1887

Abstract

Pozol is a traditional prehispanic Mexican beverage made from fermented nixtamal dough; it is still part of everyday life in many communities due to its nutritional properties. It is the product of spontaneous fermentation and has a complex microbiota composed primarily of lactic acid bacteria (LAB). Although this is a beverage that has been used for centuries, the microbial processes that participate in this fermented beverage are not well understood. We fermented corn dough to produce pozol and sampled it at four key times to follow the community and metabolic changes (0, 9 24 and 48 h) by shotgun metagenomic sequencing to determine structural changes in the bacterial community, as well as metabolic genes used for substrate fermentation, nutritional properties and product safety. We found a core of 25 abundant genera throughout the 4 key fermentation times, with the genus being the most prevalent throughout fermentation. We also performed an analysis focused on metagenomic assembled genomes (MAGs) to identify species from the most abundant genera. Genes involving starch, plant cell wall (PCW), fructan and sucrose degradation were found throughout fermentation and in MAGs, indicating the metabolic potential of the pozol microbiota to degrade these carbohydrates. Complete metabolic modules responsible for amino acid and vitamin biosynthesis increased considerably during fermentation, and were also found to be abundant in MAG, highlighting the bacterial contribution to the well-known nutritional properties attributed to pozol. Further, clusters of genes containing CAZymes (CGCs) and essential amino acids and vitamins were found in the reconstructed MAGs for abundant species in pozol. The results of this study contribute to our understanding of the metabolic role of micro-organisms in the transformation of corn to produce this traditional beverage and their contribution to the nutritional impact that pozol has had for centuries in the traditional cuisine of southeast Mexico.

Keyword(s): bioinformatics , CAZy , corn , maize , metagenomics and pozol
Funding
This study was supported by the:
  • Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México (Award IN206918)
    • Principle Award Recipient: LorenzoSegovia
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001355
2023-07-06
2024-07-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/169/7/mic001355.html?itemId=/content/journal/micro/10.1099/mic.0.001355&mimeType=html&fmt=ahah

References

  1. Wolfe BE, Dutton RJ. Fermented foods as experimentally tractable microbial ecosystems. Cell 2015; 161:49–55 [View Article] [PubMed]
    [Google Scholar]
  2. Bourdichon F, Casaregola S, Farrokh C, Frisvad JC, Gerds ML et al. Food fermentations: microorganisms with technological beneficial use. Int J Food Microbiol 2012; 154:87–97 [View Article] [PubMed]
    [Google Scholar]
  3. Wacher C. La biotecnología alimentaria antigua: los alimentos fermentados; 2014 http://www.revista.unam.mx/vol.15/num8/art64
  4. De Filippis F, Parente E, Ercolini D. Metagenomics insights into food fermentations. Microb Biotechnol 2017; 10:91–102 [View Article] [PubMed]
    [Google Scholar]
  5. Escobar-Zepeda A, Godoy-Lozano EE, Raggi L, Segovia L, Merino E et al. Analysis of sequencing strategies and tools for taxonomic annotation: defining standards for progressive metagenomics. Sci Rep 2018; 8:12034 [View Article] [PubMed]
    [Google Scholar]
  6. Chaves-López C, Rossi C, Maggio F, Paparella A, Serio A. Changes occurring in spontaneous maize fermentation: an overview. Fermentation 2020; 6:36 [View Article]
    [Google Scholar]
  7. Cruz Ulloa S, Ulloa M. Alimentos Fermentados De Maiz Consumidos En Mexico Y Otros Paises Latinoamericanos. 423–458; 1973 http://repositorio.fciencias.unam.mx:8080/jspui/bitstream/11154/142447/1/34VAlimentosFermentados.pdf
  8. Nuraida L, Wacher MC, Owens JD. Microbiology of pozol, a Mexican fermented maize dough. World J Microbiol Biotechnol 1995; 11:567–571 [View Article] [PubMed]
    [Google Scholar]
