Skip to content
1887

Abstract

. Bacterial keratitis, particularly caused by , is challenging to treat because of multi-drug tolerance, often associated with the formation of biofilms. Antibiotics in development are typically evaluated against planktonic bacteria in a culture medium, which may not accurately represent the complexity of infections .

Developing a reliable, economic keratitis model that replicates some complexity of tissue infections could facilitate a deeper understanding of antibiotic efficacy, thus aiding in the optimization of treatment strategies for bacterial keratitis.

. Here we investigated the efficacy of three commonly used antibiotics (gentamicin, ciprofloxacin and meropenem) against cytotoxic strain PA14 and invasive strain PA01 using an porcine keratitis model.

. Both strains of were susceptible to the MIC of the three tested antibiotics. However, significantly higher concentrations were necessary to inhibit bacterial growth in the minimum biofilm eradication concentration (MBEC) assay, with both strains tolerating concentrations greater than 512 mg l of meropenem. When MIC and higher concentrations than MBEC (1024 mg l) of antibiotics were applied, ciprofloxacin exhibited the highest potency against both strains, followed by meropenem, while gentamicin showed the least potency. Despite this, none of the antibiotic concentrations used effectively cleared the infection, even after 18 h of continuous exposure.

Further exploration of antibiotic concentrations and aligning dosing with clinical studies to validate the model is needed. Nonetheless, our porcine keratitis model could be a valuable tool for assessing antibiotic efficacy.

Funding
This study was supported by the:
  • Medical Research Council (Award MR/S004688/1)
    • Principle Award Recipient: PeterN. Monk
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001459
2024-05-13
2025-07-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/170/5/mic001459.html?itemId=/content/journal/micro/10.1099/mic.0.001459&mimeType=html&fmt=ahah

References

  1. Humphries RM, Abbott AN, Hindler JA. Understanding and addressing CLSI breakpoint revisions: a primer for clinical laboratories. J Clin Microbiol 2019; 57:e00203-19 [View Article] [PubMed]
    [Google Scholar]
  2. Moussa G, Hodson J, Gooch N, Virdee J, Penaloza C et al. Calculating the economic burden of presumed microbial keratitis admissions at a tertiary referral centre in the UK. Eye 2021; 35:2146–2154 [View Article] [PubMed]
    [Google Scholar]
  3. Whitcher J, Srinivasan M, Upadhyay M. Corneal blindness: a global perspective. Bull World Health Organ 2001; 79:214–221 [PubMed]
    [Google Scholar]
  4. Ung L, Bispo PJM, Shanbhag SS, Gilmore MS, Chodosh J. The persistent dilemma of microbial keratitis: global burden, diagnosis, and antimicrobial resistance. Surv Ophthalmol 2019; 64:255–271 [View Article] [PubMed]
    [Google Scholar]
  5. Garg P, Sharma S, Rao GN. Ciprofloxacin-resistant Pseudomonas keratitis. Ophthalmology 1999; 106:1319–1323 [View Article] [PubMed]
    [Google Scholar]
  6. Behlau I, Gilmore MS. Microbial biofilms in ophthalmology and infectious disease. Arch Ophthalmol 2008; 126:1572–1581 [View Article] [PubMed]
    [Google Scholar]
  7. Elhardt C, Wolf A, Wertheimer CM. Successful treatment of multidrug-resistant Pseudomonas aeruginosa keratitis with meropenem eye drops - a case report. J Ophthalmic Inflamm Infect 2023; 13:40 [View Article] [PubMed]
    [Google Scholar]
  8. Radford R, Brahma A, Armstrong M, Tullo AB. Severe sclerokeratitis due to Pseudomonas aeruginosa in noncontact-lens wearers. Eye 2000; 14:3–7 [View Article] [PubMed]
    [Google Scholar]
  9. Shoji MK, Gutkind NE, Meyer BI, Yusuf R, Sengillo JD et al. Multidrug-resistant Pseudomonas aeruginosa keratitis associated with artificial tear use. JAMA Ophthalmol 2023; 141:499–500 [View Article] [PubMed]
