Skip to content
1887

Abstract

Malaria is an important infectious disease that continues to claim hundreds of thousands of lives annually. The disease is caused by infection of host erythrocytes by apicomplexan parasites of the genus . The parasite contains three different apical organelles – micronemes, rhoptries and dense granules (DGs) – whose contents are secreted to mediate binding to and invasion of the host cell and the extensive remodelling of the host cell that occurs following invasion. Whereas the roles of micronemes and rhoptries in binding and invasion of the host erythrocyte have been studied in detail, the roles of DGs in parasites are poorly understood. They have been proposed to control host cell remodelling through regulated protein secretion after invasion, but many basic aspects of the biology of DGs remain unknown. Here we describe DG biogenesis timing for the first time, using RESA localization as a proxy for the timing of DG formation. We show that DG formation commences approximately 37 min prior to schizont egress, as measured by the recruitment of the DG marker RESA. Furthermore, using a bioinformatics approach, we aimed to predict additional cargo of the DGs and identified the J-dot protein HSP40 as a DG protein, further supporting the very early role of these organelles in the interaction of the parasite with the host cell.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001389
2023-08-30
2025-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/169/8/mic001389.html?itemId=/content/journal/micro/10.1099/mic.0.001389&mimeType=html&fmt=ahah

References

  1. Carruthers VB, Sibley LD. Sequential protein secretion from three distinct organelles of Toxoplasma gondii accompanies invasion of human fibroblasts. Eur J Cell Biol 1997; 73:114–123 [PubMed]
    [Google Scholar]
  2. Singh S, Alam MM, Pal-Bhowmick I, Brzostowski JA, Chitnis CE. Distinct external signals trigger sequential release of apical organelles during erythrocyte invasion by malaria parasites. PLoS Pathog 2010; 6:e1000746 [View Article] [PubMed]
    [Google Scholar]
  3. Kats LM, Cooke BM, Coppel RL, Black CG. Protein trafficking to apical organelles of malaria parasites - building an invasion machine. Traffic 2008; 9:176–186 [View Article] [PubMed]
    [Google Scholar]
  4. Gubbels MJ, Duraisingh MT. Evolution of apicomplexan secretory organelles. Int J Parasitol 2012; 42:1071–1081 [View Article] [PubMed]
    [Google Scholar]
  5. Cao J, Kaneko O, Thongkukiatkul A, Tachibana M, Otsuki H et al. Rhoptry neck protein RON2 forms a complex with microneme protein AMA1 in Plasmodium falciparum merozoites. Parasitol Int 2009; 58:29–35 [View Article] [PubMed]
    [Google Scholar]
  6. Adams JH, Sim BKL, Dolan SA, Fang X, Kaslow DC et al. A family of erythrocyte binding proteins of malaria parasites. Proc Natl Acad Sci 1992; 89:7085–7089 [View Article] [PubMed]
    [Google Scholar]
  7. Camus D, Hadley TJ. A Plasmodium falciparum antigen that binds to host erythrocytes and merozoites. Science 1985; 230:553–556 [View Article] [PubMed]
    [Google Scholar]
  8. Lee Sim BK, Toyoshima T, David Haynes J, Aikawa M. Localization of the 175-kilodalton erythrocyte binding antigen in micronemes of Plasmodium falciparum merozoites. Mol Biochem Parasitol 1992; 51:157–159 [View Article] [PubMed]
    [Google Scholar]
  9. Peterson MG, Marshall VM, Smythe JA, Crewther PE, Lew A et al. Integral membrane protein located in the apical complex of Plasmodium falciparum. Mol Cell Biol 1989; 9:3151–3154 [View Article] [PubMed]
