1887

Abstract

is an opportunistic, multidrug-resistant pathogen capable of adapting to numerous environmental conditions and causing fatal infections in immunocompromised patients. The predominant lifestyle of is in the form of biofilms, which are structured communities of bacteria encapsulated in a matrix containing exopolysaccharides, extracellular DNA (eDNA) and proteins. The matrix is impervious to antibiotics, rendering the bacteria tolerant to antimicrobials. also produces a plethora of virulence factors such as pyocyanin, rhamnolipids and lipopolysaccharides among others. In this study we present the molecular characterization of and genes, of the exopolysaccharide operon, that code for putative glycosyltransferases. PslC is a 303 amino acid containing putative GT2 glycosyltrasferase, whereas PslI is a 367 aa long protein, possibly functioning as a GT4 glycosyltransferase. Mutation in either of these two genes results in a significant reduction in biofilm biomass with concomitant decline in c-di-GMP levels in the bacterial cells. Moreover, mutation in and dramatically increased susceptibility of to tobramycin, colistin and ciprofloxacin. Additionally, these mutations also resulted in an increase in rhamnolipids and pyocyanin formation. We demonstrate that elevated rhamnolipids promote a swarming phenotype in the mutant strains. Together these results highlight the importance of PslC and PslI in the biogenesis of biofilms and their potential as targets for increased antibiotic susceptibility and biofilm inhibition.

Funding
This study was supported by the:
  • Department of Biotechnology, Ministry of Science and Technology, India
    • Principle Award Recipient: DeeptiJain
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001392
2023-09-13
2024-06-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/169/9/mic001392.html?itemId=/content/journal/micro/10.1099/mic.0.001392&mimeType=html&fmt=ahah

References

  1. Horcajada JP, Montero M, Oliver A, Sorlí L, Luque S et al. Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections. Clin Microbiol Rev 2019; 32:e00031-19 [View Article] [PubMed]
    [Google Scholar]
  2. Seviour T, Winnerdy FR, Wong LL, Shi X, Mugunthan S et al. The biofilm matrix scaffold of Pseudomonas aeruginosa contains G-quadruplex extracellular DNA structures. NPJ Biofilms Microbiomes 2021; 7:27 [View Article] [PubMed]
    [Google Scholar]
  3. Karygianni L, Ren Z, Koo H, Thurnheer T. Biofilm matrixome: extracellular components in structured microbial communities. Trends Microbiol 2020; 28:668–681 [View Article] [PubMed]
    [Google Scholar]
  4. Jiang Z, Nero T, Mukherjee S, Olson R, Yan J. Searching for the secret of stickiness: how biofilms adhere to surfaces. Front Microbiol 2021; 12:686793 [View Article] [PubMed]
    [Google Scholar]
  5. Rybtke M, Hultqvist LD, Givskov M, Tolker-Nielsen T. Pseudomonas aeruginosa biofilm infections: community structure, antimicrobial tolerance and immune response. J Mol Biol 2015; 427:3628–3645 [View Article] [PubMed]
    [Google Scholar]
  6. Colvin KM, Irie Y, Tart CS, Urbano R, Whitney JC et al. The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environ Microbiol 2012; 14:1913–1928 [View Article] [PubMed]
    [Google Scholar]
  7. Hentzer M, Teitzel GM, Balzer GJ, Heydorn A, Molin S et al. Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol 2001; 183:5395–5401 [View Article] [PubMed]
    [Google Scholar]
  8. Razvi E, Whitfield GB, Reichhardt C, Dreifus JE, Willis AR et al. Glycoside hydrolase processing of the Pel polysaccharide alters biofilm biomechanics and Pseudomonas aeruginosa virulence. NPJ Biofilms Microbiomes 2023; 9:7 [View Article] [PubMed]
    [Google Scholar]
  9. Le Mauff F, Razvi E, Reichhardt C, Sivarajah P, Parsek MR et al. The Pel polysaccharide is predominantly composed of a dimeric repeat of α-1,4 linked galactosamine and N-acetylgalactosamine. Commun Biol 2022; 5:624 [View Article] [PubMed]
