Skip to content
1887

Abstract

The locus (orbitol annitol xidation) is found on the chromosome of ’s tripartite genome. Mutations at the locus reduce or abolish the ability of the bacterium to grow on several carbon sources, including sorbitol, mannitol, galactitol, -arabitol and maltitol. The contribution of the locus to the metabolism of these compounds has not been previously investigated. Genetic complementation of mutant strains revealed that is responsible for growth on sorbitol and galactitol, while restores growth on mannitol and -arabitol. Dehydrogenase assays demonstrate that SmoS and MtlK are NAD-dependent dehydrogenases catalysing the oxidation of their specific substrates. Transport experiments using a radiolabeled substrate indicate that sorbitol, mannitol and -arabitol are primarily transported into the cell by the ABC transporter encoded by . Additionally, it was found that a mutation in either , which is found in an operon that encodes the fructose ABC transporter, or a mutation in , which encodes fructose kinase, leads to the induction of mannitol transport.

Funding
This study was supported by the:
  • Natural Sciences and Engineering Research Council of Canada (Award RGPIN-2018-04966)
    • Principle Award Recipient: IvanJ. Oresnik
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001371
2023-07-28
2025-01-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/169/7/mic001371.html?itemId=/content/journal/micro/10.1099/mic.0.001371&mimeType=html&fmt=ahah

References

  1. Geddes BA, Oresnik IJ. The mechanism of symbiotic nitrogen fixation. In Hurst CJ. ed The Mechanistic Benefits of Microbial Symbionts (Advances in Environmental Microbiology Series vol 2 Springer International Publishing; 2016 pp 69–97
    [Google Scholar]
  2. Finan TM, Mcwhinnie E, Driscoll B, Watson RJ. Complex symbiotic phenotypes result from gluconeogenic mutations in Rhizobium meliloti. MPMI 1991; 4:386 [View Article]
    [Google Scholar]
  3. Finan TM, Oresnik I, Bottacin A. Mutants of Rhizobium meliloti defective in succinate metabolism. J Bacteriol 1988; 170:3396–3403 [View Article] [PubMed]
    [Google Scholar]
  4. Oresnik IJ, Pacarynuk LA, O’Brien SAP, Yost CK, Hynes MF. Plasmid-encoded catabolic genes in Rhizobium leguminosarum bv. trifolii: evidence for a plant-inducible rhamnose locus involved in competition for nodulation. Mol Plant Microbe Interact 1998; 11:1175–1185 [View Article]
    [Google Scholar]
  5. Fry J, Wood M, Poole PS. Investigation of myo-inositol catabolism in Rhizobium leguminosarum bv. viciae and its effect on nodulation competitiveness. Mol Plant Microbe Interact 2001; 14:1016–1025 [View Article] [PubMed]
    [Google Scholar]
  6. Stowers MD. Carbon metabolism in Rhizobium species. Annu Rev Microbiol 1985; 39:89–108 [View Article] [PubMed]
    [Google Scholar]
  7. Geddes BA, Oresnik IJ. Physiology, genetics, and biochemistry of carbon metabolism in the alphaproteobacterium Sinorhizobium meliloti. Can J Microbiol 2014; 60:491–507 [View Article] [PubMed]
    [Google Scholar]
  8. Kohler PRA, Zheng JY, Schoffers E, Rossbach S. Inositol catabolism, a key pathway in Sinorhizobium meliloti for competitive host nodulation. Appl Environ Microbiol 2010; 76:7972–7980 [View Article]
    [Google Scholar]
  9. Ding H, Yip CB, Geddes BA, Oresnik IJ, Hynes MF. Glycerol utilization by Rhizobium leguminosarum requires an ABC transporter and affects competition for nodulation. Microbiology 2012; 158:1369–1378 [View Article] [PubMed]
    [Google Scholar]
  10. Yost CK, Rath AM, Noel TC, Hynes MF. Characterization of genes involved in erythritol catabolism in Rhizobium leguminosarum bv. viciae. Microbiology 2006; 152:2061–2074 [View Article] [PubMed]
    [Google Scholar]