    [Google Scholar]
  10. Triglia T, Healer J, Caruana SR, Hodder AN, Anders RF et al. Apical membrane antigen 1 plays a central role in erythrocyte invasion by Plasmodium species. Mol Microbiol 2000; 38:706–718 [View Article]
    [Google Scholar]
  11. Bannister LH, Hopkins JM, Dluzewski AR, Margos G, Williams IT et al. Plasmodium falciparum apical membrane antigen 1 (PfAMA-1) is translocated within micronemes along subpellicular microtubules during merozoite development. J Cell Sci 2003; 116:3825–3834 [View Article] [PubMed]
    [Google Scholar]
  12. Mitchell GH, Thomas AW, Margos G, Dluzewski AR, Bannister LH. Apical membrane antigen 1, a major malaria vaccine candidate, mediates the close attachment of invasive merozoites to host red blood cells. Infect Immun 2004; 72:154–158 [View Article] [PubMed]
    [Google Scholar]
  13. Stewart MJ, Schulman S, Vanderberg JP. Rhoptry secretion of membranous whorls by Plasmodium falciparum merozoites. Am J Trop Med Hyg 1986; 35:37–44 [View Article] [PubMed]
    [Google Scholar]
  14. Bannister LH, Mitchell GH. The fine structure of secretion by Plasmodium knowlesi merozoites during red cell invasion. J Protozool 1989; 36:362–367 [View Article] [PubMed]
    [Google Scholar]
  15. Ladda R, Aikawa M, Sprinz H. Penetration of erythrocytes by merozoites of mammalian and avian malarial parasites. 1969. J Parasitol 2001; 87:470–478 [View Article] [PubMed]
    [Google Scholar]
  16. Ghosh S, Kennedy K, Sanders P, Matthews K, Ralph SA et al. The Plasmodium rhoptry associated protein complex is important for parasitophorous vacuole membrane structure and intraerythrocytic parasite growth. Cell Microbiol 2017; 19:12733 [View Article] [PubMed]
    [Google Scholar]
  17. Alexander DL, Mital J, Ward GE, Bradley P, Boothroyd JC. Identification of the moving junction complex of Toxoplasma gondii: a collaboration between distinct secretory organelles. PLoS Pathog 2005; 1:e17 [View Article] [PubMed]
    [Google Scholar]
  18. Besteiro S, Michelin A, Poncet J, Dubremetz JF, Lebrun M. Export of a Toxoplasma gondii rhoptry neck protein complex at the host cell membrane to form the moving junction during invasion. PLoS Pathog 2009; 5:e1000309 [View Article] [PubMed]
    [Google Scholar]
  19. Lamarque M, Besteiro S, Papoin J, Roques M, Vulliez-Le Normand B et al. The RON2-AMA1 interaction is a critical step in moving junction-dependent invasion by apicomplexan parasites. PLoS Pathog 2011; 7:e1001276 [View Article] [PubMed]
    [Google Scholar]
  20. Srinivasan P, Beatty WL, Diouf A, Herrera R, Ambroggio X et al. Binding of Plasmodium merozoite proteins RON2 and AMA1 triggers commitment to invasion. Proc Natl Acad Sci 2011; 108:13275–13280 [View Article] [PubMed]
    [Google Scholar]
  21. Torii M, Adams JH, Miller LH, Aikawa M. Release of merozoite dense granules during erythrocyte invasion by Plasmodium knowlesi. Infect Immun 1989; 57:3230–3233 [View Article] [PubMed]
    [Google Scholar]
  22. Culvenor JG, Day KP, Anders RF. Plasmodium falciparum ring-infected erythrocyte surface antigen is released from merozoite dense granules after erythrocyte invasion. Infect Immun 1991; 59:1183–1187 [View Article] [PubMed]
    [Google Scholar]
  23. Riglar DT, Richard D, Wilson DW, Boyle MJ, Dekiwadia C et al. Super-resolution dissection of coordinated events during malaria parasite invasion of the human erythrocyte. Cell Host Microbe 2011; 9:9–20 [View Article] [PubMed]
