Skip to content
1887

Abstract

Antibiotic chemotherapy is widely regarded as one of the most significant medical advancements in history. However, the continued misuse of antibiotics has contributed to the rapid rise of antimicrobial resistance (AMR) globally. , a major human pathogen, has become synonymous with multidrug resistance and is a leading antimicrobial-resistant pathogen causing significant morbidity and mortality worldwide. This review focuses on (1) the targets of current anti-staphylococcal antibiotics and the specific mechanisms that confirm resistance; (2) an in-depth analysis of recently licensed antibiotics approved for the treatment of infections; and (3) an examination of the pre-clinical pipeline of anti-staphylococcal compounds. In addition, we examine the molecular mechanism of action of novel antimicrobials and derivatives of existing classes of antibiotics, collate data on the emergence of resistance to new compounds and provide an overview of key data from clinical trials evaluating anti-staphylococcal compounds. We present several successful cases in the development of alternative forms of existing antibiotics that have activity against multidrug-resistant . Pre-clinical antimicrobials show promise, but more focus and funding are required to develop novel classes of compounds that can curtail the spread of and sustainably control antimicrobial-resistant infections.

Funding
This study was supported by the:
  • Academy of Medical Sciences (Award SBF006\1023)
    • Principle Award Recipient: MaisemLaabei
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001387
2023-09-01
2025-01-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/169/9/mic001387.html?itemId=/content/journal/micro/10.1099/mic.0.001387&mimeType=html&fmt=ahah

References

  1. Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health 2015; 109:309–318 [View Article] [PubMed]
    [Google Scholar]
  2. CDC Antibiotic resistance threats in the United States Atlanta, GA: U.S. Department of Health and Human Services: CDC; 2019
    [Google Scholar]
  3. Dadgostar P. Antimicrobial resistance: implications and costs. Infect Drug Resist 2019; 12:3903–3910 [View Article] [PubMed]
    [Google Scholar]
  4. Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG. Staphylococcus aureus infections: epidemiology, pathophysiology. Clin Microbiol Rev 2015; 3: [View Article]
    [Google Scholar]
  5. Clegg J, Soldaini E, McLoughlin RM, Rittenhouse S, Bagnoli F et al. Staphylococcus aureus vaccine research and development: the past, present and future, including novel therapeutic strategies. Front Immunol 2021; 12:705360 [View Article] [PubMed]
    [Google Scholar]
  6. Miller LS, Fowler VG, Shukla SK, Rose WE, Proctor RA. Development of a vaccine against Staphylococcus aureus invasive infections: evidence based on human immunity, genetics and bacterial evasion mechanisms. FEMS Microbiol Rev 2020; 44:123–153 [View Article] [PubMed]
    [Google Scholar]
  7. Proctor RA. Development of a Staphylococcus aureus vaccine: an ongoing journey. Clin Infect Dis 2023; 77:321–322 [View Article] [PubMed]
    [Google Scholar]
  8. Murray CJL, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet 2022; 399:629–655 [View Article]
    [Google Scholar]
  9. Carpenter CF and GN Johns Hopkins ABX Guide Baltimore, MD; 2019
    [Google Scholar]
  10. Pantosti A, Sanchini A, Monaco M. Mechanisms of antibiotic resistance in Staphylococcus aureus. Future Microbiol 2007; 2:323–334 [View Article] [PubMed]
    [Google Scholar]
  11. Foster TJ. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiol Rev 2017; 41:430–449 [View Article] [PubMed]
    [Google Scholar]
  12. Magiorakos A-P, Srinivasan A, Carey RB, Carmeli Y, Falagas ME et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18:268–281 [View Article] [PubMed]
    [Google Scholar]
  13. Guo D, Liu Y, Han C, Chen Z, Ye X. Staphylococcus aureus isolated from pigs: implication for livestock-association markers and vaccine strategies. Infect Drug Resist 2018; Volume 11:1299–1307 [View Article]
    [Google Scholar]
  14. Moosavian M, Baratian Dehkordi P, Hashemzadeh M. Characterization of Sccmec, SpA types and multidrug resistant of methicillin-resistant Staphylococcus aureus isolates in Ahvaz, Iran. Infect Drug Resist 2020; 13:1033–1044
    [Google Scholar]
  15. Abat C, Fournier PE, Jimeno MT, Rolain JM, Raoult D. Extremely and pandrug-resistant bacteria extra-deaths: myth or reality?. Eur J Clin Microbiol Infect Dis 2018; 37:1687–1697 [View Article]
    [Google Scholar]
  16. Karakonstantis S, Kritsotakis EI, Gikas A. Pandrug-resistant Gram-negative bacteria: a systematic review of current epidemiology, prognosis and treatment options. J Antimicrob Chemother 2020; 75:271–282 [View Article] [PubMed]
    [Google Scholar]
  17. Brown ED, Wright GD. Antibacterial drug discovery in the resistance era. Nature 2016; 529:336–343 [View Article] [PubMed]
    [Google Scholar]
  18. Tipper DJ, Strominger JL. Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-D-alanine. Proc Natl Acad Sci 1965; 54:1133–1141 [View Article] [PubMed]
    [Google Scholar]
  19. Barber M, Rozwadowska-Dowzenko M. Infection by penicillin-resistant staphylococci. The Lancet 1948; 252:641–644 [View Article]
    [Google Scholar]
  20. Kirby WM. Extraction of a highly potent penicillin inactivator from penicillin resistant staphylococci. Science 1944; 99:452–453 [View Article] [PubMed]
    [Google Scholar]
  21. Rounteee PM, Freeman BM. Infections caused by a particular phage type of Staphylococcus aureus. Med J Aust 1955; 2:157–161 [View Article]
    [Google Scholar]
  22. Lowy FD. Antimicrobial resistance: the example of Staphylococcus aureus. J Clin Invest 2003; 111:1265–1273 [View Article] [PubMed]
    [Google Scholar]
  23. Barber M. Methicillin-resistant staphylococci. J Clin Pathol 1961; 14:385–393 [View Article] [PubMed]
    [Google Scholar]
  24. Katayama Y, Ito T, Hiramatsu K. A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 2000; 44:1549–1555 [View Article] [PubMed]
    [Google Scholar]
  25. Hartman BJ, Tomasz A. Low-affinity penicillin-binding protein associated with beta-lactam resistance in Staphylococcus aureus. J Bacteriol 1984; 158:513–516 [View Article] [PubMed]
    [Google Scholar]
  26. Utsui Y, Yokota T. Role of an altered penicillin-binding protein in methicillin- and cephem-resistant Staphylococcus aureus. Antimicrob Agents Chemother 1985; 28:397–403 [View Article] [PubMed]
    [Google Scholar]
  27. Hammes WP, Neuhaus FC. On the mechanism of action of vancomycin: inhibition of peptidoglycan synthesis in Gaffkya homari. Antimicrob Agents Chemother 1974; 6:722–728 [View Article] [PubMed]
    [Google Scholar]
  28. Nieto M, Perkins HR. Physicochemical properties of vancomycin and iodovancomycin and their complexes with diacetyl-L-lysyl-D-alanyl-D-alanine. Biochem J 1971; 123:773–787 [View Article] [PubMed]
    [Google Scholar]
  29. Zeng D, Debabov D, Hartsell TL, Cano RJ, Adams S et al. Approved glycopeptide antibacterial drugs: mechanism of action and resistance. Cold Spring Harb Perspect Med 2016; 6:a026989 [View Article] [PubMed]
    [Google Scholar]
  30. Hiramatsu K, Aritaka N, Hanaki H, Kawasaki S, Hosoda Y et al. Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin. The Lancet 1997; 350:1670–1673 [View Article]
    [Google Scholar]
  31. Weigel LM, Clewell DB, Gill SR, Clark NC, McDougal LK et al. Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science 2003; 302:1569–1571 [View Article] [PubMed]
    [Google Scholar]
  32. Hiramatsu K, Kayayama Y, Matsuo M, Aiba Y, Saito M et al. Vancomycin-intermediate resistance in Staphylococcus aureus. J Glob Antimicrob Resist 2014; 2:213–224 [View Article] [PubMed]
    [Google Scholar]
  33. Périchon B, Courvalin P. VanA-type vancomycin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2009; 53:4580–4587 [View Article] [PubMed]
    [Google Scholar]
  34. Arthur M, Reynolds P, Courvalin P. Glycopeptide resistance in enterococci. Trends Microbiol 1996; 4:401–407 [View Article] [PubMed]
    [Google Scholar]
  35. Cong Y, Yang S, Rao X. Vancomycin resistant Staphylococcus aureus infections: a review of case updating and clinical features. J Adv Res 2020; 21:169–176 [View Article] [PubMed]
    [Google Scholar]
  36. Wormser GP, Keusch GT, Heel RC. Co-trimoxazole (Trimethoprim-sulfamethoxazole) an updated review of its antibacterial activity and clinical efficacy. Drugs 1982; 24:459–518 [View Article]
    [Google Scholar]
  37. Kalkut G. Sulfonamides and trimethoprim. Cancer Invest 1998; 16:612–615 [View Article] [PubMed]
    [Google Scholar]
  38. Grim SA, Rapp RP, Martin CA, Evans ME. Trimethoprim-sulfamethoxazole as a viable treatment option for infections caused by methicillin-resistant Staphylococcus aureus. Pharmacotherapy 2005; 25:253–264 [View Article] [PubMed]
    [Google Scholar]
  39. Hampele IC, D’Arcy A, Dale GE, Kostrewa D, Nielsen J et al. Structure and function of the dihydropteroate synthase from Staphylococcus aureus. J Mol Biol 1997; 268:21–30 [View Article]