  11. Williamson JD, Jennings DB, Guo W-W, Pharr DM, Ehrenshaft M. Sugar alcohols, salt stress, and fungal resistance: polyols—multifunctional plant protection?. J Am Soc Hortic Sci 2002; 127:467–473 [View Article]
    [Google Scholar]
  12. Vincent JM. A Manual for the Practical Study of Root-Nodule Bacteria United Kingdom: Blackwell Scientific Publications; 1970
    [Google Scholar]
  13. Martinez De Drets G, Arias A. Metabolism of some polyols by Rhizobium meliloti. J Bacteriol 1970; 103:97–103 [View Article] [PubMed]
    [Google Scholar]
  14. Kohlmeier MG, Bailey-Elkin BA, Mark BL, Oresnik IJ. Characterization of the sorbitol dehydrogenase SmoS from Sinorhizobium meliloti 1021. Acta Crystallogr D Struct Biol 2021; 77:380–390 [View Article] [PubMed]
    [Google Scholar]
  15. Gardiol A, Arias A, Cerveñansky C, Gaggero C, Martínez-Drets G. Biochemical characterization of a fructokinase mutant of Rhizobium meliloti. J Bacteriol 1980; 144:12–16 [View Article] [PubMed]
    [Google Scholar]
  16. Arias A, Cerveńansky C, Gardiol A, Martínez-Drets G. Phosphoglucose isomerase mutant of Rhizobium meliloti. J Bacteriol 1979; 137:409–414 [View Article] [PubMed]
    [Google Scholar]
  17. Lambert A, Østerås M, Mandon K, Poggi M-C, Le Rudulier D. Fructose uptake in Sinorhizobium meliloti is mediated by a high-affinity ATP-binding cassette transport system. J Bacteriol 2001; 183:4709–4717 [View Article] [PubMed]
    [Google Scholar]
  18. Geddes BA, Oresnik IJ. Genetic characterization of a complex locus necessary for the transport and catabolism of erythritol, adonitol and L-arabitol in Sinorhizobium meliloti. Microbiology 2012; 158:2180–2191 [View Article] [PubMed]
    [Google Scholar]
  19. Galibert F, Finan TM, Long SR, Puhler A, Abola P et al. The composite genome of the legume symbiont Sinorhizobium meliloti. Science 2001; 293:668–672 [View Article] [PubMed]
    [Google Scholar]
  20. Biemans-Oldehinkel E, Doeven MK, Poolman B. ABC transporter architecture and regulatory roles of accessory domains. FEBS Lett 2006; 580:1023–1035 [View Article] [PubMed]
    [Google Scholar]
  21. Capela D, Barloy-Hubler F, Gouzy J, Bothe G, Ampe F et al. Analysis of the chromosome sequence of the legume symbiont Sinorhizobium meliloti strain 1021. Proc Natl Acad Sci U S A 2001; 98:9877–9882 [View Article] [PubMed]
    [Google Scholar]
  22. Cold Spring Harbor Protocols LB (Luria-Bertani) liquid medium. Cold Spring Harb Protoc 2006; 2006:db [View Article]
    [Google Scholar]
  23. Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual. Third ed Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press; 2001
    [Google Scholar]
  24. Finan TM, Hartweig E, LeMieux K, Bergman K, Walker GC et al. General transduction in Rhizobium meliloti. J Bacteriol 1984; 159:120–124 [View Article] [PubMed]
    [Google Scholar]
  25. Finan TM, Hirsch AM, Leigh JA, Johansen E, Kuldau GA et al. Symbiotic mutants of Rhizobium meliloti that uncouple plant from bacterial differentiation. Cell 1985; 40:869–877 [View Article] [PubMed]
    [Google Scholar]
  26. Poysti NJ, Loewen EDM, Wang Z, Oresnik IJ. Sinorhizobium meliloti pSymB carries genes necessary for arabinose transport and catabolism. Microbiology 2007; 153:727–736 [View Article] [PubMed]
    [Google Scholar]
  27. Wang C, Meek DJ, Panchal P, Boruvka N, Archibald FS et al. Isolation of poly-3-hydroxybutyrate metabolism genes from complex microbial communities by phenotypic complementation of bacterial mutants. Appl Environ Microbiol 2006; 72:384–391 [View Article] [PubMed]
    [Google Scholar]
  28. Geddes BA, Oresnik IJ. Inability to catabolize galactose leads to increased ability to compete for nodule occupancy in Sinorhizobium meliloti. J Bacteriol 2012; 194:5044–5053 [View Article] [PubMed]
    [Google Scholar]
