1887
Preview this article:

There is no abstract available.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. The Microbiology Society waived the open access fees for this article.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001466
2024-06-17
2024-07-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/170/6/mic001466.html?itemId=/content/journal/micro/10.1099/mic.0.001466&mimeType=html&fmt=ahah

References

  1. George AM, Levy SB. Amplifiable resistance to tetracycline, chloramphenicol, and other antibiotics in Escherichia coli: involvement of a non-plasmid-determined efflux of tetracycline. J Bacteriol 1983; 155:531–540 [View Article] [PubMed]
    [Google Scholar]
  2. Poole K, Krebes K, McNally C, Neshat S. Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon. J Bacteriol 1993; 175:7363–7372 [View Article] [PubMed]
    [Google Scholar]
  3. Ma D, Cook DN, Alberti M, Pon NG, Nikaido H et al. Molecular cloning and characterization of acrA and acrE genes of Escherichia coli. J Bacteriol 1993; 175:6299–6313 [View Article] [PubMed]
    [Google Scholar]
  4. Antimicrobial Efflux | Microbiology Society (microbiologyresearch.org). n.d https://www.microbiologyresearch.org/content/antimicrobial-efflux
  5. Brown DC, Aggarwal N, Turner RJ. Exploration of the presence and abundance of multidrug resistance efflux genes in oil and gas environments. Microbiology 2022; 168:168 [View Article] [PubMed]
    [Google Scholar]
  6. Ayala JC, Balthazar JT, Shafer WM. Transcriptional regulation of the mtrCDE efflux pump operon: importance for Neisseria gonorrhoeae antimicrobial resistance. Microbiology 2022; 168:168 [View Article] [PubMed]
    [Google Scholar]
  7. Holden ER, Yasir M, Turner AK, Wain J, Charles IG et al. Genome-wide analysis of genes involved in efflux function and regulation within Escherichia coli and Salmonella enterica serovar Typhimurium. Microbiology 2023; 169:169 [View Article] [PubMed]
    [Google Scholar]
  8. Yamasaki S, Zwama M, Yoneda T, Hayashi-Nishino M, Nishino K. Drug resistance and physiological roles of RND multidrug efflux pumps in Salmonella enterica, Escherichia coli and Pseudomonas aeruginosa. Microbiology 2023; 169: [View Article]
    [Google Scholar]
  9. Pugh HL, Connor C, Siasat P, McNally A, Blair JMA. E. coli ST11 (O157:H7) does not encode a functional AcrF efflux pump. Microbiology 2023; 169:169 [View Article] [PubMed]
    [Google Scholar]
  10. Islam MD, Harrison BD, Li JJ-Y, McLoughlin AG, Court DA. Do mitochondria use efflux pumps to protect their ribosomes from antibiotics?. Microbiology 2023; 169:169 [View Article] [PubMed]
    [Google Scholar]
  11. Goetz JA, Kuehfuss NM, Botschner AJ, Zhu S, Thompson LK et al. Exploring functional interplay amongst Escherichia coli efflux pumps. Microbiology 2022; 168:168 [View Article] [PubMed]
    [Google Scholar]
  12. Pushpker R, Bay DC, Turner RJ. Small multidrug resistance protein EmrE phenotypically associates with OmpW, DcrB and YggM for osmotic stress protection by betaine in Escherichia coli. Microbiology 2022; 168:168 [View Article] [PubMed]
    [Google Scholar]
  13. Wand ME, Sutton JM. Efflux-mediated tolerance to cationic biocides, a cause for concern?. Microbiology 2022; 168:168 [View Article] [PubMed]
    [Google Scholar]
  14. Jabbari S. Unravelling microbial efflux through mathematical modelling. Microbiology 2022; 168:168 [View Article] [PubMed]
    [Google Scholar]
  15. Athar M, Gervasoni S, Catte A, Basciu A, Malloci G et al. Tripartite efflux pumps of the RND superfamily: what did we learn from computational studies?. Microbiology 2023; 169:169 [View Article] [PubMed]
    [Google Scholar]
  16. Okada U, Murakami S. Structural and functional characteristics of the tripartite ABC transporter. Microbiology 2022; 168:168 [View Article] [PubMed]
    [Google Scholar]
  17. Gaurav A, Bakht P, Saini M, Pandey S, Pathania R. Role of bacterial efflux pumps in antibiotic resistance, virulence, and strategies to discover novel efflux pump inhibitors. Microbiology 2023; 169:169 [View Article] [PubMed]
    [Google Scholar]
  18. Wilhelm J, Pos KM. Molecular insights into the determinants of substrate specificity and efflux inhibition of the RND efflux pumps AcrB and AdeB. Microbiology 2024; 170:170 [View Article] [PubMed]
    [Google Scholar]
  19. Naidu V, Shah B, Maher C, Paulsen IT, Hassan KA. AadT, a new weapon in Acinetobacter’s fight against antibiotics. Microbiology 2023; 169:169 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001466
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error