    [Google Scholar]
  40. Griffith EC, Wallace MJ, Wu Y, Kumar G, Gajewski S et al. The structural and functional basis for recurring sulfa drug resistance mutations in Staphylococcus aureus dihydropteroate synthase. Front Microbiol 2018; 9:1369 [View Article] [PubMed]
    [Google Scholar]
  41. Hitchings GH, Burchall JJ. Inhibition of folate biosynthesis and function as a basis for chemotherapy. Adv Enzymol Relat Areas Mol Biol 2006417–468
    [Google Scholar]
  42. Dale GE, Broger C, D’Arcy A, Hartman PG, DeHoogt R et al. A single amino acid substitution in Staphylococcus aureus dihydrofolate reductase determines trimethoprim resistance. J Mol Biol 1997; 266:23–30 [View Article] [PubMed]
    [Google Scholar]
  43. Sekiguchi J, Tharavichitkul P, Miyoshi-Akiyama T, Chupia V, Fujino T et al. Cloning and characterization of a novel trimethoprim-resistant dihydrofolate reductase from a nosocomial isolate of Staphylococcus aureus CM.S2 (IMCJ1454). Antimicrob Agents Chemother 2005; 49:3948–3951 [View Article] [PubMed]
    [Google Scholar]
  44. Kadlec K, Schwarz S. Identification of a novel trimethoprim resistance gene, dfrK, in a methicillin-resistant Staphylococcus aureus ST398 strain and its physical linkage to the tetracycline resistance gene tet(L). Antimicrob Agents Chemother 2009; 53:776–778 [View Article] [PubMed]
    [Google Scholar]
  45. Rouch DA, Messerotti LJ, Loo LSL, Jackson CA, Skurray RA. Trimethoprim resistance transposon Tn4003 from Staphylococcus aureus encodes genes for a dihydrofolate reductase and thymidylate synthetase flanked by three copies of IS257. Mol Microbiol 1989; 3:161–175 [View Article] [PubMed]
    [Google Scholar]
  46. Kime L, Waring T, Mohamad M, Mann BF, O’Neill AJ. Resistance to antibacterial antifolates in multidrug-resistant Staphylococcus aureus: prevalence estimates and genetic basis. J Antimicrob Chemother 2023; 78:1201–1210 [View Article] [PubMed]
    [Google Scholar]
  47. Straus SK, Hancock REW. Mode of action of the new antibiotic for Gram-positive pathogens daptomycin: comparison with cationic antimicrobial peptides and lipopeptides. Biochim Biophys Acta 2006; 1758:1215–1223 [View Article] [PubMed]
    [Google Scholar]
  48. Silverman JA, Perlmutter NG, Shapiro HM. Correlation of daptomycin bactericidal activity and membrane depolarization in Staphylococcus aureus. Antimicrob Agents Chemother 2003; 47:2538–2544 [View Article] [PubMed]
    [Google Scholar]
  49. Jung D, Rozek A, Okon M, Hancock REW. Structural transitions as determinants of the action of the calcium-dependent antibiotic daptomycin. Chem Biol 2004; 11:949–957 [View Article] [PubMed]
    [Google Scholar]
  50. Grein F, Müller A, Scherer KM, Liu X, Ludwig KC et al. Ca2+-Daptomycin targets cell wall biosynthesis by forming a tripartite complex with undecaprenyl-coupled intermediates and membrane lipids. Nat Commun 2020; 11:1455 [View Article] [PubMed]
    [Google Scholar]
  51. Ernst CM, Staubitz P, Mishra NN, Yang S-J, Hornig G et al. The bacterial defensin resistance protein MprF consists of separable domains for lipid lysinylation and antimicrobial peptide repulsion. PLoS Pathog 2009; 5:e1000660 [View Article] [PubMed]
    [Google Scholar]
  52. Ernst CM, Slavetinsky CJ, Kuhn S, Hauser JN, Nega M et al. Gain-of-function mutations in the phospholipid flippase MprF confer specific daptomycin resistance. mBio 2018; 9:e01659-18 [View Article] [PubMed]
    [Google Scholar]
  53. Thitiananpakorn K, Aiba Y, Tan X-E, Watanabe S, Kiga K et al. Association of mprF mutations with cross-resistance to daptomycin and vancomycin in methicillin-resistant Staphylococcus aureus (MRSA). Sci Rep 2020; 10:16107 [View Article] [PubMed]
    [Google Scholar]
  54. Bayer AS, Mishra NN, Chen L, Kreiswirth BN, Rubio A et al. Frequency and distribution of single-nucleotide polymorphisms within mprF in methicillin-resistant Staphylococcus aureus clinical isolates and their role in cross-resistance to daptomycin and host defense antimicrobial peptides. Antimicrob Agents Chemother 2015; 59:4930–4937 [View Article] [PubMed]
    [Google Scholar]
  55. Mehta S, Cuirolo AX, Plata KB, Riosa S, Silverman JA et al. VraSR two-component regulatory system contributes to mprF-mediated decreased susceptibility to daptomycin in in vivo-selected clinical strains of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2012; 56:92–102 [View Article] [PubMed]
    [Google Scholar]
  56. Douglas EJA, Alkhzem AH, Wonfor T, Li S, Woodman TJ et al. Antibacterial activity of novel linear polyamines against Staphylococcus aureus. Front Microbiol 2022; 13:948343 [View Article] [PubMed]
    [Google Scholar]
  57. Bertsche U, Yang S-J, Kuehner D, Wanner S, Mishra NN et al. Increased cell wall teichoic acid production and D-alanylation are common phenotypes among daptomycin-resistant methicillin-resistant Staphylococcus aureus (MRSA) clinical isolates. PLoS One 2013; 8:e67398 [View Article]
    [Google Scholar]
  58. Cafiso V, Bertuccio T, Purrello S, Campanile F, Mammina C et al. dltA overexpression: a strain-independent keystone of daptomycin resistance in methicillin-resistant Staphylococcus aureus. Int J Antimicrob Agents 2014; 43:26–31 [View Article] [PubMed]
    [Google Scholar]
  59. Tran TT, Munita JM, Arias CA. Mechanisms of drug resistance: daptomycin resistance. Ann N Y Acad Sci 2015; 1354:32–53 [View Article] [PubMed]
    [Google Scholar]
  60. Fournier B, Zhao X, Lu T, Drlica K, Hooper DC. Selective targeting of topoisomerase IV and DNA gyrase in Staphylococcus aureus: different patterns of quinolone-induced inhibition of DNA synthesis. Antimicrob Agents Chemother 2000; 44:2160–2165 [View Article] [PubMed]
    [Google Scholar]
  61. Helgesen E, Sætre F, Skarstad K. Topoisomerase IV tracks behind the replication fork and the SeqA complex during DNA replication in Escherichia coli. Sci Rep 2021; 11:474 [View Article] [PubMed]
    [Google Scholar]
  62. Schmitz FJ, Jones ME, Hofmann B, Hansen B, Scheuring S et al. Characterization of grlA, grlB, gyrA, and gyrB mutations in 116 unrelated isolates of Staphylococcus aureus and effects of mutations on ciprofloxacin MIC. Antimicrob Agents Chemother 1998; 42:1249–1252 [View Article] [PubMed]
    [Google Scholar]
  63. Ito H, Yoshida H, Bogaki-Shonai M, Niga T, Hattori H et al. Quinolone resistance mutations in the DNA gyrase gyrA and gyrB genes of Staphylococcus aureus. Antimicrob Agents Chemother 1994; 38:2014–2023 [View Article] [PubMed]
    [Google Scholar]
  64. Wang T, Tanaka M, Sato K. Detection of grlA and gyrA mutations in 344 Staphylococcus aureus strains. Antimicrob Agents Chemother 1998; 42:236–240 [View Article] [PubMed]
    [Google Scholar]
  65. Ubukata K, Itoh-Yamashita N, Konno M. Cloning and expression of the norA gene for fluoroquinolone resistance in Staphylococcus aureus. Antimicrob Agents Chemother 1989; 33:1535–1539 [View Article] [PubMed]
    [Google Scholar]
  66. Truong-Bolduc QC, Dunman PM, Strahilevitz J, Projan SJ, Hooper DC. MgrA is a multiple regulator of two new efflux pumps in Staphylococcus aureus. J Bacteriol 2005; 187:2395–2405 [View Article] [PubMed]
    [Google Scholar]
  67. Truong-Bolduc QC, Strahilevitz J, Hooper DC. NorC, a new efflux pump regulated by MgrA of Staphylococcus aureus. Antimicrob Agents Chemother 2006; 50:1104–1107 [View Article] [PubMed]
    [Google Scholar]
  68. Yu JL, Grinius L, Hooper DC. NorA functions as a multidrug efflux protein in both cytoplasmic membrane vesicles and reconstituted proteoliposomes. J Bacteriol 2002; 184:1370–1377 [View Article] [PubMed]
    [Google Scholar]
  69. Huang J, O’Toole PW, Shen W, Amrine-Madsen H, Jiang X et al. Novel chromosomally encoded multidrug efflux transporter MdeA in Staphylococcus aureus. Antimicrob Agents Chemother 2004; 48:909–917 [View Article] [PubMed]
    [Google Scholar]
  70. Nakaminami H, Noguchi N, Sasatsu M. Fluoroquinolone efflux by the plasmid-mediated multidrug efflux pump QacB variant QacBIII in Staphylococcus aureus. Antimicrob Agents Chemother 2010; 54:4107–4111 [View Article] [PubMed]
    [Google Scholar]
  71. Yamada Y, Hideka K, Shiota S, Kuroda T, Tsuchiya T. Gene cloning and characterization of SdrM, a chromosomally-encoded multidrug efflux pump, from Staphylococcus aureus. Biol Pharm Bull 2006; 29:554–556 [View Article] [PubMed]
    [Google Scholar]
  72. Floyd JL, Smith KP, Kumar SH, Floyd JT, Varela MF. LmrS is a multidrug efflux pump of the major facilitator superfamily from Staphylococcus aureus. Antimicrob Agents Chemother 2010; 54:5406–5412 [View Article] [PubMed]
    [Google Scholar]
  73. Kaatz GW, DeMarco CE, Seo SM. MepR, a repressor of the Staphylococcus aureus MATE family multidrug efflux pump MepA, is a substrate-responsive regulatory protein. Antimicrob Agents Chemother 2006; 50:1276–1281 [View Article] [PubMed]
    [Google Scholar]
  74. Andersson MI, MacGowan AP. Development of the quinolones. J Antimicrob Chemother 2003; 51 Suppl 1:1–11 [View Article] [PubMed]