    [Google Scholar]
  24. de Koning-Ward TF, Dixon MWA, Tilley L, Gilson PR. Plasmodium species: master renovators of their host cells. Nat Rev Microbiol 2016; 14:494–507 [View Article] [PubMed]
    [Google Scholar]
  25. Ming P, Mingjun L, Longjiao L, Yongle S, Lun H et al. Identification of novel dense-granule proteins in Toxoplasma gondii by two proximity-based Biotinylation approaches. J Proteome Res 2018; 18:319–330
    [Google Scholar]
  26. Griffith MB, Pearce CS, Heaslip AT. Dense granule biogenesis, secretion, and function in Toxoplasma gondii. J Eukaryot Microbiol 2022; 69:e12904 [View Article] [PubMed]
    [Google Scholar]
  27. Ho C-M, Beck JR, Lai M, Cui Y, Goldberg DE et al. Malaria parasite translocon structure and mechanism of effector export. Nature 2018; 561:70–75 [View Article]
    [Google Scholar]
  28. Elsworth B, Matthews K, Nie CQ, Kalanon M, Charnaud SC et al. PTEX is an essential nexus for protein export in malaria parasites. Nature 2014; 511:587–591 [View Article] [PubMed]
    [Google Scholar]
  29. Garten M, Nasamu AS, Niles JC, Zimmerberg J, Goldberg DE et al. EXP2 is a nutrient-permeable channel in the vacuolar membrane of Plasmodium and is essential for protein export via PTEX. Nat Microbiol 2018; 3:1090–1098 [View Article] [PubMed]
    [Google Scholar]
  30. Pei X, Guo X, Coppel R, Bhattacharjee S, Haldar K et al. The ring-infected erythrocyte surface antigen (RESA) of Plasmodium falciparum stabilizes spectrin tetramers and suppresses further invasion. Blood 2007; 110:1036–1042 [View Article] [PubMed]
    [Google Scholar]
  31. Beck JR, Muralidharan V, Oksman A, Goldberg DE. PTEX component HSP101 mediates export of diverse malaria effectors into host erythrocytes. Nature 2014; 511:592–595 [View Article]
    [Google Scholar]
  32. Charnaud SC, Kumarasingha R, Bullen HE, Crabb BS, Gilson PR. Knockdown of the translocon protein EXP2 in Plasmodium falciparum reduces growth and protein export. PLoS One 2018; 13:e0204785 [View Article] [PubMed]
    [Google Scholar]
  33. de Koning-Ward TF, Gilson PR, Boddey JA, Rug M, Smith BJ et al. A newly discovered protein export machine in malaria parasites. Nature 2009; 459:945–949 [View Article] [PubMed]
    [Google Scholar]
  34. Bullen HE, Charnaud SC, Kalanon M, Riglar DT, Dekiwadia C et al. Biosynthesis, localization, and macromolecular arrangement of the Plasmodium falciparum translocon of exported proteins (PTEX). J Biol Chem 2012; 287:7871–7884 [View Article] [PubMed]
    [Google Scholar]
  35. Morita M, Nagaoka H, Ntege EH, Kanoi BN, Ito D et al. PV1, a novel Plasmodium falciparum merozoite dense granule protein, interacts with exported protein in infected erythrocytes. Sci Rep 2018; 8:3696 [View Article] [PubMed]
    [Google Scholar]
  36. Chu T, Lingelbach K, Przyborski JM. Genetic evidence strongly support an essential role for PfPV1 in intra-erythrocytic growth of P. falciparum. PLoS One 2011; 6:e18396 [View Article] [PubMed]
    [Google Scholar]
  37. Günther K, Tümmler M, Arnold HH, Ridley R, Goman M et al. An exported protein of Plasmodium falciparum is synthesized as an integral membrane protein. Mol Biochem Parasitol 1991; 46:149–157 [View Article] [PubMed]
    [Google Scholar]
  38. Iriko H, Ishino T, Otsuki H, Ito D, Tachibana M et al. Plasmodium falciparum exported protein 1 is localized to dense granules in merozoites. Parasitol Int 2018; 67:637–639 [View Article] [PubMed]
    [Google Scholar]
