Skip to content
1887

Abstract

Sponges (phylum Porifera) harbour specific microbial communities that drive the ecology and evolution of the host. Understanding the structure and dynamics of these communities is emerging as a primary focus in marine microbial ecology research. Much of the work to date has focused on sponges from warm and shallow coastal waters, while sponges from the deep ocean remain less well studied. Here, we present a metataxonomic analysis of the microbial consortia associated with 23 individual deep-sea sponges. We identify a high abundance of archaea relative to bacteria across these communities, with certain sponge microbiomes comprising more than 90 % archaea. Specifically, the archaeal family Nitrosopumilaceae is prolific, comprising over 99 % of all archaeal reads. Our analysis revealed that sponge microbial communities reflect the host sponge phylogeny, indicating a key role for host taxonomy in defining microbiome composition. Our work confirms the contribution of both evolutionary and environmental processes to the composition of microbial communities in deep-sea sponges.

Funding
This study was supported by the:
  • Novo Nordisk Fonden (Award NNF22OC0079021)
    • Principle Award Recipient: SamE Williams
  • Medical Research Foundation (Award MR/N0137941/1)
    • Principle Award Recipient: PaulCurnow
  • Biotechnology and Biological Sciences Research Council (Award BB/T001968/1)
    • Principle Award Recipient: PaulR. Race
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001478
2024-07-29
2025-06-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/170/7/mic001478.html?itemId=/content/journal/micro/10.1099/mic.0.001478&mimeType=html&fmt=ahah

References

  1. Taylor MW, Radax R, Steger D, Wagner M. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 2007; 71:295–347 [View Article] [PubMed]
    [Google Scholar]
  2. Kiran GS, Sekar S, Ramasamy P, Thinesh T, Hassan S et al. Marine sponge microbial association: towards disclosing unique symbiotic interactions. Mar Environ Res 2018; 140:169–179 [View Article] [PubMed]
    [Google Scholar]
  3. Hentschel U, Piel J, Degnan SM, Taylor MW. Genomic insights into the marine sponge microbiome. Nat Rev Microbiol 2012; 10:641–654 [View Article] [PubMed]
    [Google Scholar]
  4. Hentschel U, Usher KM, Taylor MW. Marine sponges as microbial fermenters. FEMS Microbiol Ecol 2006; 55:167–177 [View Article] [PubMed]
    [Google Scholar]
  5. Moitinho-Silva L, Nielsen S, Amir A, Gonzalez A, Ackermann GL et al. The sponge microbiome project. Gigascience 2017; 6:1–7 [View Article] [PubMed]
    [Google Scholar]
  6. Engelberts JP, Robbins SJ, de Goeij JM, Aranda M, Bell SC et al. Characterization of a sponge microbiome using an integrative genome-centric approach. ISME J 2020; 14:1100–1110 [View Article] [PubMed]
    [Google Scholar]
  7. Moreno-Pino M, Cristi A, Gillooly JF, Trefault N. Characterizing the microbiomes of Antarctic sponges: a functional metagenomic approach. Sci Rep 2020; 10:645 [View Article] [PubMed]
    [Google Scholar]
  8. Thomas T, Moitinho-Silva L, Lurgi M, Björk JR, Easson C et al. Diversity, structure and convergent evolution of the global sponge microbiome. Nat Commun 2016; 7:11870 [View Article] [PubMed]
    [Google Scholar]
  9. Schmitt S, Tsai P, Bell J, Fromont J, Ilan M et al. Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges. ISME J 2012; 6:564–576 [View Article] [PubMed]
    [Google Scholar]