    [Google Scholar]
  75. Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S et al. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 2001; 104:901–912 [View Article] [PubMed]
    [Google Scholar]
  76. O’Neill AJ, Huovinen T, Fishwick CWG, Chopra I. Molecular genetic and structural modeling studies of Staphylococcus aureus RNA polymerase and the fitness of rifampin resistance genotypes in relation to clinical prevalence. Antimicrob Agents Chemother 2006; 50:298–309 [View Article] [PubMed]
    [Google Scholar]
  77. Sekiguchi J-I, Fujino T, Araake M, Toyota E, Kudo K et al. Emergence of rifampicin resistance in methicillin-resistant Staphylococcus aureus in tuberculosis wards. J Infect Chemother 2006; 12:47–50 [View Article] [PubMed]
    [Google Scholar]
  78. Huang Y-T, Liao C-H, Chen S-Y, Yang C-J, Hsu H-S et al. Characterization of rifampin-resistant Staphylococcus aureus nasal carriage in patients receiving rifampin-containing regimens for tuberculosis. Infect Drug Resist 2018; 11:1175–1182 [View Article] [PubMed]
    [Google Scholar]
  79. Loss G, Simões PM, Valour F, Cortês MF, Gonzaga L et al. Staphylococcus aureus Small Colony Variants (SCVs): news from a chronic prosthetic joint infection. Front Cell Infect Microbiol 2019; 9:363 [View Article] [PubMed]
    [Google Scholar]
  80. Matsuo M, Hishinuma T, Katayama Y, Cui L, Kapi M et al. Mutation of RNA polymerase beta subunit (rpoB) promotes hVISA-to-VISA phenotypic conversion of strain Mu3. Antimicrob Agents Chemother 2011; 55:4188–4195 [View Article] [PubMed]
    [Google Scholar]
  81. McCarter YS. Antibiotics: challenges, mechanisms, opportunities written by Christopher Walsh, PhD and Timothy Wencewicz, PhD. Lab Med 2017; 48:e42 [View Article]
    [Google Scholar]
  82. Davis BD, Chen LL, Tai PC. Misread protein creates membrane channels: an essential step in the bactericidal action of aminoglycosides. Proc Natl Acad Sci 1986; 83:6164–6168 [View Article]
    [Google Scholar]
  83. Champney WS. Antibiotics targeting bacterial ribosomal subunit biogenesis. J Antimicrob Chemother 2020; 75:787–806 [View Article] [PubMed]
    [Google Scholar]
  84. Rahimi F. Characterization of resistance to aminoglycosides in methicillin-resistant Staphylococcus aureus strains isolated from a tertiary care hospital in Tehran, Iran. Jundishapur J Microbiol 2016; 9:e29237 [View Article] [PubMed]
    [Google Scholar]
  85. Hauschild T, Sacha P, Wieczorek P, Zalewska M, Kaczyńska K et al. Aminoglycosides resistance in clinical isolates of Staphylococcus aureus from a University Hospital in Bialystok, Poland. Folia Histochem Cytobiol 2008; 46:225–228 [View Article] [PubMed]
    [Google Scholar]
  86. Schmitz FJ, Fluit AC, Gondolf M, Beyrau R, Lindenlauf E et al. The prevalence of aminoglycoside resistance and corresponding resistance genes in clinical isolates of staphylococci from 19 European hospitals. J Antimicrob Chemother 1999; 43:253–259 [View Article]
    [Google Scholar]
  87. Jensen SO, Lyon BR. Genetics of antimicrobial resistance in Staphylococcus aureus. Future Microbiol 2009; 4:565–582 [View Article] [PubMed]
    [Google Scholar]
  88. Schmitz FJ, Krey A, Sadurski R, Verhoef J, Milatovic D et al. Resistance to tetracycline and distribution of tetracycline resistance genes in European Staphylococcus aureus isolates. J Antimicrob Chemother 2001; 47:239–240 [View Article] [PubMed]
    [Google Scholar]
  89. Li D, Ge Y, Wang N, Shi Y, Guo G et al. Identification and characterization of a novel major facilitator superfamily efflux pump, SA09310, mediating tetracycline resistance in Staphylococcus aureus. Antimicrob Agents Chemother 2023; 67:e0169622 [View Article] [PubMed]
    [Google Scholar]
  90. Dönhöfer A, Franckenberg S, Wickles S, Berninghausen O, Beckmann R et al. Structural basis for TetM-mediated tetracycline resistance. Proc Natl Acad Sci 2012; 109:16900–16905 [View Article]
    [Google Scholar]
  91. Peterson LR. A review of tigecycline--the first glycylcycline. Int J Antimicrob Agents 2008; 32 Suppl 4:S215–22 [View Article] [PubMed]
    [Google Scholar]
  92. Dabul ANG, Avaca-Crusca JS, Van Tyne D, Gilmore MS, Camargo ILBC. Resistance in in vitro selected tigecycline-resistant methicillin-resistant Staphylococcus aureus sequence type 5 is driven by mutations in mepR and mepA genes. Microb Drug Resist 2018; 24:519–526 [View Article] [PubMed]
    [Google Scholar]
  93. Lade H, Kim JS. Bacterial targets of antibiotics in methicillin-resistant Staphylococcus aureus. Antibiotics 2021; 10:398 [View Article] [PubMed]
    [Google Scholar]
  94. Long KS, Poehlsgaard J, Kehrenberg C, Schwarz S, Vester B. The Cfr rRNA methyltransferase confers resistance to Phenicols, Lincosamides, Oxazolidinones, Pleuromutilins, and Streptogramin A antibiotics. Antimicrob Agents Chemother 2006; 50:2500–2505 [View Article] [PubMed]
    [Google Scholar]
  95. Wang Y, Lv Y, Cai J, Schwarz S, Cui L et al. A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin. J Antimicrob Chemother 2015; 70:2182–2190 [View Article]
    [Google Scholar]
  96. Wu C, Zhang X, Liang J, Li Q, Lin H et al. Characterization of florfenicol resistance genes in the coagulase-negative Staphylococcus (CoNS) isolates and genomic features of a multidrug-resistant Staphylococcus lentus strain H29. Antimicrob Resist Infect Control 2021; 10: [View Article]
    [Google Scholar]
  97. Tenson T, Lovmar M, Ehrenberg M. The mechanism of action of macrolides, lincosamides and streptogramin B reveals the nascent peptide exit path in the ribosome. J Mol Biol 2003; 330:1005–1014 [View Article] [PubMed]
    [Google Scholar]
  98. Westh H, Hougaard DM, Vuust J, Rosdahl VT. erm genes in erythromycin-resistant Staphylococcus aureus and coagulase-negative staphylococci. APMIS 1995; 103:225–232 [PubMed]
    [Google Scholar]
  99. Weisblum B. Erythromycin resistance by ribosome modification. Antimicrob Agents Chemother 1995; 39:577–585 [View Article]
    [Google Scholar]
  100. Miklasińska-Majdanik M. Mechanisms of resistance to macrolide antibiotics among Staphylococcus aureus. Antibiotics 2021; 10:1406 [View Article] [PubMed]
    [Google Scholar]
  101. Sharkey LKR, Edwards TA, O’Neill AJ. ABC-F proteins mediate antibiotic resistance through ribosomal protection. mBio 2016; 7:e01975 [View Article] [PubMed]
    [Google Scholar]
  102. Fyfe C, Grossman TH, Kerstein K, Sutcliffe J. Resistance to macrolide antibiotics in public health pathogens. Cold Spring Harb Perspect Med 2016; 6:a025395 [View Article] [PubMed]
    [Google Scholar]
  103. Leclercq R. Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications. Clin Infect Dis 2002; 34:482–492 [View Article] [PubMed]
    [Google Scholar]
  104. Hot C, Berthet N, Chesneau O. Characterization of sal(A), A novel gene responsible for lincosamide and streptogramin A resistance in Staphylococcus sciuri. Antimicrob Agents Chemother 2014; 58:3335–3341 [View Article] [PubMed]
    [Google Scholar]
  105. Lipka M, Filipek R, Bochtler M. Crystal structure and mechanism of the Staphylococcus cohnii virginiamycin B lyase (Vgb). Biochemistry 2008; 47:4257–4265 [View Article] [PubMed]
    [Google Scholar]
  106. Brickner SJ, Barbachyn MR, Hutchinson DK, Manninen PR. Linezolid (ZYVOX), the first member of a completely new class of antibacterial agents for treatment of serious gram-positive infections. J Med Chem 2008; 51:1981–1990 [View Article] [PubMed]
    [Google Scholar]
  107. Locke JB, Zurenko GE, Shaw KJ, Bartizal K. Tedizolid for the management of human infections: in vitro characteristics. Clin Infect Dis 2014; 58 Suppl 1:S35–42 [View Article] [PubMed]
    [Google Scholar]
  108. Long KS, Vester B. Resistance to linezolid caused by modifications at its binding site on the ribosome. Antimicrob Agents Chemother 2012; 56:603–612 [View Article] [PubMed]
    [Google Scholar]
  109. Stefani S, Bongiorno D, Mongelli G, Campanile F. Linezolid resistance in staphylococci. Pharmaceuticals 2010; 3:1988–2006 [View Article] [PubMed]
    [Google Scholar]
  110. Paukner S, Riedl R. Pleuromutilins: potent drugs for resistant bugs-mode of action and resistance. Cold Spring Harb Perspect Med 2017; 7:a027110 [View Article] [PubMed]
    [Google Scholar]
  111. Watkins RR, Holubar M, David MZ. Antimicrobial resistance in methicillin-resistant Staphylococcus aureus to newer antimicrobial agents. Antimicrob Agents Chemother 2019; 63:e01216-19 [View Article] [PubMed]
    [Google Scholar]
  112. Bodley JW, Zieve FJ, Lin L, Zieve ST. Formation of the ribosome-G factor-GDP complex in the presence of fusidic acid. Biochem Biophys Res Commun 1969; 37:437–443 [View Article] [PubMed]
    [Google Scholar]
  113. Moazed D, Noller HF. Intermediate states in the movement of transfer RNA in the ribosome. Nature 1989; 342:142–148 [View Article] [PubMed]
    [Google Scholar]
  114. Ramrath DJF, Lancaster L, Sprink T, Mielke T, Loerke J et al. Visualization of two transfer RNAs trapped in transit during elongation factor G-mediated translocation. Proc Natl Acad Sci 2013; 110:20964–20969 [View Article]