  9. Rizo J, Rogel MA, Guillén D, Wacher C, Martinez-Romero E et al. Nitrogen fixation in Pozol, a traditional fermented beverage. Appl Environ Microbiol 2020; 86:e00588-20 [View Article] [PubMed]
    [Google Scholar]
  10. Wacher C, Cañas A, Cook PE, Barzana E, Owens JD. Sources of microorganisms in pozol, a traditional Mexican fermented maize dough. World J Microbiol Biotechnol 1993; 9:269–274 [View Article] [PubMed]
    [Google Scholar]
  11. Ampe F, ben Omar N, Moizan C, Wacher C, Guyot JP. Polyphasic study of the spatial distribution of microorganisms in Mexican pozol, a fermented maize dough, demonstrates the need for cultivation-independent methods to investigate traditional fermentations. Appl Environ Microbiol 1999; 65:5464–5473 [View Article] [PubMed]
    [Google Scholar]
  12. Ampe F, ben Omar N, Guyot JP. Culture-independent quantification of physiologically-active microbial groups in fermented foods using rRNA-targeted oligonucleotide probes: application to pozol, a Mexican lactic acid fermented maize dough. J Appl Microbiol 1999; 87:131–140 [View Article] [PubMed]
    [Google Scholar]
  13. ben Omar N, Ampe F. Microbial community dynamics during production of the Mexican fermented maize dough pozol. Appl Environ Microbiol 2000; 66:3664–3673 [View Article] [PubMed]
    [Google Scholar]
  14. Díaz-Ruiz G, Guyot JP, Ruiz-Teran F, Morlon-Guyot J, Wacher C. Microbial and physiological characterization of weakly amylolytic but fast-growing lactic acid bacteria: a functional role in supporting microbial diversity in pozol, a Mexican fermented maize beverage. Appl Environ Microbiol 2003; 69:4367–4374 [View Article] [PubMed]
    [Google Scholar]
  15. Escalante A, Wacher C, Farrés A. Lactic acid bacterial diversity in the traditional mexican fermented dough pozol as determined by 16S rDNA sequence analysis. Int J Food Microbiol 2001; 64:21–31 [View Article] [PubMed]
    [Google Scholar]
  16. Cooper-Bribiesca B, Navarro-Ocaña A, Díaz-Ruiz G, Aguilar-Osorio G, Rodríguez-Sanoja R et al. Lactic acid fermentation of arabinoxylan from nejayote by Streptococcus infantarius ssp. infantarius 25124 isolated from Pozol. Front Microbiol 2018; 9:3061 [View Article]
    [Google Scholar]
  17. López-Hernández M, Rodríguez-Alegría ME, López-Munguía A, Wacher C. Evaluation of xylan as carbon source for Weissella spp., a predominant strain in pozol fermentation. LWT 2018; 89:192–197 [View Article]
    [Google Scholar]
  18. Patel A, Shah N, Prajapati JB. Biosynthesis of vitamins and enzymes in fermented foods by lactic acid bacteria and related genera-A promising approach. Croatian J Food Sci Technol 2013; 5:85–91
    [Google Scholar]
  19. Şanlier N, Gökcen BB, Sezgin AC. Health benefits of fermented foods. Crit Rev Food Sci Nutr 2019; 59:506–527
    [Google Scholar]
  20. Cravioto O, Cravioto G, Massieu H, Guzman J. El Pozol, forma Indígena de Consumir El Maíz en El Sureste de México Y su Aporte de Nutrientes a La Dieta. Ciencia 1955; 15:27–30
    [Google Scholar]
  21. Hernández-Oaxaca D, López-Sánchez R, Lozano L, Wacher-Rodarte C, Segovia L et al. Diversity of Weissella confusa in Pozol and its carbohydrate metabolism. Front Microbiol 2021; 12: [View Article]
    [Google Scholar]
  22. Nakayama Y, Yamaguchi H, Einaga N, Esumi M. Pitfalls of DNA quantification using DNA-binding fluorescent dyes and suggested solutions. PLoS One 2016; 11:e0150528 [View Article] [PubMed]
    [Google Scholar]
  23. Illumina TruSeq ® DNA PCR-Free Library Prep Reference Guide Illumina; 2015
    [Google Scholar]
  24. Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol 2019; 20:1–13 [View Article]
    [Google Scholar]
  25. Oksanen J, Guillaume F, Friendly M, Kindt R, Legendre P et al. vegan: Community Ecology Package. R package version 2.5-7; 2020 https://CRAN.R-project.org/package=vegan
  26. Li H. Aligning Sequence Reads, Clone Sequences and Assembly Contigs with BWA-MEM [q-Bio.GN] 2013 pp 1–3
    [Google Scholar]
  27. Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015; 31:1674–1676 [View Article] [PubMed]
    [Google Scholar]
  28. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article] [PubMed]
    [Google Scholar]