  10. Reveillaud J, Maignien L, Murat Eren A, Huber JA, Apprill A et al. Host-specificity among abundant and rare taxa in the sponge microbiome. ISME J 2014; 8:1198–1209 [View Article] [PubMed]
    [Google Scholar]
  11. Díez-Vives C, Taboada S, Leiva C, Busch K, Hentschel U et al. On the way to specificity - microbiome reflects sponge genetic cluster primarily in highly structured populations. Mol Ecol 2020; 29:4412–4427 [View Article] [PubMed]
    [Google Scholar]
  12. Lurgi M, Thomas T, Wemheuer B, Webster NS, Montoya JM. Modularity and predicted functions of the global sponge-microbiome network. Nat Commun 2019; 10:992 [View Article] [PubMed]
    [Google Scholar]
  13. Busch K, Slaby BM, Bach W, Boetius A, Clefsen I et al. Biodiversity, environmental drivers, and sustainability of the global deep-sea sponge microbiome. Nat Commun 2022; 13:5160 [View Article]
    [Google Scholar]
  14. Steinert G, Busch K, Bayer K, Kodami S, Arbizu PM et al. Compositional and quantitative insights into bacterial and archaeal communities of South Pacific Deep-Sea Sponges (Demospongiae and Hexactinellida). Front Microbiol 2020; 11:716 [View Article] [PubMed]
    [Google Scholar]
  15. Kennedy J, Flemer B, Jackson SA, Morrissey JP, O’Gara F et al. Evidence of a putative deep sea specific microbiome in marine sponges. PLoS One 2014; 9:e91092 [View Article]
    [Google Scholar]
  16. Jackson SA, Flemer B, McCann A, Kennedy J, Morrissey JP et al. Archaea appear to dominate the microbiome of Inflatella pellicula deep sea sponges. PLoS One 2013; 8:e84438 [View Article] [PubMed]
    [Google Scholar]
  17. Zhang S, Song W, Wemheuer B, Reveillaud J, Webster N et al. Comparative genomics reveals ecological and evolutionary insights into sponge-associated Thaumarchaeota. mSystems 2019; 4:e00288-19 [View Article] [PubMed]
    [Google Scholar]
  18. Busch K, Hanz U, Mienis F, Mueller B, Franke A et al. On giant shoulders: how a seamount affects the microbial community composition of seawater and sponges. Biogeosciences 2020; 17:3471–3486 [View Article]
    [Google Scholar]
  19. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996–1004 [View Article] [PubMed]
    [Google Scholar]
  20. Odom AR, Faits T, Castro-Nallar E, Crandall KA, Johnson WE. Metagenomic profiling pipelines improve taxonomic classification for 16S amplicon sequencing data. Sci Rep 2023; 13:13957 [View Article] [PubMed]
    [Google Scholar]
  21. McDonald D, Jiang Y, Balaban M, Cantrell K, Zhu Q et al. Greengenes2 unifies microbial data in a single reference tree. Nat Biotechnol 2023; 42:715–718 [View Article] [PubMed]
    [Google Scholar]
  22. Taylor MW, Tsai P, Simister RL, Deines P, Botte E et al. “Sponge-specific” bacteria are widespread (but rare) in diverse marine environments. ISME J 2013; 7:438–443 [View Article] [PubMed]
    [Google Scholar]
  23. Rust M, Helfrich EJN, Freeman MF, Nanudorn P, Field CM et al. A multiproducer microbiome generates chemical diversity in the marine sponge Mycale hentscheli. Proc Natl Acad Sci U S A 2020; 117:9508–9518 [View Article] [PubMed]
    [Google Scholar]
  24. Wemheuer F, Taylor JA, Daniel R, Johnston E, Meinicke P et al. Tax4Fun2: prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene sequences. Environ Microbiome 2020; 15:11 [View Article] [PubMed]
    [Google Scholar]
  25. Loureiro C, Galani A, Gavriilidou A, Chaib de Mares M, van der Oost J et al. Comparative metagenomic analysis of biosynthetic diversity across sponge microbiomes highlights metabolic novelty, conservation, and diversification. mSystems 2022; 7:e0035722 [View Article] [PubMed]