    [Google Scholar]
  115. Fernandes P. Fusidic acid: a bacterial elongation factor inhibitor for the oral treatment of acute and chronic staphylococcal infections. Cold Spring Harb Perspect Med 2016; 6:a025437 [View Article] [PubMed]
    [Google Scholar]
  116. Howden BP, Grayson ML. Dumb and dumber--the potential waste of a useful antistaphylococcal agent: emerging fusidic acid resistance in Staphylococcus aureus. Clin Infect Dis 2006; 42:394–400 [View Article] [PubMed]
    [Google Scholar]
  117. Tomlinson JH, Thompson GS, Kalverda AP, Zhuravleva A, O’Neill AJ. A target-protection mechanism of antibiotic resistance at atomic resolution: insights into FusB-type fusidic acid resistance. Sci Rep 2016; 6:19524 [View Article] [PubMed]
    [Google Scholar]
  118. Cox G, Thompson GS, Jenkins HT, Peske F, Savelsbergh A et al. Ribosome clearance by FusB-type proteins mediates resistance to the antibiotic fusidic acid. Proc Natl Acad Sci 2012; 109:2102–2107 [View Article] [PubMed]
    [Google Scholar]
  119. Thomas CM, Hothersall J, Willis CL, Simpson TJ. Resistance to and synthesis of the antibiotic mupirocin. Nat Rev Microbiol 2010; 8:281–289 [View Article] [PubMed]
    [Google Scholar]
  120. Antonio M, McFerran N, Pallen MJ. Mutations affecting the Rossman fold of isoleucyl-tRNA synthetase are correlated with low-level mupirocin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 2002; 46:438–442 [View Article] [PubMed]
    [Google Scholar]
  121. Hodgson JE, Curnock SP, Dyke KG, Morris R, Sylvester DR et al. Molecular characterization of the gene encoding high-level mupirocin resistance in Staphylococcus aureus J2870. Antimicrob Agents Chemother 1994; 38:1205–1208 [View Article] [PubMed]
    [Google Scholar]
  122. Udo EE, Jacob LE, Mathew B. Genetic analysis of methicillin-resistant Staphylococcus aureus expressing high- and low-level mupirocin resistance. J Med Microbiol 2001; 50:909–915 [View Article] [PubMed]
    [Google Scholar]
  123. Ishikawa T, Matsunaga N, Tawada H, Kuroda N, Nakayama Y et al. TAK-599, a novel N-phosphono type prodrug of anti-MRSA cephalosporin T-91825: synthesis, physicochemical and pharmacological properties. Bioorg Med Chem 2003; 11:2427–2437 [View Article] [PubMed]
    [Google Scholar]
  124. Jones RN, Deshpande LM, Mutnick AH, Biedenbach DJ. In vitro evaluation of BAL9141, a novel parenteral cephalosporin active against oxacillin-resistant staphylococci. J Antimicrob Chemother 2002; 50:915–932 [View Article] [PubMed]
    [Google Scholar]
  125. Wilcox MH, Corey GR, Talbot GH, Thye D, Friedland D et al. CANVAS 2: the second Phase III, randomized, double-blind study evaluating ceftaroline fosamil for the treatment of patients with complicated skin and skin structure infections. J Antimicrob Chemother 2010; 65 Suppl 4:iv53–iv65 [View Article] [PubMed]
    [Google Scholar]
  126. Wilcox MH, Corey GR, Talbot GH, Thye D, Friedland D et al. CANVAS 2: the second Phase III, randomized, double-blind study evaluating ceftaroline fosamil for the treatment of patients with complicated skin and skin structure infections. J Antimicrob Chemother 2010; 65 Suppl 4:iv53–iv65 [View Article] [PubMed]
    [Google Scholar]
  127. File TM, Wilcox MH, Stein GE. Summary of ceftaroline fosamil clinical trial studies and clinical safety. Clin Infect Dis 2012; 55 Suppl 3:S173–80 [View Article] [PubMed]
    [Google Scholar]
  128. Duplessis C, Crum-Cianflone NF. Ceftaroline: a new cephalosporin with activity against methicillin-resistant Staphylococcus aureus (MRSA). Clin Med Rev Ther 2011; 3:1–17 [View Article] [PubMed]
    [Google Scholar]
  129. Long SW, Olsen RJ, Mehta SC, Palzkill T, Cernoch PL et al. PBP2a mutations causing high-level Ceftaroline resistance in clinical methicillin-resistant Staphylococcus aureus isolates. Antimicrob Agents Chemother 2014; 58:6668–6674 [View Article] [PubMed]
    [Google Scholar]
  130. Nigo M, Diaz L, Carvajal LP, Tran TT, Rios R et al. Ceftaroline-resistant, daptomycin-tolerant, and heterogeneous vancomycin-intermediate methicillin-resistant Staphylococcus aureus causing infective endocarditis. Antimicrob Agents Chemother 2017; 61:e01235-16 [View Article] [PubMed]
    [Google Scholar]
  131. McKeage K. Finafloxacin: first global approval. Drugs 2015; 75:687–693 [View Article]
    [Google Scholar]
  132. Dalhoff A, Stubbings W, Schubert S. Comparative in vitro activities of the novel antibacterial finafloxacin against selected Gram-positive and Gram-negative bacteria tested in mueller-hinton broth and synthetic urine. Antimicrob Agents Chemother 2011; 55:1814–1818 [View Article]
    [Google Scholar]
  133. Barnes KB, Richards MI, Laws TR, Núñez A, Thwaite JE et al. Finafloxacin is an effective treatment for inhalational tularemia and plague in mouse models of infection. Antimicrob Agents Chemother 2021; 65: [View Article]
    [Google Scholar]
  134. Lemaire S, Van Bambeke F, Tulkens PM. Activity of finafloxacin, a novel fluoroquinolone with increased activity at acid pH, towards extracellular and intracellular Staphylococcus aureus, Listeria monocytogenes and Legionella pneumophila. Int J Antimicrob Agents 2011; 38:52–59 [View Article] [PubMed]
    [Google Scholar]
  135. Emrich NC, Heisig A, Stubbings W, Labischinski H, Heisig P. Antibacterial activity of finafloxacin under different pH conditions against isogenic strains of Escherichia coli expressing combinations of defined mechanisms of fluoroquinolone resistance. J Antimicrob Chemother 2010; 65:2530–2533 [View Article] [PubMed]
    [Google Scholar]
  136. Wagenlehner F, Nowicki M, Bentley C, Lückermann M, Wohlert S et al. Explorative randomized Phase II clinical study of the efficacy and safety of finafloxacin versus ciprofloxacin for treatment of complicated urinary tract infections. Antimicrob Agents Chemother 2018; 62:e02317-17 [View Article] [PubMed]
    [Google Scholar]
  137. Adam HJ, Laing NM, King CR, Lulashnyk B, Hoban DJ et al. In vitro activity of nemonoxacin, a novel nonfluorinated quinolone, against 2,440 clinical isolates. Antimicrob Agents Chemother 2009; 53:4915–4920 [View Article] [PubMed]
    [Google Scholar]
  138. Kırmusaoğlu S. Nemonoxacin (Taigexyn ®): a new non-fluorinated quinolone. In Staphylococcus and Streptococcus IntechOpen; 2020 [View Article]
    [Google Scholar]
  139. Yuan J, Mo B, Ma Z, Lv Y, Cheng S-L et al. Safety and efficacy of oral nemonoxacin versus levofloxacin in treatment of community-acquired pneumonia: a phase 3, multicenter, randomized, double-blind, double-dummy, active-controlled, non-inferiority trial. J Microbiol Immunol Infect 2019; 52:35–44 [View Article] [PubMed]
    [Google Scholar]
  140. Roychoudhury S, Makin K, Twinem T, Leunk R, Hsu MC. In vitro resistance development to nemonoxacin in Streptococcus pneumoniae: a unique profile for a novel nonfluorinated quinolone. Microb Drug Resist 2016; 22:578–584 [View Article] [PubMed]
    [Google Scholar]
  141. Yang JJ, Cheng A, Tai HM, Chang LW, Hsu MC et al. Selected mutations by nemonoxacin and fluoroquinolone exposure among relevant Gram-positive bacterial strains in Taiwan. Microb Drug Resist 2020; 26:110–117 [View Article] [PubMed]
    [Google Scholar]
  142. Kocsis B, Gulyás D, Szabó D. Delafloxacin, finafloxacin, and zabofloxacin: novel fluoroquinolones in the antibiotic pipeline. Antibiotics 2021; 10:1506 [View Article] [PubMed]
    [Google Scholar]
  143. Rhee CK, Chang JH, Choi EG, Kim HK, Kwon Y-S et al. Zabofloxacin versus moxifloxacin in patients with COPD exacerbation: a multicenter, double-blind, double-dummy, randomized, controlled, Phase III, non-inferiority trial. Int J Chron Obstruct Pulmon Dis 2015; 10:2265–2275 [View Article] [PubMed]
    [Google Scholar]
  144. Mohamed NM, Zakaria AS, Edward EA, Abdel-Bary A. In Vitro and In Vivo activity of zabofloxacin and other fluoroquinolones against MRSA isolates from a university hospital in Egypt. Pol J Microbiol 2019; 68:59–69 [View Article] [PubMed]
    [Google Scholar]
  145. Nilius AM, Shen LL, Hensey-Rudloff D, Almer LS, Beyer JM et al. In vitro antibacterial potency and spectrum of ABT-492, a new fluoroquinolone. Antimicrob Agents Chemother 2003; 47:3260–3269 [View Article] [PubMed]
    [Google Scholar]
  146. Harnett SJ, Fraise AP, Andrews JM, Jevons G, Brenwald NP et al. Comparative study of the in vitro activity of a new fluoroquinolone, ABT-492. J Antimicrob Chemother 2004; 53:783–792 [View Article] [PubMed]
    [Google Scholar]
  147. Saravolatz LD, Stein GE. Delafloxacin: a new anti-methicillin-resistant Staphylococcus aureus fluoroquinolone. Clin Infect Dis 2019; 68:1058–1062 [View Article] [PubMed]
    [Google Scholar]
  148. Tulkens PM, Van Bambeke F, Zinner SH. Profile of a novel anionic fluoroquinolone-delafloxacin. Clin Infect Dis 2019; 68:S213–S222 [View Article] [PubMed]
    [Google Scholar]