    [Google Scholar]
  10. Thi MTT, Wibowo D, Rehm BHA. Pseudomonas aeruginosa Biofilms. Int J Mol Sci 2020; 21:8671 [View Article]
    [Google Scholar]
  11. Moledina M, Roberts HW, Mukherjee A, Spokes D, Pimenides D et al. Analysis of microbial keratitis incidence, isolates and in-vitro antimicrobial susceptibility in the East of England: a 6-year study. Eye 2023; 37:2716–2722 [View Article] [PubMed]
    [Google Scholar]
  12. Khan M, Ma K, Wan I, Willcox MDP. Ciprofloxacin resistance and tolerance of Pseudomonas aeruginosa ocular isolates. Cont Lens Anterior Eye 2023; 46:101819 [View Article] [PubMed]
    [Google Scholar]
  13. López-Dupla M, Martínez JA, Vidal F, Almela M, Soriano A et al. Previous ciprofloxacin exposure is associated with resistance to beta-lactam antibiotics in subsequent Pseudomonas aeruginosa bacteremic isolates. Am J Infect Control 2009; 37:753–758 [View Article] [PubMed]
    [Google Scholar]
  14. O’Brien TP. Management of bacterial keratitis: beyond exorcism towards consideration of organism and host factors. Eye 2003; 17:957–974 [View Article] [PubMed]
    [Google Scholar]
  15. Willcox MDP. Review of resistance of ocular isolates of Pseudomonas aeruginosa and staphylococci from keratitis to ciprofloxacin, gentamicin and cephalosporins. Clin Exp Optom 2011; 94:161–168 [View Article] [PubMed]
    [Google Scholar]
  16. Dalmon C, Porco TC, Lietman TM, Prajna NV, Prajna L et al. The clinical differentiation of bacterial and fungal keratitis: a photographic survey. Invest Ophthalmol Vis Sci 2012; 53:1787–1791 [View Article] [PubMed]
    [Google Scholar]
  17. Ibrahim YW, Boase DL, Cree IA. Epidemiological characteristics, predisposing factors and microbiological profiles of infectious corneal ulcers: the Portsmouth corneal ulcer study. Br J Ophthalmol 2009; 93:1319–1324 [View Article] [PubMed]
    [Google Scholar]
  18. Norina TJ, Raihan S, Bakiah S, Ezanee M, Liza-Sharmini AT et al. Microbial keratitis: aetiological diagnosis and clinical features in patients admitted to hospital universiti Sains Malaysia. Singapore Med J 2008; 49:67–71 [PubMed]
    [Google Scholar]
  19. Varaprasathan G, Miller K, Lietman T, Whitcher JP, Cevallos V et al. Trends in the etiology of infectious corneal ulcers at the F. I. Proctor Foundation. Cornea 2004; 23:360–364 [View Article] [PubMed]
    [Google Scholar]
  20. Kaye S. Microbial keratitis and the selection of topical antimicrobials. BMJ Open Ophthalmol 2017; 1:e000086 [View Article] [PubMed]
    [Google Scholar]
  21. Tuft S, Somerville TF, Li JPO, Neal T, De S et al. Bacterial keratitis: identifying the areas of clinical uncertainty. Prog Retin Eye Res 2022; 89:101031 [View Article] [PubMed]
    [Google Scholar]
  22. Gokhale NS. Medical management approach to infectious keratitis. Indian J Ophthalmol 2008; 56:215–220 [View Article] [PubMed]
    [Google Scholar]
  23. Kowalska-Krochmal B, Dudek-Wicher R. The minimum inhibitory concentration of antibiotics: methods, interpretation, clinical relevance. Pathogens 2021; 10:165 [View Article] [PubMed]
    [Google Scholar]
  24. Herbert R, Caddick M, Somerville T, McLean K, Herwitker S et al. Potential new fluoroquinolone treatments for suspected bacterial keratitis. BMJ Open Ophthalmol 2022; 7:e001002 [View Article] [PubMed]
    [Google Scholar]
  25. Davies D. Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2003; 2:114–122 [View Article] [PubMed]
    [Google Scholar]
  26. Lebeaux D, Ghigo JM, Beloin C. Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev 2014; 78:510–543 [View Article] [PubMed]
    [Google Scholar]
  27. Hall CW, Mah TF. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev 2017; 41:276–301 [View Article] [PubMed]
    [Google Scholar]