    [Google Scholar]
  26. Williams SE, Stennett HL, Back CR, Tiwari K, Ojeda Gomez J et al. The Bristol sponge microbiome collection: a unique repository of deep-sea microorganisms and associated natural products. Antibiotics 2020; 9:509 [View Article] [PubMed]
    [Google Scholar]
  27. Robinson LF. RRS James Cook Cruise JC094, October 13–November 30 2013, Tenerife-Trinidad. TROPICS, Tracing Oceanic Processes using Corals and Sediments. Reconstructing abrupt Changes in Chemistry and Circulation of the Equatorial Atlantic Ocean: Implications for global Climate and deep-water Habitats. In Pangaea 2014 http://hdl.handle.net/10013/epic.43543.d001
    [Google Scholar]
  28. Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 2017; 551:457–463 [View Article] [PubMed]
    [Google Scholar]
  29. Marotz C, Amir A, Humphrey G, Gaffney J, Gogul G, Knight R. DNA extraction for streamlined metagenomics of diverse environmental samples. BioTechniques 2017; 62:6290–293
    [Google Scholar]
  30. Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biology 2014; 12:187
    [Google Scholar]
  31. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 1994; 3:294–299 [PubMed]
    [Google Scholar]
  32. Yang Q, Franco CMM, Sorokin SJ, Zhang W. Development of a multilocus-based approach for sponge (phylum Porifera) identification: refinement and limitations. Sci Rep 2017; 7:41422 [View Article] [PubMed]
    [Google Scholar]
  33. Nichols SA. An evaluation of support for order-level monophyly and interrelationships within the class Demospongiae using partial data from the large subunit rDNA and cytochrome oxidase subunit I. Mol Phylogenet Evol 2005; 34:81–96 [View Article] [PubMed]
    [Google Scholar]
  34. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  35. Timmers MA, Vicente J, Webb M, Jury CP, Toonen RJ. Sponging up diversity: evaluating metabarcoding performance for a taxonomically challenging phylum within a complex cryptobenthic community. Environmental DNA 2022; 4:239–253 [View Article]
    [Google Scholar]
  36. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  37. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 2020; 37:1530–1534 [View Article] [PubMed]
    [Google Scholar]
  38. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 2021; 49:W293–W296 [View Article] [PubMed]
    [Google Scholar]
  39. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet C et al. QIIME 2: reproducible, interactive, scalable, and extensible microbiome data science. PeerJ Preprints 2018; 6:e27295v2
    [Google Scholar]
  40. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 2011; 17:10 [View Article]
    [Google Scholar]
  41. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 2016; 13:581–583 [View Article] [PubMed]
    [Google Scholar]
  42. Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 2018; 6: [View Article]
    [Google Scholar]
  43. McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 2013; 8:e61217 [View Article] [PubMed]
    [Google Scholar]
  44. Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 2018; 6:226 [View Article] [PubMed]
    [Google Scholar]
  45. Chao A, Gotelli NJ, Hsieh TC, Sander EL, Ma KH et al. Rarefaction and extrapolation with hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr 2014; 84:45–67 [View Article]
    [Google Scholar]
  46. Oksanen J, Kindt R, Legendre P, O’Hara B, Simpson GL. vegan: Community Ecology Package; 2008
  47. Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat 1979; 6:265–70
    [Google Scholar]