  149. Pfaller MA, Sader HS, Rhomberg PR, Flamm RK. In Vitro activity of delafloxacin against contemporary bacterial pathogens from the United States and Europe, 2014. Antimicrob Agents Chemother 2017; 61:e02609-16 [View Article] [PubMed]
    [Google Scholar]
  150. O’Riordan W, McManus A, Teras J, Poromanski I, Cruz-Saldariagga M et al. A comparison of the efficacy and safety of intravenous followed by oral delafloxacin with vancomycin plus aztreonam for the treatment of acute bacterial skin and skin structure infections: a Phase 3, multinational, double-blind, randomized study. Clin Infect Dis 2018; 67:657–666 [View Article]
    [Google Scholar]
  151. Mogle BT, Steele JM, Thomas SJ, Bohan KH, Kufel WD. Clinical review of delafloxacin: a novel anionic fluoroquinolone. J Antimicrob Chemother 2018; 73:1439–1451 [View Article]
    [Google Scholar]
  152. Iregui A, Khan Z, Malik S, Landman D, Quale J. Emergence of delafloxacin-resistant Staphylococcus aureus in Brooklyn, New York. Clin Infect Dis 2020; 70:1758–1760 [View Article] [PubMed]
    [Google Scholar]
  153. González Borroto JI, Awori MS, Chouinard L, Smith SY, Tarragó C et al. Studies on articular and general toxicity of orally administered ozenoxacin in juvenile rats and dogs. Future Microbiol 2018; 13:31–40 [View Article] [PubMed]
    [Google Scholar]
  154. Vila J, Hebert AA, Torrelo A, López Y, Tato M et al. Ozenoxacin: a review of preclinical and clinical efficacy. Expert Rev Anti Infect Ther 2019; 17:159–168 [View Article] [PubMed]
    [Google Scholar]
  155. López Y, Tato M, Espinal P, Garcia-Alonso F, Gargallo-Viola D et al. In vitro activity of Ozenoxacin against quinolone-susceptible and quinolone-resistant gram-positive bacteria. Antimicrob Agents Chemother 2013; 57:6389–6392 [View Article] [PubMed]
    [Google Scholar]
  156. Canton R, Morrissey I, Vila J, Tato M, García-Castillo M et al. Comparative in vitro antibacterial activity of ozenoxacin against Gram-positive clinical isolates. Future Microbiol 2018; 13:3–19 [View Article] [PubMed]
    [Google Scholar]
  157. Gropper S, Albareda N, Chelius K, Kruger D, Mitha I et al. Ozenoxacin 1% cream in the treatment of impetigo: a multicenter, randomized, placebo- and retapamulin-controlled clinical trial. Future Microbiol 2014; 9:1013–1023 [View Article] [PubMed]
    [Google Scholar]
  158. Rosen T, Albareda N, Rosenberg N, Alonso FG, Roth S et al. Efficacy and safety of ozenoxacin cream for treatment of adult and pediatric patients with impetigo: a randomized clinical trial. JAMA Dermatol 2018; 154:806–813 [View Article] [PubMed]
    [Google Scholar]
  159. Kishii R, Yamaguchi Y, Takei M. In Vitro activities and spectrum of the novel fluoroquinolone lascufloxacin (KRP-AM1977). Antimicrob Agents Chemother 2017; 61:e00120-17 [View Article] [PubMed]
    [Google Scholar]
  160. Furuie H, Tanioka S, Shimizu K, Manita S, Nishimura M et al. Intrapulmonary pharmacokinetics of lascufloxacin in healthy adult volunteers. Antimicrob Agents Chemother 2018; 62:e02169-17 [View Article] [PubMed]
    [Google Scholar]
  161. Miki M, Umemoto Y. Phase III double-blind comparative study of Lascufloxacin versus levofloxacin in patients with community-acquired pneumonia. Japanese J Chemother 2020
    [Google Scholar]
  162. Kishii R, Yamaguchi Y, Takei M. In Vitro activities and spectrum of the novel fluoroquinolone lascufloxacin (KRP-AM1977). Antimicrob Agents Chemother 2017; 61:e00120-17 [View Article] [PubMed]
    [Google Scholar]
  163. Thakare R, Singh S, Dasgupta A, Chopra S. Lascufloxacin hydrochloride to treat bacterial infection. Drugs Today 2020; 56:365–376 [View Article] [PubMed]
    [Google Scholar]
  164. Appalaraju B, Baveja S, Baliga S, Shenoy S, Bhardwaj R et al. In vitro activity of a novel antibacterial agent, levonadifloxacin, against clinical isolates collected in a prospective, multicentre surveillance study in India during 2016-18. J Antimicrob Chemother 2020; 75:600–608 [View Article] [PubMed]
    [Google Scholar]
  165. Bakthavatchalam YD, Shankar A, Muniyasamy R, Peter JV, Marcus Z et al. Levonadifloxacin, a recently approved benzoquinolizine fluoroquinolone, exhibits potent in vitro activity against contemporary Staphylococcus aureus isolates and Bengal Bay clone isolates collected from a large Indian tertiary care hospital. J Antimicrob Chemother 2020; 75:2156–2159 [View Article] [PubMed]
    [Google Scholar]
  166. Bhagwat SS, McGhee P, Kosowska-Shick K, Patel MV, Appelbaum PC. In vitro activity of the quinolone WCK 771 against recent U.S. hospital and community-acquired Staphylococcus aureus pathogens with various resistance types. Antimicrob Agents Chemother 2009; 53:811–813 [View Article] [PubMed]
    [Google Scholar]
  167. de Souza NJ, Gupte SV, Deshpande PK, Desai VN, Bhawsar SB et al. A chiral benzoquinolizine-2-carboxylic acid arginine salt active against vancomycin-resistant Staphylococcus aureus. J Med Chem 2005; 48:5232–5242 [View Article] [PubMed]
    [Google Scholar]
  168. Jacobs MR, Bajaksouzian S, Windau A, Appelbaum PC, Patel MV et al. In vitro activity of the new quinolone WCK 771 against staphylococci. Antimicrob Agents Chemother 2004; 48:3338–3342 [View Article] [PubMed]
    [Google Scholar]
  169. Bhatia A, Mastim M, Shah M, Gutte R, Joshi P et al. Efficacy and safety of a novel broad-spectrum anti-MRSA agent levonadifloxacin compared with linezolid for acute bacterial skin and skin structure infections: a Phase 3, openlabel, randomized study. J Assoc Physicians India 2020; 68:30–36 [PubMed]
    [Google Scholar]
  170. Bhagwat SS, Nandanwar M, Kansagara A, Patel A, Takalkar S et al. Levonadifloxacin, a novel broad-spectrum anti-MRSA benzoquinolizine quinolone agent: review of current evidence. Drug Des Devel Ther 2019; 13:4351–4365 [View Article] [PubMed]
    [Google Scholar]
  171. Bhagwat SS, Mundkur LA, Gupte SV, Patel MV, Khorakiwala HF. The anti-methicillin-resistant Staphylococcus aureus quinolone WCK 771 has potent activity against sequentially selected mutants, has a narrow mutant selection window against quinolone-resistant Staphylococcus aureus, and preferentially targets DNA gyrase. Antimicrob Agents Chemother 2006; 50:3568–3579 [View Article] [PubMed]
    [Google Scholar]
  172. Zhanel GG, Love R, Adam H, Golden A, Zelenitsky S et al. Tedizolid: a novel oxazolidinone with potent activity against multidrug-resistant gram-positive pathogens. Drugs 2015; 75:253–270 [View Article] [PubMed]
    [Google Scholar]
  173. Michalska K, Karpiuk I, Król M, Tyski S. Recent development of potent analogues of oxazolidinone antibacterial agents. Bioorg Med Chem 2013; 21:577–591 [View Article] [PubMed]
    [Google Scholar]
  174. Barber KE, Smith JR, Raut A, Rybak MJ. Evaluation of tedizolid against Staphylococcus aureus and enterococci with reduced susceptibility to vancomycin, daptomycin or linezolid. J Antimicrob Chemother 2016; 71:152–155 [View Article]
    [Google Scholar]
  175. Salavert Lletí M, García-Bustos V, Morata Ruiz L, Cabañero-Navalon MD. Tedizolid: new data and experiences for clinical practice. Rev Esp Quimioter 2021; 34 Suppl 1:22–25 [View Article] [PubMed]
    [Google Scholar]
  176. Prokocimer P, De Anda C, Fang E, Mehra P, Das A. Tedizolid phosphate vs linezolid for treatment of acute bacterial skin and skin structure infections: the ESTABLISH-1 randomized trial. JAMA 2013; 309:559–569 [View Article] [PubMed]
    [Google Scholar]
  177. Moran GJ, Fang E, Corey GR, Das AF, De Anda C et al. Tedizolid for 6 days versus linezolid for 10 days for acute bacterial skin and skin-structure infections (ESTABLISH-2): a randomised, double-blind, phase 3, non-inferiority trial. Lancet Infect Dis 2014; 14:696–705 [View Article] [PubMed]
    [Google Scholar]
  178. Locke JB, Finn J, Hilgers M, Morales G, Rahawi S et al. Structure-activity relationships of diverse oxazolidinones for linezolid-resistant Staphylococcus aureus strains possessing the cfr methyltransferase gene or ribosomal mutations. Antimicrob Agents Chemother 2010; 54:5337–5343 [View Article] [PubMed]
    [Google Scholar]
  179. Shen T, Penewit K, Waalkes A, Xu L, Salipante SJ et al. Identification of a novel tedizolid resistance mutation in rpoB of MRSA after in vitro serial passage. J Antimicrob Chemother 2021; 76:292–296 [View Article] [PubMed]
    [Google Scholar]
  180. Locke JB, Hilgers M, Shaw KJ. Novel ribosomal mutations in Staphylococcus aureus strains identified through selection with the oxazolidinones linezolid and torezolid (TR-700). Antimicrob Agents Chemother 2009; 53:5265–5274 [View Article] [PubMed]
    [Google Scholar]
  181. Meng J, Zhong D, Li L, Yuan Z, Yuan H et al. Metabolism of MRX-I, a novel antibacterial oxazolidinone, in humans: the oxidative ring opening of 2,3-Dihydropyridin-4-one catalyzed by non-P450 enzymes. Drug Metab Dispos 2015; 43:646–659 [View Article] [PubMed]
    [Google Scholar]
  182. Shouan A, Kumar R, Lal V, Grover S. Linezolid-induced serotonin syndrome. Ind Psychiatry J 2020; 29:345–348 [View Article] [PubMed]
    [Google Scholar]