  28. Billings N, Millan MR, Caldara M, Rusconi R, Tarasova Y et al. The extracellular matrix component Psl provides fast-acting antibiotic defense in Pseudomonas aeruginosa biofilms. PLoS Pathog 2013; 9:e1003526 [View Article] [PubMed]
    [Google Scholar]
  29. Ciofu O, Tolker-Nielsen T. Tolerance and resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents-how P. aeruginosa can escape antibiotics. Front Microbiol 2019; 10:913 [View Article] [PubMed]
    [Google Scholar]
  30. Colvin KM, Gordon VD, Murakami K, Borlee BR, Wozniak DJ et al. The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathog 2011; 7:e1001264 [View Article] [PubMed]
    [Google Scholar]
  31. Jacobs HM, O’Neal L, Lopatto E, Wozniak DJ, Bjarnsholt T et al. Mucoid Pseudomonas aeruginosa can produce calcium-gelled biofilms independent of the matrix components Psl and CdrA. J Bacteriol 2022; 204:e0056821 [View Article] [PubMed]
    [Google Scholar]
  32. Kumar NG, Nieto V, Kroken AR, Jedel E, Grosser MR et al. Pseudomonas aeruginosa can diversify after host cell invasion to establish multiple intracellular niches. mBio 2022; 13:e0274222 [View Article] [PubMed]
    [Google Scholar]
  33. Urwin L, Okurowska K, Crowther G, Roy S, Garg P et al. Corneal infection models: tools to investigate the role of biofilms in bacterial keratitis. Cells 2020; 9:2450 [View Article] [PubMed]
    [Google Scholar]
  34. Okurowska K, Roy S, Thokala P, Partridge L, Garg P et al. Establishing a porcine ex vivo cornea model for studying drug treatments against bacterial keratitis. J Vis Exp 2020 [View Article] [PubMed]
    [Google Scholar]
  35. Bonanno JA. Molecular mechanisms underlying the corneal endothelial pump. Exp Eye Res 2012; 95:2–7 [View Article] [PubMed]
    [Google Scholar]
  36. Lee EJ, Truong TN, Mendoza MN, Fleiszig SMJ. A comparison of invasive and cytotoxic Pseudomonas aeruginosa strain-induced corneal disease responses to therapeutics. Curr Eye Res 2003; 27:289–299 [View Article] [PubMed]
    [Google Scholar]
  37. Wozniak DJ, Wyckoff TJO, Starkey M, Keyser R, Azadi P et al. Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci U S A 2003; 100:7907–7912 [View Article]
    [Google Scholar]
  38. Freschi L, Vincent AT, Jeukens J, Emond-Rheault JG, Kukavica-Ibrulj I et al. The Pseudomonas aeruginosa pan-genome provides new insights on its population structure, horizontal gene transfer, and pathogenicity. Genome Biol Evol 2019; 11:109–120 [View Article] [PubMed]
    [Google Scholar]
  39. Hilliam Y, Kaye S, Winstanley C. Pseudomonas aeruginosa and microbial keratitis. J Med Microbiol 2020; 69:3–13 [View Article]
    [Google Scholar]
  40. Borkar DS, Fleiszig SMJ, Leong C, Lalitha P, Srinivasan M et al. Association between cytotoxic and invasive Pseudomonas aeruginosa and clinical outcomes in bacterial keratitis. JAMA Ophthalmol 2013; 131:147–153 [View Article] [PubMed]
    [Google Scholar]
  41. Goodman AL, Kulasekara B, Rietsch A, Boyd D, Smith RS et al. A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev Cell 2004; 7:745–754 [View Article] [PubMed]
    [Google Scholar]
  42. Haagensen J, Verotta D, Huang L, Engel J, Spormann AM et al. Spatiotemporal pharmacodynamics of meropenem- and tobramycin-treated Pseudomonas aeruginosa biofilms. J Antimicrob Chemother 2017; 72:3357–3365 [View Article] [PubMed]
    [Google Scholar]
  43. Kasetty S, Katharios-Lanwermeyer S, O’Toole GA, Nadell CD. Differential surface competition and biofilm invasion strategies of Pseudomonas aeruginosa PA14 and PAO1. J Bacteriol 2021; 203:e0026521 [View Article] [PubMed]
    [Google Scholar]
  44. Mikkelsen H, McMullan R, Filloux A. The Pseudomonas aeruginosa reference strain PA14 displays increased virulence due to a mutation in ladS. PLoS One 2011; 6:e29113 [View Article] [PubMed]
    [Google Scholar]
  45. Soares A, Roussel V, Pestel-Caron M, Barreau M, Caron F et al. Understanding ciprofloxacin failure in Pseudomonas aeruginosa biofilm: persister cells survive matrix disruption. Front Microbiol 2019; 10:2603 [View Article] [PubMed]