    [Google Scholar]
  10. Jennings LK, Storek KM, Ledvina HE, Coulon C, Marmont LS et al. Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix. Proc Natl Acad Sci 2015; 112:11353–11358 [View Article] [PubMed]
    [Google Scholar]
  11. Luyan M, Kara D J, Rebecca M L, Matthew R P, Daniel J W. Analysis of Pseudomonas Aeruginosa conditional Psl variants reveals roles for the Psl polysaccharide in adhesion and maintaining Biofilm structure Postattachment. J Bacteriol 2006; 188:8213–8221 [View Article]
    [Google Scholar]
  12. Ma LZ, Wang D, Liu Y, Zhang Z, Wozniak DJ. Regulation of biofilm exopolysaccharide biosynthesis and degradation in Pseudomonas aeruginosa. Annu Rev Microbiol 2022; 76:413–433 [View Article] [PubMed]
    [Google Scholar]
  13. Irie Y, Borlee BR, O’Connor JR, Hill PJ, Harwood CS et al. Self-produced exopolysaccharide is a signal that stimulates biofilm formation in Pseudomonas aeruginosa. Proc Natl Acad Sci 2012; 109:20632–20636 [View Article] [PubMed]
    [Google Scholar]
  14. Jackson KD, Starkey M, Kremer S, Parsek MR, Wozniak DJ. Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation. J Bacteriol 2004; 186:4466–4475 [View Article] [PubMed]
    [Google Scholar]
  15. Byrd MS, Sadovskaya I, Vinogradov E, Lu H, Sprinkle AB et al. Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production. Mol Microbiol 2009; 73:622–638 [View Article] [PubMed]
    [Google Scholar]
  16. Franklin MJ, Nivens DE, Weadge JT, Howell PL. Biosynthesis of the Pseudomonas aeruginosa extracellular polysaccharides, alginate, Pel, and Psl. Front Microbiol 2011; 2:167 [View Article] [PubMed]
    [Google Scholar]
  17. Banerjee P. Chanchal Jain D. Sensor I regulated ATPase activity of FleQ is essential for motility to biofilm transition in Pseudomonas aeruginosa. ACS Chem Biol 2019; 14:1515–1527 [View Article] [PubMed]
    [Google Scholar]
  18. Matsuyama BY, Krasteva PV, Baraquet C, Harwood CS, Sondermann H et al. Mechanistic insights into c-di-GMP-dependent control of the biofilm regulator FleQ from Pseudomonas aeruginosa. Proc Natl Acad Sci 2016; 113:E209–18 [View Article] [PubMed]
    [Google Scholar]
  19. Banerjee P, Sahoo PK. Sheenu Adhikary A, Ruhal R et al. Molecular and structural facets of c-di-GMP signalling associated with biofilm formation in Pseudomonas aeruginosa. Mol Aspects Med 2021; 81:101001 [View Article] [PubMed]
    [Google Scholar]
  20. Lin Chua S, Liu Y, Li Y, Jun Ting H, Kohli GS et al. Reduced intracellular c-di-GMP content increases expression of quorum sensing-regulated genes in Pseudomonas aeruginosa. Front Cell Infect Microbiol 2017; 7:451 [View Article] [PubMed]
    [Google Scholar]
  21. Sakuragi Y, Kolter R. Quorum-sensing regulation of the biofilm matrix genes (pel) of Pseudomonas aeruginosa. J Bacteriol 2007; 189:5383–5386 [View Article] [PubMed]
    [Google Scholar]
  22. Wagner VE, Bushnell D, Passador L, Brooks AI, Iglewski BH. Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J Bacteriol 2003; 185:2080–2095 [View Article] [PubMed]
    [Google Scholar]
  23. Chugani SA, Whiteley M, Lee KM, D’Argenio D, Manoil C et al. QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa. Proc Natl Acad Sci 2001; 98:2752–2757 [View Article] [PubMed]
    [Google Scholar]
  24. Kostylev M, Kim DY, Smalley NE, Salukhe I, Greenberg EP et al. Evolution of the Pseudomonas aeruginosa quorum-sensing hierarchy. Proc Natl Acad Sci 2019; 116:7027–7032 [View Article] [PubMed]
    [Google Scholar]
  25. Lin J, Cheng J, Wang Y, Shen X. The Pseudomonas Quinolone Signal (PQS): not just for quorum sensing anymore. Front Cell Infect Microbiol 2018; 8:230 [View Article] [PubMed]
    [Google Scholar]
  26. Passador L, Cook JM, Gambello MJ, Rust L, Iglewski BH. Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 1993; 260:1127–1130 [View Article] [PubMed]