  183. Wang W, Voss KM, Liu J, Gordeev MF. Nonclinical evaluation of antibacterial oxazolidinones contezolid and contezolid acefosamil with low serotonergic neurotoxicity. Chem Res Toxicol 2021; 34:1348–1354 [View Article] [PubMed]
    [Google Scholar]
  184. Hoy SM. Contezolid: first approval. Drugs 2021; 81:1587–1591 [View Article] [PubMed]
    [Google Scholar]
  185. Wang S, Cai C, Shen Y, Sun C, Shi Q et al. In vitro activity of contezolid against methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococcus, and strains with linezolid resistance genes from China. Front Microbiol 2021; 12: [View Article]
    [Google Scholar]
  186. Xiao X-Y, Hunt DK, Zhou J, Clark RB, Dunwoody N et al. Fluorocyclines. 1. 7-fluoro-9-pyrrolidinoacetamido-6-demethyl-6-deoxytetracycline: a potent, broad spectrum antibacterial agent. J Med Chem 2012; 55:597–605 [View Article] [PubMed]
    [Google Scholar]
  187. Garrido-Mesa N, Zarzuelo A, Gálvez J. Minocycline: far beyond an antibiotic. Br J Pharmacol 2013; 169:337–352 [View Article] [PubMed]
    [Google Scholar]
  188. Lee YR, Burton CE. Eravacycline, a newly approved fluorocycline. Eur J Clin Microbiol Infect Dis 2019; 38:1787–1794 [View Article]
    [Google Scholar]
  189. Alosaimy S, Abdul‐Mutakabbir JC, Kebriaei R, Jorgensen SCJ, Rybak MJ. Evaluation of eravacycline: a novel fluorocycline. Pharmacotherapy 2020; 40:221–238 [View Article]
    [Google Scholar]
  190. Solomkin J, Evans D, Slepavicius A, Lee P, Marsh A et al. Assessing the efficacy and safety of eravacycline vs ertapenem in complicated intra-abdominal infections in the investigating Gram-negative infections treated with eravacycline (IGNITE 1) trial. JAMA Surg 2017; 152:224 [View Article]
    [Google Scholar]
  191. Solomkin JS, Gardovskis J, Lawrence K, Montravers P, Sway A et al. IGNITE4: results of a Phase 3, randomized, multicenter, prospective trial of eravacycline vs meropenem in the treatment of complicated intraabdominal infections. Clin Infect Dis 2019; 69:921–929 [View Article]
    [Google Scholar]
  192. Zhang F, Bai B, Xu G, Lin Z, Li G et al. Eravacycline activity against clinical S. aureus isolates from China: in vitro activity, MLST profiles and heteroresistance. BMC Microbiol 2018; 18: [View Article]
    [Google Scholar]
  193. Zeng W, Zhang X, Liu Y, Zhang Y, Xu M et al. In vitro antimicrobial activity and resistance mechanisms of the new generation tetracycline agents, eravacycline, omadacycline, and tigecycline against clinical Staphylococcus aureus isolates. Front Microbiol 2022; 13: [View Article]
    [Google Scholar]
  194. Macone AB, Caruso BK, Leahy RG, Donatelli J, Weir S et al. In Vitro and In vivo antibacterial activities of omadacycline, a novel aminomethylcycline. Antimicrob Agents Chemother 2014; 58:1127–1135 [View Article] [PubMed]
    [Google Scholar]
  195. Tanaka SK, Steenbergen J, Villano S. Discovery, pharmacology, and clinical profile of omadacycline, a novel aminomethylcycline antibiotic. Bioorg Med Chem 2016; 24:6409–6419 [View Article] [PubMed]
    [Google Scholar]
  196. Honeyman L, Ismail M, Nelson ML, Bhatia B, Bowser TE et al. Structure-activity relationship of the aminomethylcyclines and the discovery of omadacycline. Antimicrob Agents Chemother 2015; 59:7044–7053 [View Article] [PubMed]
    [Google Scholar]
  197. Pfaller MA, Huband MD, Shortridge D, Flamm RK. Surveillance of omadacycline activity tested against clinical isolates from the United States and Europe: report from the SENTRY antimicrobial surveillance program, 2016 to 2018. Antimicrob Agents Chemother 2020; 64: [View Article]
    [Google Scholar]
  198. Stets R, Popescu M, Gonong J, Mitha I, Nseir W et al. A Phase 3 randomized, double-blind, multi-center study to compare the safety and efficacy of IV to oral omadacycline to moxifloxacin for the treatment of adult subjects with CABP (The OPTIC Study). Open Forum Infect Dis 2017; 4:S543–S544 [View Article]
    [Google Scholar]
  199. Markham A, Keam SJ. Omadacycline: first global approval. Drugs 2018; 78:1931–1937 [View Article]
    [Google Scholar]
  200. O’Riordan W, Cardenas C, Shin E, Sirbu A, Garrity-Ryan L et al. Once-daily oral omadacycline versus twice-daily oral linezolid for acute bacterial skin and skin structure infections (OASIS-2): a phase 3, double-blind, multicentre, randomised, controlled, non-inferiority trial. Lancet Infect Dis 2019; 19:1080–1090 [View Article] [PubMed]
    [Google Scholar]
  201. Bai B, Lin Z, Pu Z, Xu G, Zhang F et al. /Pi cotransporter family protein, and fibronectin-binding protein. Front Microbiol 2019; 10: [View Article]
    [Google Scholar]
  202. Novak R. Are pleuromutilin antibiotics finally fit for human use?. Ann N Y Acad Sci 2011; 1241:71–81 [View Article] [PubMed]
    [Google Scholar]
  203. Paukner S, Riedl R. Pleuromutilins: potent drugs for resistant bugs-mode of action and resistance. Cold Spring Harb Perspect Med 2017; 7:a027110 [View Article] [PubMed]
    [Google Scholar]
  204. Novak R, Shlaes DM. The pleuromutilin antibiotics: a new class for human use. Curr Opin Investig Drugs 2010; 11:182–191 [PubMed]
    [Google Scholar]
  205. Eyal Z, Matzov D, Krupkin M, Wekselman I, Paukner S et al. Structural insights into species-specific features of the ribosome from the pathogen Staphylococcus aureus. Proc Natl Acad Sci 2015; 112:E5805–14 [View Article] [PubMed]
    [Google Scholar]
  206. Waites KB, Crabb DM, Duffy LB, Jensen JS, Liu Y et al. In vitro activities of lefamulin and other antimicrobial agents against macrolide-susceptible and macrolide-resistant Mycoplasma pneumoniae from the United States, Europe, and China. Antimicrob Agents Chemother 2017; 61:e02008-16 [View Article] [PubMed]
    [Google Scholar]
  207. Mendes RE, Farrell DJ, Flamm RK, Talbot GH, Ivezic-Schoenfeld Z et al. In vitro activity of lefamulin tested against Streptococcus pneumoniae with defined serotypes, including multidrug-resistant isolates causing lower respiratory tract infections in the United States. Antimicrob Agents Chemother 2016; 60:4407–4411 [View Article] [PubMed]
    [Google Scholar]
  208. Sader HS, Paukner S, Ivezic-Schoenfeld Z, Biedenbach DJ, Schmitz FJ et al. Antimicrobial activity of the novel pleuromutilin antibiotic BC-3781 against organisms responsible for community-acquired respiratory tract infections (CARTIs). J Antimicrob Chemother 2012; 67:1170–1175 [View Article] [PubMed]
    [Google Scholar]
  209. Sader HS, Biedenbach DJ, Paukner S, Ivezic-Schoenfeld Z, Jones RN. Antimicrobial activity of the investigational pleuromutilin compound BC-3781 tested against Gram-positive organisms commonly associated with acute bacterial skin and skin structure infections. Antimicrob Agents Chemother 2012; 56:1619–1623 [View Article] [PubMed]
    [Google Scholar]
  210. File TM Jr, Goldberg L, Das A, Sweeney C, Saviski J et al. Efficacy and safety of intravenous-to-oral lefamulin, a pleuromutilin antibiotic, for the treatment of community-acquired bacterial pneumonia: the Phase III Lefamulin Evaluation Against Pneumonia (LEAP 1) trial. Clin Infect Dis 2019; 69:1856–1867 [View Article]
    [Google Scholar]
  211. Alexander E, Goldberg L, Das AF, Moran GJ, Sandrock C et al. Oral lefamulin vs moxifloxacin for early clinical response among adults with community-acquired bacterial pneumonia. JAMA 2019; 322:1661 [View Article]
    [Google Scholar]
  212. Paukner S, Sader HS, Ivezic-Schoenfeld Z, Jones RN. Antimicrobial activity of the pleuromutilin antibiotic BC-3781 against bacterial pathogens isolated in the SENTRY antimicrobial surveillance program in 2010. Antimicrob Agents Chemother 2013; 57:4489–4495 [View Article]
    [Google Scholar]
  213. Wang F, Zhou H, Olademehin OP, Kim SJ, Tao P. Insights into key interactions between vancomycin and bacterial cell wall structures. ACS Omega 2018; 3:37–45 [View Article]
    [Google Scholar]
  214. Van Bambeke F, Van Laethem Y, Courvalin P, Tulkens PM. Glycopeptide antibiotics. Drugs 2004; 64:913–936 [View Article] [PubMed]
    [Google Scholar]
  215. Beauregard DA, Williams DH, Gwynn MN, Knowles DJ. Dimerization and membrane anchors in extracellular targeting of vancomycin group antibiotics. Antimicrob Agents Chemother 1995; 39:781–785 [View Article] [PubMed]
    [Google Scholar]
  216. Cooper RDG, Snyder NJ, Zweifel MJ, Staszak MA, Wilkie SC et al. Reductive alkylation of glycopeptide antibiotics: synthesis and antibacterial activity. J Antibiot 1996; 49:575–581 [View Article]
    [Google Scholar]
  217. Allen NE, Nicas TI. Mechanism of action of oritavancin and related glycopeptide antibiotics. FEMS Microbiol Rev 2003; 26:511–532 [View Article] [PubMed]
    [Google Scholar]
  218. Domenech O, Dufrêne YF, Van Bambeke F, Tukens PM, Mingeot-Leclercq M-P. Interactions of oritavancin, a new semi-synthetic lipoglycopeptide, with lipids extracted from Staphylococcus aureus. Biochim Biophys Acta 2010; 1798:1876–1885 [View Article] [PubMed]
    [Google Scholar]