  29. Clark SRD, Oresnik IJ, Hynes MF. RpoN of Rhizobium leguminosarum bv. viciae strain VF39SM plays a central role in FnrN-dependent microaerobic regulation of genes involved in nitrogen fixation. Mol Gen Genet 2001; 264:623–633 [View Article] [PubMed]
    [Google Scholar]
  30. Alexeyev MF. The pKNOCK series of broad-host-range mobilizable suicide vectors for gene knockout and targeted DNA insertion into the chromosome of gram-negative bacteria. Biotechniques 1999; 26:824–826 [View Article] [PubMed]
    [Google Scholar]
  31. Pickering BS, Oresnik IJ. Formate-dependent autotrophic growth in Sinorhizobium meliloti. J Bacteriol 2008; 190:6409–6418 [View Article] [PubMed]
    [Google Scholar]
  32. House BL, Mortimer MW, Kahn ML. New recombination methods for Sinorhizobium meliloti genetics. Appl Environ Microbiol 2004; 70:2806–2815 [View Article] [PubMed]
    [Google Scholar]
  33. Schroeder BK, House BL, Mortimer MW, Yurgel SN, Maloney SC et al. Development of a functional genomics platform for Sinorhizobium meliloti : construction of an ORFeome. Appl Environ Microbiol 2005; 71:5858–5864 [View Article]
    [Google Scholar]
  34. Richardson JS, Hynes MF, Oresnik IJ. A genetic locus necessary for rhamnose uptake and catabolism in Rhizobium leguminosarum bv. trifolii. J Bacteriol 2004; 186:8433–8442 [View Article] [PubMed]
    [Google Scholar]
  35. Anderson RL, Sapico VL. D-fructose (D-mannose) kinase. Methods Enzymol 1975; 42:39–43 [View Article] [PubMed]
    [Google Scholar]
  36. Kohlmeier MG, White CE, Fowler JE, Finan TM, Oresnik IJ. Galactitol catabolism in Sinorhizobium meliloti is dependent on a chromosomally encoded sorbitol dehydrogenase and a pSymB-encoded operon necessary for tagatose catabolism. Mol Genet Genomics 2019; 294:739–755 [View Article] [PubMed]
    [Google Scholar]
  37. Rivers D, Oresnik IJ. Carbohydrate kinase (RhaK)-dependent ABC transport of rhamnose in Rhizobium leguminosarum demonstrates genetic separation of kinase and transport activities. J Bacteriol 2013; 195:3424–3432 [View Article] [PubMed]
    [Google Scholar]
  38. Geddes BA, Oresnik IJ. Genetic characterization of a complex locus necessary for the transport and catabolism of erythritol, adonitol and L-arabitol in Sinorhizobium meliloti. Microbiology 2012; 158:2180–2191 [View Article] [PubMed]
    [Google Scholar]
  39. Cowie A, Cheng J, Sibley CD, Fong Y, Zaheer R et al. An integrated approach to functional genomics: construction of a novel reporter gene fusion library for Sinorhizobium meliloti. Appl Environ Microbiol 2006; 72:7156–7167 [View Article] [PubMed]
    [Google Scholar]
  40. Jacob AI, Adham SAI, Capstick DS, Clark SRD, Spence T et al. Mutational analysis of the Sinorhizobium meliloti short-chain dehydrogenase/reductase family reveals substantial contribution to symbiosis and catabolic diversity. Mol Plant Microbe Interact 2008; 21:979–987 [View Article] [PubMed]
    [Google Scholar]
  41. Stein MA, Schäfer A, Giffhorn F. Cloning, nucleotide sequence, and overexpression of smoS, a component of a novel operon encoding an ABC transporter and polyol dehydrogenases of Rhodobacter sphaeroides Si4. J Bacteriol 1997; 179:6335–6340 [View Article] [PubMed]
    [Google Scholar]
  42. Mauchline TH, Fowler JE, East AK, Sartor AL, Zaheer R et al. Mapping the Sinorhizobium meliloti 1021 solute-binding protein-dependent transportome. Proc Natl Acad Sci 2006; 103:17933–17938 [View Article] [PubMed]
    [Google Scholar]
  43. Mortlock RP. Microorganisms as Model Systems for Studying Evolution New York: Plenum Press; 1984
    [Google Scholar]
  44. Saxild HH, Andersen LN, Hammer K. Dra-nupC-pdp operon of Bacillus subtilis: nucleotide sequence, induction by deoxyribonucleosides, and transcriptional regulation by the deoR-encoded DeoR repressor protein. J Bacteriol 1996; 178:424–434 [View Article] [PubMed]
    [Google Scholar]