    [Google Scholar]
  27. Venturi V. Regulation of quorum sensing in Pseudomonas. FEMS Microbiol Rev 2006; 30:274–291 [View Article] [PubMed]
    [Google Scholar]
  28. Guerra-Santos LuisH, Kappeli O, Fiechter A. Dependence of Pseudomonas aeruginosa continous culture biosurfactant production on nutritional and environmental factors. Appl Microbiol Biotechnol 1986; 24: [View Article]
    [Google Scholar]
  29. Pamp SJ, Tolker-Nielsen T. Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa. J Bacteriol 2007; 189:2531–2539 [View Article] [PubMed]
    [Google Scholar]
  30. Medina G, Juárez K, Valderrama B, Soberón-Chávez G. Mechanism of Pseudomonas aeruginosa RhlR transcriptional regulation of the rhlAB promoter. J Bacteriol 2003; 185:5976–5983 [View Article] [PubMed]
    [Google Scholar]
  31. Cocotl-Yañez M, Soto-Aceves MP, González-Valdez A, Servín-González L, Soberón-Chávez G. Virulence factors regulation by the quorum-sensing and Rsm systems in the marine strain Pseudomonas aeruginosa ID4365, a natural mutant in lasR. FEMS Microbiol Lett 2020; 367:fnaa092 [View Article] [PubMed]
    [Google Scholar]
  32. Ma L, Conover M, Lu H, Parsek MR, Bayles K et al. Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog 2009; 5:e1000354 [View Article] [PubMed]
    [Google Scholar]
  33. Billings N, Millan M, Caldara M, Rusconi R, Tarasova Y et al. The extracellular matrix component Psl provides fast-acting antibiotic defense in Pseudomonas aeruginosa biofilms. PLoS Pathog 2013; 9:e1003526 [View Article] [PubMed]
    [Google Scholar]
  34. Yang L, Jelsbak L, Molin S. Microbial ecology and adaptation in cystic fibrosis airways: microbial ecology and adaptation in CF airways. Environ Microbiol 2011; 13:1682–1689 [View Article] [PubMed]
    [Google Scholar]
  35. Jacobs MA, Alwood A, Thaipisuttikul I, Spencer D, Haugen E et al. Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc Natl Acad Sci 2003; 100:14339–14344 [View Article] [PubMed]
    [Google Scholar]
  36. Zhang J, Wu H, Wang D, Wang L, Cui Y et al. Intracellular glycosyl hydrolase PslG shapes bacterial cell fate, signaling, and the biofilm development of Pseudomonas aeruginosa. Elife 2022; 11:e72778 [View Article] [PubMed]
    [Google Scholar]
  37. O’Toole GA. Microtiter dish biofilm formation assay. J Vis Exp 20112437 [View Article] [PubMed]
    [Google Scholar]
  38. Rybtke MT, Borlee BR, Murakami K, Irie Y, Hentzer M et al. Fluorescence-based reporter for gauging cyclic di-GMP levels in Pseudomonas aeruginosa. Appl Environ Microbiol 2012; 78:5060–5069 [View Article] [PubMed]
    [Google Scholar]
  39. Gandini R, Reichenbach T, Spadiut O, Tan T-C, Kalyani DC et al. A transmembrane crenarchaeal mannosyltransferase is involved in N-Glycan biosynthesis and displays an unexpected minimal cellulose-synthase-like fold. J Mol Biol 2020; 432:4658–4672 [View Article] [PubMed]
    [Google Scholar]
  40. Osawa T, Sugiura N, Shimada H, Hirooka R, Tsuji A et al. Crystal structure of chondroitin polymerase from Escherichia coli K4. Biochem Biophys Res Commun 2009; 378:10–14 [View Article] [PubMed]
    [Google Scholar]
  41. Li Y, Yao Y, Yang G, Tang J, Ayala GJ et al. Co-crystal structure of Thermosynechococcus elongatus sucrose phosphate synthase With UDP and sucrose-6-phosphate provides insight into its mechanism of action involving an oxocarbenium ion and the glycosidic bond. Front Microbiol 2020; 11:1050 [View Article]
    [Google Scholar]
  42. Powell LC, Pritchard MF, Ferguson EL, Powell KA, Patel SU et al. Targeted disruption of the extracellular polymeric network of Pseudomonas aeruginosa biofilms by alginate oligosaccharides. NPJ Biofilms Microbiomes 2018; 4:13 [View Article] [PubMed]
    [Google Scholar]