  219. Belley A, McKay GA, Arhin FF, Sarmiento I, Beaulieu S et al. Oritavancin disrupts membrane integrity of Staphylococcus aureus and vancomycin-resistant enterococci to effect rapid bacterial killing. Antimicrob Agents Chemother 2010; 54:5369–5371 [View Article] [PubMed]
    [Google Scholar]
  220. Kim SJ, Cegelski L, Stueber D, Singh M, Dietrich E et al. Oritavancin exhibits dual mode of action to inhibit cell-wall biosynthesis in Staphylococcus aureus. J Mol Biol 2008; 377:281–293 [View Article] [PubMed]
    [Google Scholar]
  221. Saravolatz LD, Pawlak J, Johnson LB. In vitro activity of oritavancin against community-associated meticillin-resistant Staphylococcus aureus (CA-MRSA). Int J Antimicrob Agents 2010; 36: [View Article] [PubMed]
    [Google Scholar]
  222. Corey GR, Kabler H, Mehra P, Gupta S, Overcash JS et al. Single-dose oritavancin in the treatment of acute bacterial skin infections. N Engl J Med 2014; 370:2180–2190 [View Article] [PubMed]
    [Google Scholar]
  223. Corey GR, Good S, Jiang H, Moeck G, Wikler M et al. Single-dose oritavancin versus 7-10 days of vancomycin in the treatment of gram-positive acute bacterial skin and skin structure infections: the SOLO II noninferiority study. Clin Infect Dis 2015; 60:254–262 [View Article] [PubMed]
    [Google Scholar]
  224. Arthur M, Depardieu F, Reynolds P, Courvalin P. Moderate-level resistance to glycopeptide LY333328 mediated by genes of the vanA and vanB clusters in enterococci. Antimicrob Agents Chemother 1999; 43:1875–1880 [View Article]
    [Google Scholar]
  225. Yushchuk O, Andreo-Vidal A, Marcone GL, Bibb M, Marinelli F et al. New molecular tools for regulation and improvement of A40926 glycopeptide antibiotic production in Nonomuraea gerenzanensis ATCC 39727. Front Microbiol 2020; 11: [View Article]
    [Google Scholar]
  226. Malabarba A, Ciabatti R, Scotti R, Goldstein BP, Ferrari P et al. New semisynthetic glycopeptides MDL 63,246 and MDL 63,042, and other amide derivatives of antibiotic A-40,926 active against highly glycopeptide-resistant VanA enterococci. J Antibiot 1995; 48:869–883 [View Article] [PubMed]
    [Google Scholar]
  227. Cheng M, Ziora ZM, Hansford KA, Blaskovich MA, Butler MS et al. Anti-cooperative ligand binding and dimerisation in the glycopeptide antibiotic dalbavancin. Org Biomol Chem 2014; 12:2568–2575 [View Article]
    [Google Scholar]
  228. Streit JM, Fritsche TR, Sader HS, Jones RN. Worldwide assessment of dalbavancin activity and spectrum against over 6,000 clinical isolates. Diagn Microbiol Infect Dis 2004; 48:137–143 [View Article] [PubMed]
    [Google Scholar]
  229. Candiani G, Abbondi M, Borgonovi M, Romanò G, Parenti F. In-vitro and in-vivo antibacterial activity of BI 397, a new semi-synthetic glycopeptide antibiotic. J Antimicrob Chemother 1999; 44:179–192 [View Article]
    [Google Scholar]
  230. Leighton A, Gottlieb AB, Dorr MB, Jabes D, Mosconi G et al. Tolerability, pharmacokinetics, and serum bactericidal activity of intravenous dalbavancin in healthy volunteers. Antimicrob Agents Chemother 2004; 48:940–945 [View Article] [PubMed]
    [Google Scholar]
  231. Boucher HW, Wilcox M, Talbot GH, Puttagunta S, Das AF et al. Once-weekly Dalbavancin versus daily conventional therapy for skin infection. N Engl J Med 2014; 370:2169–2179 [View Article]
    [Google Scholar]
  232. Jones RN, Sader HS, Flamm RK. Update of dalbavancin spectrum and potency in the USA: report from the SENTRY Antimicrobial Surveillance Program (2011). Diagn Microbiol Infect Dis 2013; 75:304–307 [View Article] [PubMed]
    [Google Scholar]
  233. Ortwine JK, Werth BJ, Sakoulas G, Rybak MJ. Reduced glycopeptide and lipopeptide susceptibility in Staphylococcus aureus and the “seesaw effect”: taking advantage of the back door left open?. Drug Resist Updat 2013; 16:73–79 [View Article] [PubMed]
    [Google Scholar]
  234. Smith JR, Roberts KD, Rybak MJ. Dalbavancin: a novel lipoglycopeptide antibiotic with extended activity against Gram-positive infections. Infect Dis Ther 2015; 4:245–258 [View Article]
    [Google Scholar]
  235. Zhang R, Polenakovik H, Barreras Beltran IA, Waalkes A, Salipante SJ et al. Emergence of dalbavancin, vancomycin, and daptomycin nonsusceptible Staphylococcus aureus in a patient treated with dalbavancin: case report and isolate characterization. Clin Infect Dis 2022; 75:1641–1644 [View Article] [PubMed]
    [Google Scholar]
  236. Czaplewski L, Bax R, Clokie M, Dawson M, Fairhead H et al. Alternatives to antibiotics-a pipeline portfolio review. Lancet Infect Dis 2016; 16:239–251 [View Article] [PubMed]
    [Google Scholar]
  237. Ghosh C, Sarkar P, Issa R, Haldar J. Alternatives to conventional antibiotics in the era of antimicrobial resistance. Trends Microbiol 2019; 27:323–338 [View Article] [PubMed]
    [Google Scholar]
  238. Douglas EJA, Wulandari SW, Lovell SD, Laabei M. Novel antimicrobial strategies to treat multi-drug resistant Staphylococcus aureus infections. Microb Biotechnol 2023; 16:1456–1474 [View Article] [PubMed]
    [Google Scholar]
  239. Oefner C, Bandera M, Haldimann A, Laue H, Schulz H et al. Increased hydrophobic interactions of iclaprim with Staphylococcus aureus dihydrofolate reductase are responsible for the increase in affinity and antibacterial activity. J Antimicrob Chemother 2009; 63:687–698 [View Article] [PubMed]
    [Google Scholar]
  240. Ho JMW, Juurlink DN. Considerations when prescribing trimethoprim-sulfamethoxazole. Can Med Assoc J 2011; 183:1851–1858 [View Article] [PubMed]
    [Google Scholar]
  241. Holland TL, O’Riordan W, McManus A, Shin E, Borghei A et al. A Phase 3, randomized, double-blind, multicenter study to evaluate the safety and efficacy of intravenous iclaprim versus vancomycin for treatment of acute bacterial skin and skin structure infections suspected or confirmed to be due to Gram-positive pathogens (REVIVE-2 Study). Antimicrob Agents Chemother 2018; 62:e02580-17 [View Article] [PubMed]
    [Google Scholar]
  242. Huang DB, O’Riordan W, Overcash JS, Heller B, Amin F et al. A Phase 3, randomized, double-blind, multicenter study to evaluate the safety and efficacy of intravenous iclaprim vs vancomycin for the treatment of acute bacterial skin and skin structure infections suspected or confirmed to be due to gram-positive pathogens: REVIVE-1. Clin Infect Dis 2018; 66:1222–1229 [View Article] [PubMed]
    [Google Scholar]
  243. Zhanel GG, Walters M, Noreddin A, Vercaigne LM, Wierzbowski A et al. The ketolides. Drugs 2002; 62:1771–1804 [View Article]
    [Google Scholar]
  244. Flamm RK, Rhomberg PR, Sader HS. In Vitro activity of the novel lactone ketolide nafithromycin (WCK 4873) against contemporary clinical bacteria from a global surveillance program. Antimicrob Agents Chemother 2017; 61:e01230-17 [View Article] [PubMed]
    [Google Scholar]
  245. Long DD, Aggen JB, Chinn J, Choi S-K, Christensen BG et al. Exploring the positional attachment of glycopeptide/β-lactam heterodimers. J Antibiot 2008; 61:603–614 [View Article]
    [Google Scholar]
  246. Blais J, Lewis SR, Krause KM, Benton BM. Antistaphylococcal activity of TD-1792, a multivalent glycopeptide-cephalosporin antibiotic. Antimicrob Agents Chemother 2012; 56:1584–1587 [View Article]
    [Google Scholar]
  247. Stryjewski ME, Potgieter PD, Li Y-P, Barriere SL, Churukian A et al. TD-1792 versus vancomycin for treatment of complicated skin and skin structure infections. Antimicrob Agents Chemother 2012; 56:5476–5483 [View Article] [PubMed]
    [Google Scholar]
  248. Piller P, Wolinski H, Cordfunke RA, Drijfhout JW, Keller S et al. Membrane activity of LL-37 derived antimicrobial peptides against Enterococcus hirae: superiority of SAAP-148 over OP-145. Biomolecules 2022; 12:523 [View Article]
    [Google Scholar]
  249. Nell MJ, Tjabringa GS, Wafelman AR, Verrijk R, Hiemstra PS et al. Development of novel LL-37 derived antimicrobial peptides with LPS and LTA neutralizing and antimicrobial activities for therapeutic application. Peptides 2006; 27:649–660 [View Article]
    [Google Scholar]
  250. Haisma EM, Göblyös A, Ravensbergen B, Adriaans AE, Cordfunke RA et al. Antimicrobial peptide P60.4Ac-containing creams and gel for eradication of methicillin-resistant Staphylococcus aureus from cultured skin and airway epithelial surfaces. Antimicrob Agents Chemother 2016; 60:4063–4072 [View Article]
    [Google Scholar]
  251. Peek NFAW, Nell MJ, Brand R, Jansen-Werkhoven T, van Hoogdalem EJ et al. Ototopical drops containing a novel antibacterial synthetic peptide: safety and efficacy in adults with chronic suppurative otitis media. PLoS One 2020; 15:e0231573 [View Article]
    [Google Scholar]
  252. Scheper H, Wubbolts JM, Verhagen JAM, de Visser AW, van der Wal RJP et al. SAAP-148 eradicates MRSA persisters within mature biofilm models simulating prosthetic joint infection. Front Microbiol 2021; 12: [View Article]
    [Google Scholar]
  253. de Breij A, Riool M, Cordfunke RA, Malanovic N, de Boer L et al. The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Sci Transl Med 2018; 10:eaan4044 [View Article] [PubMed]
    [Google Scholar]