  29. Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol 2011; 7:e1002195 [View Article] [PubMed]
    [Google Scholar]
  30. Zhang H, Yohe T, Huang L, Entwistle S, Wu P et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 2018; 46:W95–W101 [View Article]
    [Google Scholar]
  31. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 2016; 428:726–731 [View Article] [PubMed]
    [Google Scholar]
  32. Tamames J, Puente-Sánchez F. SqueezeMeta, a highly portable, fully automatic metagenomic analysis pipeline. Front Microbiol 2018; 9:3349 [View Article] [PubMed]
    [Google Scholar]
  33. Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH, Hancock J. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2020; 36:1925–1927 [View Article]
    [Google Scholar]
  34. Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M et al. KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 2020; 36:2251–2252 [View Article] [PubMed]
    [Google Scholar]
  35. Graham ED, Heidelberg JF, Tully BJ. Potential for primary productivity in a globally-distributed bacterial phototroph. ISME J 2018; 12:1861–1866 [View Article] [PubMed]
    [Google Scholar]
  36. Cárdenas C, Barkla BJ, Wacher C, Delgado-Olivares L, Rodríguez-Sanoja R. Protein extraction method for the proteomic study of a Mexican traditional fermented starchy food. J Proteomics 2014; 111:139–147 [View Article] [PubMed]
    [Google Scholar]
  37. Blandino A, Al-Aseeri ME, Pandiella SS, Cantero D, Webb C. Cereal-based fermented foods and beverages. Food Res Int 2003; 36:527–543 [View Article]
    [Google Scholar]
  38. Lee SH, Ahn MJ, Hong JS, Lee JH. Diversity and community analysis of fermenting bacteria isolated from eight major Korean fermented foods using arbitrary-primed PCR and 16S rRNA gene sequencing. J Korean Soc Appl Biol Chem 2015; 58:453–461 [View Article]
    [Google Scholar]
  39. Collins MD, Lund BM, Farrow JAE, Schleifer KH. Chemotaxonomic study of an alkalophilic bacterium, Exiguobacterium aurantiacum gen. nov., sp. nov. Microbiology 1983; 129:2037–2042 [View Article]
    [Google Scholar]
  40. Vishnivetskaya TA, Kathariou S, Tiedje JM. The Exiguobacterium genus: biodiversity and biogeography. Extremophiles 2009; 13:541–555 [View Article] [PubMed]
    [Google Scholar]
  41. Crespim E, Zanphorlin LM, de Souza FHM, Diogo JA, Gazolla AC et al. A novel cold-adapted and glucose-tolerant GH1 β-glucosidase from Exiguobacterium antarcticum B7. Int J Biol Macromol 2016; 82:375–380 [View Article] [PubMed]
    [Google Scholar]
  42. Nevin S, Büşra Başar G, Aybüke Ceyhun S. Health benefits of fermented foods. Crit Rev Food Sci Nutr 2019; 59:506527 [View Article]
    [Google Scholar]
  43. Rodríguez-Saavedra C, Rodríguez-Sanoja R, Guillén D, Wacher C, Díaz-Ruiz G. Streptococcus infantarius 25124 isolated from pozol produces a high molecular weight amylopullulanase, a key enzyme for niche colonization. Amylase 2021; 5:1–12 [View Article]
    [Google Scholar]
  44. Sánchez-Castillo CP, Englyst HN, Hudson GJ, Lara JJ, de Lourdes Solano M et al. The non-starch polysaccharide content of Mexican foods. J Food Compost Anal 1999; 12:293–314 [View Article]
    [Google Scholar]
  45. Santillana R. Desarrollo de un Método Por Cromatografía Líquida de Alta Eficiencia Para el Análisis Químico de Nixtamal y Pozol. Master thesis, Universidad Nacional Autónoma de México, Ciudad de Mexico; 1995
  46. Nordberg Karlsson E, Schmitz E, Linares-Pastén JA, Adlercreutz P. Endo-xylanases as tools for production of substituted xylooligosaccharides with prebiotic properties. Appl Microbiol Biotechnol 2018; 102:9081–9088 [View Article]
    [Google Scholar]
  47. Singh RD, Banerjee J, Arora A. Prebiotic potential of oligosaccharides: a focus on xylan derived oligosaccharides. Bioact Carbohydr Diet Fibre 2015; 5:19–30 [View Article]
    [Google Scholar]
  48. Lynch KM, Zannini E, Coffey A, Arendt EK. Lactic acid bacteria exopolysaccharides in foods and beverages: isolation, properties, characterization, and health benefits. Annu Rev Food Sci Technol 2018; 9:155–176 [View Article] [PubMed]
    [Google Scholar]