    [Google Scholar]
  46. Cendra MD, Christodoulides M, Hossain P. Effect of different antibiotic chemotherapies on Pseudomonas aeruginosa infection in vitro of primary human corneal fibroblast cells. Front Microbiol 2017; 8:1614 [View Article] [PubMed]
    [Google Scholar]
  47. EUCAST Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin Microbiol Infect 2003; 9:1–7 [View Article]
    [Google Scholar]
  48. Hasselmann C. European society of clinical microbiology and infectious diseases (ESCMID) - European Committee for antimicrobial susceptibility testing (EUCAST) - determination of minimum inhibitory concentration (MIC) by Agar dilution. Clin Microbiol Infect 2000; 6:1–7
    [Google Scholar]
  49. EUCAST Media preparation for EUCAST disc diffusion testing and for725 determination of MIC values by the broth microdilution method. In E. C. o. A. S.726 Testing (Ed.); 2022
  50. Harrison JJ, Stremick CA, Turner RJ, Allan ND, Olson ME et al. Microtiter susceptibility testing of microbes growing on peg lids: a miniaturized biofilm model for high-throughput screening. Nat Protoc 2010; 5:1236–1254 [View Article] [PubMed]
    [Google Scholar]
  51. Schuurmans JM, Hayali ASN, Koenders BB, ter Kuile BH. Variations in MIC value caused by differences in experimental protocol. J Microbiol Methods 2009; 79:44–47 [View Article] [PubMed]
    [Google Scholar]
  52. Bagge N, Schuster M, Hentzer M, Ciofu O, Givskov M et al. Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production. Antimicrob Agents Chemother 2004; 48:1175–1187 [View Article] [PubMed]
    [Google Scholar]
  53. Bowler LL, Zhanel GG, Ball TB, Saward LL. Mature Pseudomonas aeruginosa biofilms prevail compared to young biofilms in the presence of ceftazidime. Antimicrob Agents Chemother 2012; 56:4976–4979 [View Article] [PubMed]
    [Google Scholar]
  54. Mah T-F, Pitts B, Pellock B, Walker GC, Stewart PS et al. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 2003; 426:306–310 [View Article] [PubMed]
    [Google Scholar]
  55. Zhang L, Fritsch M, Hammond L, Landreville R, Slatculescu C et al. Identification of genes involved in Pseudomonas aeruginosa biofilm-specific resistance to antibiotics. PLoS One 2013; 8:e61625 [View Article] [PubMed]
    [Google Scholar]
  56. Sutherland IW. Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 2001; 147:3–9 [View Article] [PubMed]
    [Google Scholar]
  57. Sueke H, Kaye S, Wilkinson MC, Kennedy S, Kearns V et al. Pharmacokinetics of meropenem for use in bacterial keratitis. Invest Ophthalmol Vis Sci 2015; 56:5731–5738 [View Article] [PubMed]
    [Google Scholar]
  58. Monahan LG, Turnbull L, Osvath SR, Birch D, Charles IG et al. Rapid conversion of Pseudomonas aeruginosa to a spherical cell morphotype facilitates tolerance to carbapenems and penicillins but increases susceptibility to antimicrobial peptides. Antimicrob Agents Chemother 2014; 58:1956–1962 [View Article] [PubMed]
    [Google Scholar]
  59. Ocampo-Sosa AA, Cabot G, Rodríguez C, Roman E, Tubau F et al. Alterations of OprD in carbapenem-intermediate and -susceptible strains of Pseudomonas aeruginosa isolated from patients with bacteremia in a Spanish multicenter study. Antimicrob Agents Chemother 2012; 56:1703–1713 [View Article] [PubMed]
    [Google Scholar]
  60. Bruchmann S, Dötsch A, Nouri B, Chaberny IF, Häussler S. Quantitative contributions of target alteration and decreased drug accumulation to Pseudomonas aeruginosa fluoroquinolone resistance. Antimicrob Agents Chemother 2013; 57:1361–1368 [View Article] [PubMed]
    [Google Scholar]
  61. Fernández-Olmos A, García-Castillo M, Maiz L, Lamas A, Baquero F et al. In vitro prevention of Pseudomonas aeruginosa early biofilm formation with antibiotics used in cystic fibrosis patients. Int J Antimicrob Agents 2012; 40:173–176 [View Article] [PubMed]