  254. Isaksson J, Brandsdal BO, Engqvist M, Flaten GE, Svendsen JSM et al. A synthetic antimicrobial peptidomimetic (LTX 109): stereochemical impact on membrane disruption. J Med Chem 2011; 54:5786–5795 [View Article]
    [Google Scholar]
  255. Saravolatz LD, Pawlak J, Johnson L, Bonilla H, Saravolatz LD 2nd et al. In vitro activities of LTX-109, a synthetic antimicrobial peptide, against methicillin-resistant, vancomycin-intermediate, vancomycin-resistant, daptomycin-nonsusceptible, and linezolid-nonsusceptible Staphylococcus aureus. Antimicrob Agents Chemother 2012; 56:4478–4482 [View Article] [PubMed]
    [Google Scholar]
  256. Isaksson J, Brandsdal BO, Engqvist M, Flaten GE, Svendsen JSM et al. A synthetic antimicrobial peptidomimetic (LTX 109): stereochemical impact on membrane disruption. J Med Chem 2011; 54:5786–5795 [View Article] [PubMed]
    [Google Scholar]
  257. Haug BE, Stensen W, Kalaaji M, Rekdal Ø, Svendsen JS. Synthetic antimicrobial peptidomimetics with therapeutic potential. J Med Chem 2008; 51:4306–4314 [View Article] [PubMed]
    [Google Scholar]
  258. Nilsson AC, Janson H, Wold H, Fugelli A, Andersson K et al. LTX-109 is a novel agent for nasal decolonization of methicillin-resistant and -sensitive Staphylococcus aureus. Antimicrob Agents Chemother 2015; 59:145–151 [View Article] [PubMed]
    [Google Scholar]
  259. Heath RJ, Rock CO. Regulation of fatty acid elongation and initiation by acyl-acyl carrier protein in Escherichia coli. J Biol Chem 1996; 271:1833–1836 [View Article] [PubMed]
    [Google Scholar]
  260. Yin D, Fox B, Lonetto ML, Etherton MR, Payne DJ et al. Identification of antimicrobial targets using a comprehensive genomic approach. Pharmacogenomics 2004; 5:101–113 [View Article] [PubMed]
    [Google Scholar]
  261. Park HS, Yoon YM, Jung SJ, Kim CM, Kim JM et al. Antistaphylococcal activities of CG400549, a new bacterial enoyl-acyl carrier protein reductase (FabI) inhibitor. J Antimicrob Chemother 2007; 60:568–574 [View Article] [PubMed]
    [Google Scholar]
  262. Karlowsky JA, Kaplan N, Hafkin B, Hoban DJ, Zhanel GG. AFN-1252, a FabI inhibitor, demonstrates a Staphylococcus-specific spectrum of activity. Antimicrob Agents Chemother 2009; 53:3544–3548 [View Article] [PubMed]
    [Google Scholar]
  263. Kaplan N, Albert M, Awrey D, Bardouniotis E, Berman J et al. Mode of action, in vitro activity, and in vivo efficacy of AFN-1252, a selective antistaphylococcal FabI inhibitor. Antimicrob Agents Chemother 2012; 56:5865–5874 [View Article] [PubMed]
    [Google Scholar]
  264. Hafkin B, Kaplan N, Murphy B. Efficacy and safety of AFN-1252, the first Staphylococcus-specific antibacterial agent, in the treatment of acute bacterial skin and skin structure infections, including those in patients with significant comorbidities. Antimicrob Agents Chemother 2015; 60:1695–1701 [View Article] [PubMed]
    [Google Scholar]
  265. Wittke F, Vincent C, Chen J, Heller B, Kabler H et al. Afabicin, a first-in-class antistaphylococcal antibiotic, in the treatment of acute bacterial skin and skin structure infections: clinical noninferiority to vancomycin/Linezolid. Antimicrob Agents Chemother 2020; 64:e00250-20 [View Article] [PubMed]
    [Google Scholar]
  266. Baker B. Pravibismane is a potent, broad spectrum anti-infective small molecule that rapidly disrupts bacterial bioenergetics and HALTS bacterial growth. Open Forum Infect Dis 2020; 7:S659–60
    [Google Scholar]
  267. Stojiljkovic I, Evavold BD, Kumar V. Antimicrobial properties of porphyrins. Expert Opin Investig Drugs 2001; 10:309–320 [View Article] [PubMed]
    [Google Scholar]
  268. Ooi N, Miller K, Hobbs J, Rhys-Williams W, Love W et al. XF-73, a novel antistaphylococcal membrane-active agent with rapid bactericidal activity. J Antimicrob Chemother 2009; 64:735–740 [View Article] [PubMed]
    [Google Scholar]
  269. Yendewa GA, Griffiss JM, Jacobs MR, Fulton SA, O’Riordan MA et al. A two-part phase 1 study to establish and compare the safety and local tolerability of two nasal formulations of XF-73 for decolonisation of Staphylococcus aureus: a previously investigated 0.5mg/g viscosified gel formulation versus a modified formulation. J Glob Antimicrob Resist 2020; 21:171–180 [View Article] [PubMed]
    [Google Scholar]
  270. Mangino JE, Firstenberg MS, Milewski RKC, Rhys-Williams W, Lees JP et al. Exeporfinium chloride (XF-73) nasal gel dosed over 24 hours prior to surgery significantly reduced Staphylococcus aureus nasal carriage in cardiac surgery patients: safety and efficacy results from a randomized placebo-controlled phase 2 study. Infect Control Hosp Epidemiol 2023; 44:1171–1173 [View Article]
    [Google Scholar]
  271. Ma Z, Lynch AS. Development of a dual-acting antibacterial agent (TNP-2092) for the treatment of persistent bacterial infections. J Med Chem 2016; 59:6645–6657 [View Article]
    [Google Scholar]
  272. Ma Z, Morris TW, Combrink KD. Therapeutic Opportunities for the Treatment of Biofilm-Associated Infections 2004 pp 197–210
    [Google Scholar]
  273. Zimmerli W. Role of rifampin for treatment of orthopedic implant–related Staphylococcal infections. JAMA 1998; 279: [View Article]
    [Google Scholar]
  274. Fisher CR, Schmidt-Malan SM, Ma Z, Yuan Y, He S et al. In vitro activity of TNP-2092 against periprosthetic joint infection-associated staphylococci. Diagn Microbiol Infect Dis 2020; 97:115040 [View Article] [PubMed]
    [Google Scholar]
  275. Choi S, Isaacs A, Clements D, Liu D, Kim H et al. De novo design and in vivo activity of conformationally restrained antimicrobial arylamide foldamers. Proc Natl Acad Sci 2009; 106:6968–6973 [View Article]
    [Google Scholar]
  276. Mascher T, Zimmer SL, Smith TA, Helmann JD. Antibiotic-inducible promoter regulated by the cell envelope stress-sensing two-component system LiaRS of Bacillus subtilis. Antimicrob Agents Chemother 2004; 48:2888–2896 [View Article] [PubMed]
    [Google Scholar]
  277. Mensa B, Howell GL, Scott R, DeGrado WF. Comparative mechanistic studies of brilacidin, daptomycin, and the antimicrobial peptide LL16. Antimicrob Agents Chemother 2014; 58:5136–5145 [View Article] [PubMed]
    [Google Scholar]
  278. Jorgensen DM SROWTK A randomized, double-blind study comparing single-dose and short-course brilacidin to daptomycin in the treatment of acute bacterial skin & skin structure infections (ABSSSI). In Presented at: 25th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID) Copenhagen: 2015
    [Google Scholar]
  279. Cho YL, Jang J. Development of delpazolid for the treatment of tuberculosis. Appl Sci 2020; 10:2211 [View Article]
    [Google Scholar]
  280. Douros A, Grabowski K, Stahlmann R. Drug-drug interactions and safety of linezolid, tedizolid, and other oxazolidinones. Expert Opin Drug Metab Toxicol 2015; 11:1849–1859 [View Article] [PubMed]
    [Google Scholar]
  281. Kim JS, Kim Y-H, Lee SH, Kim YH, Kim J-W et al. Early bactericidal activity of delpazolid (LCB01-0371) in patients with pulmonary tuberculosis. Antimicrob Agents Chemother 2022; 66:e0168421 [View Article] [PubMed]
    [Google Scholar]
  282. Jeong J-W, Jung S-J, Lee H-H, Kim Y-Z, Park T-K et al. In vitro and in vivo activities of LCB01-0371, a new oxazolidinone. Antimicrob Agents Chemother 2010; 54:5359–5362 [View Article] [PubMed]
    [Google Scholar]
  283. Park JS, Choi YJ, Kwon K, Choi SJ, Moon SM et al. In-vitro activity of delpazolid and comparator agents against methicillin-resistant Staphylococcus aureus involved in bloodstream infection. Ann Lab Med 2023; 43:389–391 [View Article] [PubMed]
    [Google Scholar]
  284. Zong Z, Jing W, Shi J, Wen S, Zhang T et al. Comparison of In Vitro activity and MIC distributions between the novel oxazolidinone delpazolid and linezolid against multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis in China. Antimicrob Agents Chemother 2018; 62:e00165-18 [View Article] [PubMed]
    [Google Scholar]
  285. Tevyashova AN, Olsufyeva EN, Preobrazhenskaya MN. Design of dual action antibiotics as an approach to search for new promising drugs. Russ Chem Rev 2015; 84:61–97 [View Article]
    [Google Scholar]
  286. Evans LE, Krishna A, Ma Y, Webb TE, Marshall DC et al. Exploitation of antibiotic resistance as a novel drug target: development of a β-lactamase-activated antibacterial prodrug. J Med Chem 2019; 62:4411–4425 [View Article] [PubMed]
    [Google Scholar]
  287. Towse A, Hoyle CK, Goodall J, Hirsch M, Mestre-Ferrandiz J et al. Time for a change in how new antibiotics are reimbursed: development of an insurance framework for funding new antibiotics based on a policy of risk mitigation. Health Policy 2017; 121:1025–1030 [View Article] [PubMed]
    [Google Scholar]
  288. Chellat MF, Raguž L, Riedl R. Targeting antibiotic resistance. Angew Chem Int Ed Engl 2016; 55:6600–6626 [View Article] [PubMed]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.001387
Loading
/content/journal/micro/10.1099/mic.0.001387
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error