  43. Uwizeyimana JD, Kim D, Lee H, Byun JH, Yong D. Determination of colistin resistance by simple disk diffusion test using modified mueller-hinton agar. Ann Lab Med 2020; 40:306–311 [View Article] [PubMed]
    [Google Scholar]
  44. Oura H, Tashiro Y, Toyofuku M, Ueda K, Kiyokawa T et al. Inhibition of Pseudomonas aeruginosa swarming motility by 1-naphthol and other bicyclic compounds bearing hydroxyl groups. Appl Environ Microbiol 2015; 81:2808–2818 [View Article] [PubMed]
    [Google Scholar]
  45. Wang S, Yu S, Zhang Z, Wei Q, Yan L et al. Coordination of swarming motility, biosurfactant synthesis, and biofilm matrix exopolysaccharide production in Pseudomonas aeruginosa. Appl Environ Microbiol 2014; 80:6724–6732 [View Article] [PubMed]
    [Google Scholar]
  46. Tseng BS, Reichhardt C, Merrihew GE, Araujo-Hernandez SA, Harrison JJ et al. A biofilm matrix-associated protease inhibitor protects Pseudomonas aeruginosa from proteolytic attack. mBio 2018; 9: [View Article]
    [Google Scholar]
  47. Whitfield C. Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu Rev Biochem 2006; 75:39–68 [View Article] [PubMed]
    [Google Scholar]
  48. Lee H-J, Chang H-Y, Venkatesan N, Peng H-L. Identification of amino acid residues important for the phosphomannose isomerase activity of PslB in Pseudomonas aeruginosa PAO1. FEBS Lett 2008; 582:3479–3483 [View Article] [PubMed]
    [Google Scholar]
  49. Campisano A, Schroeder C, Schemionek M, Overhage J, Rehm BHA. PslD is a secreted protein required for biofilm formation by Pseudomonas aeruginosa. Appl Environ Microbiol 2006; 72:3066–3068 [View Article] [PubMed]
    [Google Scholar]
  50. Larue K, Kimber MS, Ford R, Whitfield C. Biochemical and structural analysis of bacterial O-antigen chain length regulator proteins reveals a conserved quaternary structure. J Biol Chem 2009; 284:7395–7403 [View Article] [PubMed]
    [Google Scholar]
  51. Wu H, Wang D, Tang M, Ma LZ. The advance of assembly of exopolysaccharide Psl biosynthesis machinery in Pseudomonas aeruginosa. Microbiologyopen 2019; 8:e857 [View Article] [PubMed]
    [Google Scholar]
  52. Yu S, Su T, Wu H, Liu S, Wang D et al. PslG, a self-produced glycosyl hydrolase, triggers biofilm disassembly by disrupting exopolysaccharide matrix. Cell Res 2015; 25:1352–1367 [View Article] [PubMed]
    [Google Scholar]
  53. Baker P, Whitfield GB, Hill PJ, Little DJ, Pestrak MJ et al. Characterization of the Pseudomonas aeruginosa glycoside hydrolase PslG reveals that its levels are critical for Psl polysaccharide biosynthesis and biofilm formation. J Biol Chem 2015; 290:28374–28387 [View Article] [PubMed]
    [Google Scholar]
  54. Ma L, Lu H, Sprinkle A, Parsek MR, Wozniak DJ. Pseudomonas aeruginosa Psl is a galactose- and mannose-rich exopolysaccharide. J Bacteriol 2007; 189:8353–8356 [View Article] [PubMed]
    [Google Scholar]
  55. Dale JL, Cagnazzo J, Phan CQ, Barnes AMT, Dunny GM. Multiple roles for Enterococcus faecalis glycosyltransferases in biofilm-associated antibiotic resistance, cell envelope integrity, and conjugative transfer. Antimicrob Agents Chemother 2015; 59:4094–4105 [View Article] [PubMed]
    [Google Scholar]
  56. Ishikawa K, Shirakawa R, Takano D, Kosaki T, Furuta K et al. Knockout of ykcB, a putative glycosyltransferase, leads to reduced susceptibility to vancomycin in Bacillus subtilis. J Bacteriol 2022; 204:e0038722 [View Article] [PubMed]
    [Google Scholar]
  57. Eslami P, Hajfarajollah H, Bazsefidpar S. Recent advancements in the production of rhamnolipid biosurfactants by Pseudomonas aeruginosa. RSC Adv 2020; 10:34014–34032 [View Article] [PubMed]
    [Google Scholar]
  58. Köhler T, Curty LK, Barja F, van Delden C, Pechère JC. Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol 2000; 182:5990–5996 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001392
Loading
/content/journal/micro/10.1099/mic.0.001392
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error