  39. Simmons D, Woollett G, Bergin-Cartwright M, Kay D, Scaife J. A malaria protein exported into a new compartment within the host erythrocyte. EMBO J 1987; 6:485–491 [View Article] [PubMed]
    [Google Scholar]
  40. Mesén-Ramírez P, Bergmann B, Tran TT, Garten M, Stäcker J et al. EXP1 is critical for nutrient uptake across the parasitophorous vacuole membrane of malaria parasites. PLoS Biol 2019; 17:e3000473 [View Article] [PubMed]
    [Google Scholar]
  41. Miyazaki S, Chitama B-YA, Kagaya W, Lucky AB, Zhu X et al. Plasmodium falciparum SURFIN4.1 forms an intermediate complex with PTEX components and Pf113 during export to the red blood cell. Parasitol Int 2021; 83:102358 [View Article] [PubMed]
    [Google Scholar]
  42. Bullen HE, Sanders PR, Dans MG, Jonsdottir TK, Riglar DT et al. The Plasmodium falciparum parasitophorous vacuole protein P113 interacts with the parasite protein export machinery and maintains normal vacuole architecture. Mol Microbiol 2022; 117:1245–1262 [View Article] [PubMed]
    [Google Scholar]
  43. Morita M, Takashima E, Ito D, Miura K, Thongkukiatkul A et al. Immunoscreening of Plasmodium falciparum proteins expressed in a wheat germ cell-free system reveals a novel malaria vaccine candidate. Sci Rep 2017; 7:46086 [View Article] [PubMed]
    [Google Scholar]
  44. Aikawa M, Torii M, Sjölander A, Berzins K, Perlmann P et al. Pf155/RESA antigen is localized in dense granules of Plasmodium falciparum merozoites. Exp Parasitol 1990; 71:326–329 [View Article] [PubMed]
    [Google Scholar]
  45. Da Silva E, Foley M, Dluzewski AR, Murray LJ, Anders RF et al. The Plasmodium falciparum protein RESA interacts with the erythrocyte cytoskeleton and modifies erythrocyte thermal stability. Mol Biochem Parasitol 1994; 66:59–69 [View Article] [PubMed]
    [Google Scholar]
  46. Silva MD, Cooke BM, Guillotte M, Buckingham DW, Sauzet J-P et al. A role for the Plasmodium falciparum RESA protein in resistance against heat shock demonstrated using gene disruption. Mol Microbiol 2005; 56:990–1003 [View Article] [PubMed]
    [Google Scholar]
  47. Diez-Silva M, Park Y, Huang S, Bow H, Mercereau-Puijalon O et al. Pf155/RESA protein influences the dynamic microcirculatory behavior of ring-stage Plasmodium falciparum infected red blood cells. Sci Rep 2012; 2:614 [View Article] [PubMed]
    [Google Scholar]
  48. Hu H, Lu Z, Feng H, Chen G, Wang Y et al. DGPD: a knowledge database of dense granule proteins of the Apicomplexa. Database 2022; 2022:baac085 [View Article] [PubMed]
    [Google Scholar]
  49. El Bakkouri M, Pow A, Mulichak A, Cheung KLY, Artz JD et al. The Clp chaperones and proteases of the human malaria parasite Plasmodium falciparum. J Mol Biol 2010; 404:456–477 [View Article] [PubMed]
    [Google Scholar]
  50. Rezaei F, Sharif M, Sarvi S, Hejazi SH, Aghayan S et al. A systematic review on the role of GRA proteins of Toxoplasma gondii in host immunization. J Microbiol Methods 2019; 165:105696 [View Article] [PubMed]
    [Google Scholar]
  51. Marti M, Good RT, Rug M, Knuepfer E, Cowman AF. Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science 2004; 306:1930–1933 [View Article] [PubMed]
    [Google Scholar]
  52. Tomavo S. Evolutionary repurposing of endosomal systems for apical organelle biogenesis in Toxoplasma gondii. Int J Parasitol 2014; 44:133–138 [View Article] [PubMed]
    [Google Scholar]
  53. Hallée S, Counihan NA, Matthews K, de Koning-Ward TF, Richard D. The malaria parasite Plasmodium falciparum Sortilin is essential for merozoite formation and apical complex biogenesis. Cell Microbiol 2018; 20:e12844 [View Article] [PubMed]