  45. Geddes BA, Pickering BS, Poysti NJ, Collins H, Yudistira H et al. A locus necessary for the transport and catabolism of erythritol in Sinorhizobium meliloti. Microbiology 2010; 156:2970–2981 [View Article] [PubMed]
    [Google Scholar]
  46. Fennington GJ, Hughes TA. The fructokinase from Rhizobium leguminosarum biovar trifolii belongs to group I fructokinase enzymes and is encoded separately from other carbohydrate metabolism enzymes. Microbiology 1996; 142 (Pt 2):321–330 [View Article] [PubMed]
    [Google Scholar]
  47. Richardson JS, Carpena X, Switala J, Perez-Luque R, Donald LJ et al. RhaU of Rhizobium leguminosarum is a rhamnose mutarotase. J Bacteriol 2008; 190:2903–2910 [View Article] [PubMed]
    [Google Scholar]
  48. diCenzo GC, Benedict AB, Fondi M, Walker GC, Finan TM et al. Robustness encoded across essential and accessory replicons of the ecologically versatile bacterium Sinorhizobium meliloti. PLoS Genet 2018; 14:e1007357 [View Article]
    [Google Scholar]
  49. Börnke F, Hajirezaei M, Sonnewald U. Cloning and characterization of the gene cluster for palatinose metabolism from the phytopathogenic bacterium Erwinia rhapontici. J Bacteriol 2001; 183:2425–2430 [View Article] [PubMed]
    [Google Scholar]
  50. Ampomah OY, Avetisyan A, Hansen E, Svenson J, Huser T et al. The thuEFGKAB operon of Rhizobia and Agrobacterium tumefaciens codes for transport of trehalose, maltitol, and isomers of sucrose and their assimilation through the formation of their 3-keto derivatives. J Bacteriol 2013; 195:3797–3807 [View Article] [PubMed]
    [Google Scholar]
  51. Walshaw DL, Reid CJ, Poole PS. The general amino acid permease of Rhizobium leguminosarum strain 3841 is negatively regulated by the Ntr system. FEMS Microbiol Lett 1997; 152:57–64 [View Article] [PubMed]
    [Google Scholar]
  52. Rivers DMR, Oresnik IJ. The sugar kinase that is necessary for the catabolism of rhamnose in Rhizobium leguminosarum directly interacts with the ABC transporter necessary for rhamnose transport. J Bacteriol 2015; 197:3812–3821 [View Article] [PubMed]
    [Google Scholar]
  53. Meade HM, Long SR, Ruvkun GB, Brown SE, Ausubel FM. Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J Bacteriol 1982; 149:114–122 [View Article]
    [Google Scholar]
  54. Yuan ZC, Zaheer R, Finan TM. Regulation and properties of PstSCAB, a high-affinity, high-velocity phosphate transport system of Sinorhizobium meliloti. J Bacteriol 2006; 188:1089–1102 [View Article] [PubMed]
    [Google Scholar]
  55. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol 1983; 166:557–580 [View Article] [PubMed]
    [Google Scholar]
  56. House BL, Mortimer MW, Kahn ML. New recombination methods for Sinorhizobium meliloti genetics. Appl Environ Microbiol 2004; 70:2806–2815 [View Article] [PubMed]
    [Google Scholar]
  57. Finan TM, Kunkel B, De Vos GF, Signer ER. Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J Bacteriol 1986; 167:66–72 [View Article] [PubMed]
    [Google Scholar]
  58. Clark SRD, Oresnik IJ, Hynes MF. RpoN of Rhizobium leguminosarum bv. viciae strain VF39SM plays a central role in FnrN-dependent microaerobic regulation of genes involved in nitrogen fixation. Mol Gen Genet 2001; 264:623–633 [View Article] [PubMed]
    [Google Scholar]
  59. Jones JDG, Gutterson N. An efficient mobilizable cosmid vector, pRK7813, and its use in a rapid method for marker exchange in Pseudomonas fluorescens strain HV37a. Gene 1987; 61:299–306 [View Article]
    [Google Scholar]
  60. Beringer JE, Beynon JL, Buchanan-wollaston AV, Johnston AWB. Transfer of the drug-resistance transposon Tn5 to Rhizobium. Nature 1978; 276:633–634 [View Article]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.001371
Loading
/content/journal/micro/10.1099/mic.0.001371
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error