  48. Hijmans RJ. geosphere: Spherical Trigonometry. R package version 1.5-18 ed2022.
  49. Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 2019; 35:526–528 [View Article] [PubMed]
    [Google Scholar]
  50. Smith MR. Treetools: Create, Modify and Analyse Phylogenetic Trees. 1.10.0 ed Comprehensive R Archive Network; 2019
    [Google Scholar]
  51. R CT R: a language and environment for statistical computing. In R Foundation for Statistical Computing V Austria: 2021
    [Google Scholar]
  52. Huson DH, Scornavacca C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol 2012; 61:1061–1067 [View Article] [PubMed]
    [Google Scholar]
  53. Burgsdorf I, Erwin PM, López-Legentil S, Cerrano C, Haber M et al. Biogeography rather than association with cyanobacteria structures symbiotic microbial communities in the marine sponge Petrosia ficiformis. Front Microbiol 2014; 5:529 [View Article] [PubMed]
    [Google Scholar]
  54. Bayer K, Busch K, Kenchington E, Beazley L, Franzenburg S et al. Microbial strategies for survival in the glass sponge Vazella pourtalesii. mSystems 2020; 5:00473-20 [View Article] [PubMed]
    [Google Scholar]
  55. Tian R-M, Sun J, Cai L, Zhang W-P, Zhou G-W, Qiu J-W et al. The deep-sea glass sponge Lophophysema eversa harbours potential symbionts responsible for the nutrient conversions of carbon, nitrogen and sulfur. Environ Microbiol 2016; 18:82481–2494
    [Google Scholar]
  56. Garritano AN, Majzoub ME, Ribeiro B, Damasceno T, Modolon F et al. Species-specific relationships between deep sea sponges and their symbiotic. ISME J 2023; 17:1517–1519 [View Article] [PubMed]
    [Google Scholar]
  57. Cassarino L, Coath CD, Xavier JR, Hendry KR. Silicon isotopes of deep sea sponges: new insights into biomineralisation and skeletal structure. Biogeosciences 2018; 15:6959–6977 [View Article]
    [Google Scholar]
  58. Back CR, Stennett HL, Williams SE, Wang L, Ojeda Gomez J et al. A new Micromonospora strain with antibiotic activity isolated from the microbiome of a mid-Atlantic deep-sea sponge. Mar Drugs 2021; 19:105 [View Article] [PubMed]
    [Google Scholar]
  59. Williams SE, Back CR, Best E, Mantell J, Stach JEM et al. Discovery and biosynthetic assessment of “Streptomyces ortus” sp. nov. isolated from a deep-sea sponge. Microb Genom 2023; 9: [View Article]
    [Google Scholar]
  60. Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil PA et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalizedand complete genome-based taxonomy. Nucleic Acids Res 2022; 50:D785–D794 [View Article] [PubMed]
    [Google Scholar]
  61. Moitinho-Silva L, Steinert G, Nielsen S, Hardoim CCP, Wu Y-C et al. Predicting the HMA-LMA status in marine sponges by machine learning. Front Microbiol 2017; 8:752 [View Article] [PubMed]
    [Google Scholar]
  62. Luter HM, Bannister RJ, Whalan S, Kutti T, Pineda M-C et al. Microbiome analysis of a disease affecting the deep-sea sponge Geodia barretti. FEMS Microbiol Ecol 2017; 93:fix074 [View Article] [PubMed]
    [Google Scholar]
  63. Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K et al. Structure and function of the global ocean microbiome. Science 2015; 348: [View Article]
    [Google Scholar]
  64. Varliero G, Bienhold C, Schmid F, Boetius A, Molari M. Microbial diversity and connectivity in deep-sea sediments of the South Atlantic Polar Front. Front Microbiol 2019; 10:665 [View Article] [PubMed]
    [Google Scholar]
  65. Pollock FJ, McMinds R, Smith S, Bourne DG, Willis BL et al. Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nat Commun 2018; 9:4921 [View Article] [PubMed]
    [Google Scholar]
  66. Brooks AW, Kohl KD, Brucker RM, van Opstal EJ, Bordenstein SR. Phylosymbiosis: relationships and functional effects of microbial communities across host evolutionary history. PLoS Biol 2016; 14:e2000225 [View Article] [PubMed]
    [Google Scholar]
  67. O’Brien PA, Tan S, Yang C, Frade PR, Andreakis N et al. Diverse coral reef invertebrates exhibit patterns of phylosymbiosis. ISME J 2020; 14:2211–2222 [View Article] [PubMed]
    [Google Scholar]
  68. Steinert G, Rohde S, Janussen D, Blaurock C, Schupp PJ. Host-specific assembly of sponge-associated prokaryotes at high taxonomic ranks. Sci Rep 2017; 7: [View Article]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.001478
Loading
/content/journal/micro/10.1099/mic.0.001478
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error