    [Google Scholar]
  54. Le Roch KG, Zhou Y, Blair PL, Grainger M, Moch JK et al. Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 2003; 301:1503–1508 [View Article] [PubMed]
    [Google Scholar]
  55. Crabb BS, Rug M, Gilberger TW, Thompson JK, Triglia T et al. Transfection of the human malaria parasite Plasmodium falciparum. Methods Mol Biol 1999; 270:267–276
    [Google Scholar]
  56. Collins CR, Hackett F, Strath M, Penzo M, Withers-Martinez C et al. Malaria parasite cGMP-dependent protein kinase regulates blood stage merozoite secretory organelle discharge and egress. PLoS Pathog 2013; 9:e1003344 [View Article] [PubMed]
    [Google Scholar]
  57. Ressurreição M, Thomas JA, Nofal SD, Flueck C, Moon RW et al. Use of a highly specific kinase inhibitor for rapid, simple and precise synchronization of Plasmodium falciparum and Plasmodium knowlesi asexual blood-stage parasites. PLoS One 2020; 15:e0235798 [View Article] [PubMed]
    [Google Scholar]
  58. Birnbaum J, Flemming S, Reichard N, Blancke Soares A, Mesén-Ramírez P et al. Selection linked integration (SLI) for endogenous gene tagging and knock sideways in Plasmodium falciparum parasites. Protoc Exch 2017
    [Google Scholar]
  59. Birnbaum J, Flemming S, Reichard N, Soares AB, Mesén-Ramírez P et al. A genetic system to study Plasmodium falciparum protein function. Nat Methods 2017; 14:450–456 [View Article] [PubMed]
    [Google Scholar]
  60. de Azevedo MF, Gilson PR, Gabriel HB, Simões RF, Angrisano F et al. Systematic analysis of FKBP inducible degradation domain tagging strategies for the human malaria parasite Plasmodium falciparum. PLoS One 2012; 7:e40981 [View Article] [PubMed]
    [Google Scholar]
  61. Rivadeneira EM, Wasserman M, Espinal CT. Separation and concentration of schizonts of Plasmodium falciparum by Percoll gradients. J Protozool 1983; 30:367–370 [View Article] [PubMed]
    [Google Scholar]
  62. Rug M, Wickham ME, Foley M, Cowman AF, Tilley L. Correct promoter control is needed for trafficking of the ring-infected erythrocyte surface antigen to the host cytosol in transfected malaria parasites. Infect Immun 2004; 72:6095–6105 [View Article] [PubMed]
    [Google Scholar]
  63. Margos G, Bannister LH, Dluzewski AR, Hopkins J, Williams IT et al. Correlation of structural development and differential expression of invasion-related molecules in schizonts of Plasmodium falciparum. Parasitology 2004; 129:273–287 [View Article]
    [Google Scholar]
  64. Tan QW, Mutwil M. Malaria.tools-comparative genomic and transcriptomic database for Plasmodium species. Nucleic Acids Res 2020; 48:D768–D775 [View Article] [PubMed]
    [Google Scholar]
  65. Amos B, Aurrecoechea C, Barba M, Barreto A, Basenko EY et al. VEuPathDB: the eukaryotic pathogen, vector and host bioinformatics resource center. Nucleic Acids Res 2022; 50:D898–D911 [View Article] [PubMed]
    [Google Scholar]
  66. David S. PlasmoDB: an integrative database of the Plasmodium falciparum genome. Tools for accessing and analyzing finished and unfinished sequence data. Nucleic Acids Res 2001; 29:66–69 [View Article]
    [Google Scholar]
  67. Dhara M, Yarzagaray A, Makke M, Schindeldecker B, Schwarz Y et al. V-SNARE transmembrane domains function as catalysts for vesicle fusion. Elife 2016; 5:e17571 [View Article] [PubMed]
    [Google Scholar]