  49. Meng X, Gangoiti J, Bai Y, Pijning T, Van Leeuwen SS et al. Structure–function relationships of family GH70 glucansucrase and 4,6-α-glucanotransferase enzymes, and their evolutionary relationships with family GH13 enzymes. Cell Mol Life Sci 2016; 73:2681–2706 [View Article]
    [Google Scholar]
  50. Schmid J, Sieber V, Rehm B. Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front Microbiol 2015; 6:496 [View Article] [PubMed]
    [Google Scholar]
  51. Olivares-Illana V, Wacher-Odarte C, Le Borgne S, López-Munguía A. Characterization of a cell-associated inulosucrase from a novel source: a Leuconostoc citreum strain isolated from Pozol, a fermented corn beverage of Mayan origin. J Ind Microbiol Biotechnol 2002; 28:112–117 [View Article] [PubMed]
    [Google Scholar]
  52. Olivares-Illana V, López-Munguía A, Olvera C. Molecular characterization of inulosucrase from Leuconostoc citreum: a fructosyltransferase within a glucosyltransferase. J Bacteriol 2003; 185:3606–3612 [View Article] [PubMed]
    [Google Scholar]
  53. Patel A, Prajapati JB, Holst O, Ljungh A. Determining probiotic potential of exopolysaccharide producing lactic acid bacteria isolated from vegetables and traditional Indian fermented food products. Food Bioscience 2014; 5:27–33 [View Article]
    [Google Scholar]
  54. Zannini E, Waters DM, Coffey A, Arendt EK. Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides. Appl Microbiol Biotechnol 2016; 100:1121–1135 [View Article] [PubMed]
    [Google Scholar]
  55. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  56. Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol 2018; 3:836–843 [View Article] [PubMed]
    [Google Scholar]
  57. Abriouel H, Ben Omar N, López RL, Martínez-Cañamero M, Keleke S et al. Culture-independent analysis of the microbial composition of the African traditional fermented foods poto poto and dégué by using three different DNA extraction methods. Int J Food Microbiol 2006; 111:228–233 [View Article] [PubMed]
    [Google Scholar]
  58. Elizaquível P, Pérez-Cataluña A, Yépez A, Aristimuño C, Jiménez E et al. Pyrosequencing vs. culture-dependent approaches to analyze lactic acid bacteria associated to chicha, a traditional maize-based fermented beverage from Northwestern Argentina. Int J Food Microbiol 2015; 198:9–18 [View Article] [PubMed]
    [Google Scholar]
  59. De Filippis F, La Storia A, Stellato G, Gatti M, Ercolini D. A selected core microbiome drives the early stages of three popular italian cheese manufactures. PLoS One 2014; 9:e89680 [View Article] [PubMed]
    [Google Scholar]
  60. Ricci G, Ferrario C, Borgo F, Rollando A, Fortina MG. Genome sequences of Lactococcus garvieae TB25, isolated from Italian cheese, and Lactococcus garvieae LG9, isolated from Italian rainbow trout. J Bacteriol 2012; 194:1249–1250 [View Article] [PubMed]
    [Google Scholar]
  61. Jans C, Follador R, Lacroix C, Meile L, Stevens MJA. Complete genome sequence of the African dairy isolate Streptococcus infantarius subsp. infantarius strain CJ18. J Bacteriol 2012; 194:2105–2106 [View Article]
    [Google Scholar]
  62. Baele M, Devriese LA, Vancanneyt M, Vaneechoutte M, Snauwaert C et al. Emended description of Streptococcus ferus isolated from pigs and rats. Int J Syst Evol Microbiol 2003; 53:143–146 [View Article]
    [Google Scholar]
  63. Saw JH, Mountain BW, Feng L, Omelchenko MV, Hou S et al. Encapsulated in silica: genome, proteome and physiology of the thermophilic bacterium Anoxybacillus flavithermus WK1. Genome Biol 2008; 9:R161 [View Article]
    [Google Scholar]
  64. Fornasari ME, Rossetti L, Remagni C, Giraffa G. Quantification of Enterococcus italicus in traditional Italian cheeses by fluorescence whole-cell hybridization. Syst Appl Microbiol 2008; 31:223–230 [View Article] [PubMed]
    [Google Scholar]
  65. Escalante A, Wacher C, Farrés A. Lactic acid bacterial diversity in the traditional mexican fermented dough pozol as determined by 16S rDNA sequence analysis. Int J Food Microbiol 2001; 64:21–31 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001355
Loading
/content/journal/micro/10.1099/mic.0.001355
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error