, Courson DS, Stuart MD, Radwan AR, Poutsma JC et al. How oxygen availability affects the antimicrobial efficacy of host defense peptides: lessons learned from studying the copper-binding peptides piscidins 1 and 3. Int J Mol Sci 2019; 20:5289 [View Article] [PubMed]
    [Google Scholar]
  61. Rocha ER, Tzianabos AO, Smith CJ. Thioredoxin reductase is essential for thiol/disulfide redox control and oxidative stress survival of the anaerobe Bacteroides fragilis. J Bacteriol 2007; 189:8015–8023 [View Article] [PubMed]
    [Google Scholar]
  62. McBride SM, Sonenshein AL. Identification of a genetic locus responsible for antimicrobial peptide resistance in Clostridium difficile. Infect Immun 2011; 79:167–176 [View Article] [PubMed]
    [Google Scholar]
  63. Gaca AO, Abranches J, Kajfasz JK, Lemos JA. Global transcriptional analysis of the stringent response in Enterococcus faecalis. Microbiology 2012; 158:1994–2004 [View Article] [PubMed]
    [Google Scholar]
  64. Geiger T, Goerke C, Fritz M, Schäfer T, Ohlsen K et al. Role of the (p)ppGpp synthase RSH, a RelA/SpoT homolog, in stringent response and virulence of Staphylococcus aureus. Infect Immun 2010; 78:1873–1883 [View Article] [PubMed]
    [Google Scholar]
  65. Yan X, Zhao C, Budin-Verneuil A, Hartke A, Rincé A et al. The (p)ppGpp synthetase RelA contributes to stress adaptation and virulence in Enterococcus faecalis V583. Microbiology 2009; 155:3226–3237 [View Article] [PubMed]
    [Google Scholar]
  66. Nascimento MM, Lemos JA, Abranches J, Lin VK, Burne RA. Role of RelA of Streptococcus mutans in global control of gene expression. J Bacteriol 2008; 190:28–36 [View Article] [PubMed]
    [Google Scholar]
  67. Pulschen AA, Sastre DE, Machinandiarena F, Crotta Asis A, Albanesi D et al. The stringent response plays a key role in Bacillus subtilis survival of fatty acid starvation. Mol Microbiol 2017; 103:698–712 [View Article] [PubMed]
    [Google Scholar]
  68. Abranches J, Martinez AR, Kajfasz JK, Chávez V, Garsin DA et al. The molecular alarmone (p)ppGpp mediates stress responses, vancomycin tolerance, and virulence in Enterococcus faecalis. J Bacteriol 2009; 191:2248–2256 [View Article] [PubMed]
    [Google Scholar]
  69. Zhang T, Zhu J, Wei S, Luo Q, Li L et al. The roles of RelA/(p)ppGpp in glucose-starvation induced adaptive response in the zoonotic Streptococcus suis. Sci Rep 2016; 6:27169 [View Article]
    [Google Scholar]
  70. Horvatek P, Salzer A, Hanna AMF, Gratani FL, Keinhörster D et al. Inducible expression of (pp)pGpp synthetases in Staphylococcus aureus is associated with activation of stress response genes. PLoS Genet 2020; 16:e1009282 [View Article] [PubMed]
    [Google Scholar]
  71. Fernández-Coll L, Cashel M. Possible roles for basal levels of (p)ppGpp: growth efficiency vs. surviving stress. Front Microbiol 2020; 11:592718 [View Article] [PubMed]
    [Google Scholar]
  72. Lopez JM, Dromerick A, Freese E. Response of guanosine 5’-triphosphate concentration to nutritional changes and its significance for Bacillus subtilis sporulation. J Bacteriol 1981; 146:605–613 [View Article] [PubMed]
    [Google Scholar]
  73. Poole K. Bacterial stress responses as determinants of antimicrobial resistance. J Antimicrob Chemother 2012; 67:2069–2089 [View Article] [PubMed]
    [Google Scholar]
  74. Edwards AN, Nawrocki KL, McBride SM. Conserved oligopeptide permeases modulate sporulation initiation in Clostridium difficile. Infect Immun 2014; 82:4276–4291 [View Article] [PubMed]
    [Google Scholar]
  75. Kozlov EM, Ivanova E, Grechko AV, Wu W-K, Starodubova AV et al. Involvement of oxidative stress and the innate immune system in SARS-CoV-2 infection. Diseases 2021; 9:17 [View Article] [PubMed]
    [Google Scholar]
  76. Dapa T. Biofilm formation by the anaerobic pathogen Clostridium difficile; 2014
  77. Purcell EB, McKee RW, Bordeleau E, Burrus V, Tamayo R. Regulation of type IV pili contributes to surface behaviors of historical and epidemic strains of Clostridium difficile. J Bacteriol 2016; 198:565–577 [View Article] [PubMed]
    [Google Scholar]
  78. Sorg JA, Dineen SS. Laboratory maintenance of Clostridium difficile. Curr Protoc Microbiol 2009; Chapter 9:1 [View Article] [PubMed]
    [Google Scholar]
  79. Peltier J, Hamiot A, Garneau JR, Boudry P, Maikova A et al. Type I toxin-antitoxin systems contribute to the maintenance of mobile genetic elements in Clostridioides difficile. Commun Biol 2020; 3:1–13 [View Article]
    [Google Scholar]
  80. Purcell EB, McKee RW, McBride SM, Waters CM, Tamayo R. Cyclic diguanylate inversely regulates motility and aggregation in Clostridium difficile. J Bacteriol 2012; 194:3307–3316 [View Article] [PubMed]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.001479
Loading
/content/journal/micro/10.1099/mic.0.001479
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error