    [Google Scholar]
  62. Riera E, Macià MD, Mena A, Mulet X, Pérez JL et al. Anti-biofilm and resistance suppression activities of CXA-101 against chronic respiratory infection phenotypes of Pseudomonas aeruginosa strain PAO1. J Antimicrob Chemother 2010; 65:1399–1404 [View Article] [PubMed]
    [Google Scholar]
  63. Shafiei M, Ali AA, Shahcheraghi F, Saboora A, Akbari Noghabi K. Eradication of Pseudomonas aeruginosa biofilms using the combination of n-butanolic cyclamen coum extract and ciprofloxacin. Jundishapur J Microbiol 2014; 7:e14358 [View Article] [PubMed]
    [Google Scholar]
  64. Benthall G, Touzel RE, Hind CK, Titball RW, Sutton JM et al. Evaluation of antibiotic efficacy against infections caused by planktonic or biofilm cultures of Pseudomonas aeruginosa and Klebsiella pneumoniae in Galleria mellonella. Int J Antimicrob Agents 2015; 46:538–545 [View Article] [PubMed]
    [Google Scholar]
  65. Llorens JMN, Tormo A, Martínez-García E. Stationary phase in gram-negative bacteria. FEMS Microbiol Rev 2010; 34:476–495 [View Article] [PubMed]
    [Google Scholar]
  66. Rolfe MD, Rice CJ, Lucchini S, Pin C, Thompson A et al. Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. J Bacteriol 2012; 194:686–701 [View Article] [PubMed]
    [Google Scholar]
  67. Augustin DK, Heimer SR, Tam C, Li WY, Le Due JM et al. Role of defensins in corneal epithelial barrier function against Pseudomonas aeruginosa traversal. Infect Immun 2011; 79:595–605 [View Article] [PubMed]
    [Google Scholar]
  68. Tam C, LeDue J, Mun JJ, Herzmark P, Robey EA et al. 3D quantitative imaging of unprocessed live tissue reveals epithelial defense against bacterial adhesion and subsequent traversal requires MyD88. PLoS One 2011; 6:e24008 [View Article] [PubMed]
    [Google Scholar]
  69. Li L, Mendis N, Trigui H, Oliver JD, Faucher SP. The importance of the viable but non-culturable state in human bacterial pathogens. Front Microbiol 2014; 5:258 [View Article] [PubMed]
    [Google Scholar]
  70. Frucht-Pery J, Golan G, Hemo I, Zauberman H, Shapiro M. Efficacy of topical gentamicin treatment after 193-nm photorefractive keratectomy in an experimental Pseudomonas keratitis model. Graefe’s Arch Clin Exp Ophthalmol 1995; 233:532–534 [View Article]
    [Google Scholar]
  71. Kowalski RP, Kowalski TA, Shanks RMQ, Romanowski EG, Karenchak LM et al. In vitro comparison of combination and monotherapy for the empiric and optimal coverage of bacterial keratitis based on incidence of infection. Cornea 2013; 32:830–834 [View Article] [PubMed]
    [Google Scholar]
  72. Punitan R, Sulaiman SA, Hasan HB, Shatriah I. Clinical and antibacterial effects of Tualang honey on Pseudomonas-induced keratitis in rabbit eyes. Cureus 2019; 11:e4332 [View Article] [PubMed]
    [Google Scholar]
  73. Rootman DS, Krajden M. Continuous flow perfusion of gentamicin with a scleral shell reduces bacterial colony counts in experimental Pseudomonas keratitis. J Ocul Pharmacol 1993; 9:271–276 [View Article] [PubMed]
    [Google Scholar]
  74. Wilhelmus KR, Abshire RL. Corneal ciprofloxacin precipitation during bacterial keratitis. Am J Ophthalmol 2003; 136:1032–1037 [View Article] [PubMed]
    [Google Scholar]
  75. McDermott ML, Tran TD, Cowden JW, Buggé CJL. Corneal stromal penetration of topical ciprofloxacin in humans. Ophthalmology 1993; 100:197–200 [View Article] [PubMed]
    [Google Scholar]
  76. Karlowsky JA, Zhanel GG, Davidson RJ, Hoban DJ. Postantibiotic effect in Pseudomonas aeruginosa following single and multiple aminoglycoside exposures in vitro. J Antimicrob Chemother 1994; 33:937–947 [View Article] [PubMed]
    [Google Scholar]
  77. Fleiszig SMJ, Zaidi TS, Pier GB. Pseudomonas aeruginosa invasion of and multiplication within corneal epithelial cells in vitro. Infect Immun 1995; 63:4072–4077 [View Article] [PubMed]