  68. Chen YA, Scheller RH. SNARE-mediated membrane fusion. Nat Rev Mol Cell Biol 2001; 2:98–106 [View Article] [PubMed]
    [Google Scholar]
  69. Wang T, Li L, Hong W. SNARE proteins in membrane trafficking. Traffic 2017; 18:767–775 [View Article] [PubMed]
    [Google Scholar]
  70. Gardiner DL, Dixon MWA, Spielmann T, Skinner-Adams TS, Hawthorne PL et al. Implication of a Plasmodium falciparum gene in the switch between asexual reproduction and gametocytogenesis. Mol Biochem Parasitol 2005; 140:153–160 [View Article] [PubMed]
    [Google Scholar]
  71. Heredero-Bermejo I, Varberg JM, Charvat R, Jacobs K, Garbuz T et al. TgDrpC, an atypical dynamin-related protein in Toxoplasma gondii, is associated with vesicular transport factors and parasite division. Mol Microbiol 2019; 111:46–64 [View Article] [PubMed]
    [Google Scholar]
  72. Melatti C, Pieperhoff M, Lemgruber L, Pohl E, Sheiner L et al. A unique dynamin-related protein is essential for mitochondrial fission in Toxoplasma gondii. PLoS Pathog 2019; 15:e1007512 [View Article] [PubMed]
    [Google Scholar]
  73. Breinich MS, Ferguson DJP, Foth BJ, van Dooren GG, Lebrun M et al. A dynamin is required for the biogenesis of secretory organelles in Toxoplasma gondii. Curr Biol 2009; 19:277–286 [View Article] [PubMed]
    [Google Scholar]
  74. Spielmann T, Gras S, Sabitzki R, Meissner M. Endocytosis in Plasmodium and Toxoplasma parasites. Trends Parasitol 2020; 36:520–532 [View Article] [PubMed]
    [Google Scholar]
  75. Davies H, Belda H, Broncel M, Ye X, Bisson C et al. An exported kinase family mediates species-specific erythrocyte remodelling and virulence in human malaria. Nat Microbiol 2020; 5:848–863 [View Article] [PubMed]
    [Google Scholar]
  76. Maier AG, Rug M, O’Neill MT, Brown M, Chakravorty S et al. Exported proteins required for virulence and rigidity of Plasmodium falciparum-infected human erythrocytes. Cell 2008; 134:48–61 [View Article] [PubMed]
    [Google Scholar]
  77. Rug M, Cyrklaff M, Mikkonen A, Lemgruber L, Kuelzer S et al. Export of virulence proteins by malaria-infected erythrocytes involves remodeling of host actin cytoskeleton. Blood 2014; 124:3459–3468 [View Article] [PubMed]
    [Google Scholar]
  78. Liu Q, Liang C, Zhou L. Structural and functional analysis of the Hsp70/Hsp40 chaperone system. Protein Sci 2020; 29:378–390 [View Article] [PubMed]
    [Google Scholar]
  79. Petersen W, Külzer S, Engels S, Zhang Q, Ingmundson A et al. J-dot targeting of an exported HSP40 in Plasmodium falciparum-infected erythrocytes. Int J Parasitol 2016; 46:519–525 [View Article] [PubMed]
    [Google Scholar]
  80. Külzer S, Rug M, Brinkmann K, Cannon P, Cowman A et al. Parasite-encoded Hsp40 proteins define novel mobile structures in the cytosol of the P. falciparum-infected erythrocyte. Cell Microbiol 2010; 12:1398–1420 [View Article] [PubMed]
    [Google Scholar]
  81. Behl A, Kumar V, Bisht A, Panda JJ, Hora R et al. Cholesterol bound Plasmodium falciparum co-chaperone “PFA0660w” complexes with major virulence factor “PfEMP1” via chaperone “PfHsp70-x.”. Sci Rep 2019; 9:2664 [View Article] [PubMed]
    [Google Scholar]
  82. Bai M-J, Wang J-L, Elsheikha HM, Liang Q-L, Chen K et al. Functional characterization of dense granule proteins in Toxoplasma gondii RH strain using CRISPR-Cas9 system. Front Cell Infect Microbiol 2018; 8:300 [View Article]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.001389
Loading
/content/journal/micro/10.1099/mic.0.001389
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error