    [Google Scholar]
  78. Bozkurt E, Muhafiz E, Kepenek HS, Bozlak ÇEB, Koç Saltan S et al. A new treatment experience in Pseudomonas keratitis: topical meropenem and cefepime. Antimicrob Agents Chemother 2021; 47:174–179 [View Article]
    [Google Scholar]
  79. Pandey RA, Bhailume PV. Use of topical meropenem in management of hospital acquired Pseudomonas ocular infections. J Clin Ophthalmol 2014; 1:23–25 [View Article]
    [Google Scholar]
  80. Erdem I, Kaynar-Tascioglu J, Kaya B, Goktas P. The comparison of in the vitro effect of imipenem or meropenem combined with ciprofloxacin or levofloxacin against multidrug-resistant Pseudomonas aeruginosa strains. Int J Antimicrob Agents 2002; 20:384–386 [View Article] [PubMed]
    [Google Scholar]
  81. Pankuch GA, Lin GR, Seifert H, Appelbaum PC. Activity of meropenem with and without ciprofloxacin and colistin against Pseudomonas aeruginosa and Acinetobacter baumannii. Antimicrob Agents Chemother 2008; 52:333–336 [View Article] [PubMed]
    [Google Scholar]
  82. Siqueira VLD, Cardoso RF, Caleffi-Ferracioli KR, Scodro RBD, Fernandez MA et al. Structural changes and differentially expressed genes in Pseudomonas aeruginosa exposed to meropenem-ciprofloxacin combination. Antimicrob Agents Chemother 2014; 58:3957–3967 [View Article] [PubMed]
    [Google Scholar]
  83. Oztürk F, Kortunay S, Kurt E, Ilker SS, Basci NE et al. Penetration of topical and oral ciprofloxacin into the aqueous and vitreous humor in inflamed eyes. Retina 1999; 19:218–222 [View Article] [PubMed]
    [Google Scholar]
  84. Silva GCM, Jabor VAP, Bonato PS, Martinez EZ, Faria-E-Sousa SJ. Penetration of 0.3% ciprofloxacin, 0.3% ofloxacin, and 0.5% moxifloxacin into the cornea and aqueous humor of enucleated human eyes. Braz J Med Biol Res 2017; 50:e5901 [View Article] [PubMed]
    [Google Scholar]
  85. Kaye SB, Neal T, Nicholson S, Szkurlat J, Bamber S et al. Concentration and bioavailability of ciprofloxacin and teicoplanin in the cornea. Invest Ophthalmol Vis Sci 2009; 50:3176–3184 [View Article] [PubMed]
    [Google Scholar]
  86. Bu P, Riske PS, Zaya NE, Carey R, Bouchard CS. A comparison of topical chlorhexidine, ciprofloxacin, and fortified tobramycin/cefazolin in rabbit models of Staphylococcus and Pseudomonas keratitis. J Ocul Pharmacol Ther 2007; 23:213–220 [View Article] [PubMed]
    [Google Scholar]
  87. LaBorwit SE, Katz HR, Hirschbein MJ, Oswald MR, Snyder LS et al. Topical 0.3% ciprofloxacin vs topical 0.3% ofloxacin in early treatment of Pseudomonas aeruginosa keratitis in a rabbit model. Ann Ophthalmol 2001; 33:48–52 [View Article]
    [Google Scholar]
  88. Levey SB, Katz HR, Levine ES, Abrams DA, Marsh MJ. Efficacy of topical ciprofloxacin 0.3% in the treatment of ulcerative keratitis in humans. Ann Ophthalmol Glaucoma 1998; 30:301–304
    [Google Scholar]
  89. Castro N, Gillespie SR, Bernstein AM. Ex vivo corneal organ culture model for wound healing studies. J Vis Exp 2019 [View Article] [PubMed]
    [Google Scholar]
  90. Schumann S, Dietrich E, Kruse C, Grisanti S, Ranjbar M. Establishment of a robust and simple corneal organ culture model to monitor wound healing. J Clin Med 2021; 10:3486 [View Article] [PubMed]
    [Google Scholar]
  91. Sebbag L, Broadbent VL, Kenne DE, Perrin AL, Mochel JP. Albumin in tears modulates bacterial susceptibility to topical antibiotics in ophthalmology. Front Med 2021; 8:663212 [View Article] [PubMed]
    [Google Scholar]
  92. Fleiszig SMJ, Kwong MSF, Evans DJ. Modification of Pseudomonas aeruginosa interactions with corneal epithelial cells by human tear fluid. Infect Immun 2003; 71:3866–3874 [View Article] [PubMed]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.001459
Loading
/content/journal/micro/10.1099/mic.0.001459
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error