1887

Abstract

injects over 40 virulence factors, termed effectors, into host cells to subvert diverse host cellular processes. Of these 40 effectors, at least 25 have been described as mediating eukaryotic-like, biochemical post-translational modifications (PTMs) of host proteins, altering the outcome of infection. The downstream changes mediated by an effector’s enzymatic activity range from highly specific to multifunctional, and altogether their combined action impacts the function of an impressive array of host cellular processes, including signal transduction, membrane trafficking, and both innate and adaptive immune responses. and related Gram-negative pathogens have been a rich resource for the discovery of unique enzymatic activities, expanding our understanding of host signalling networks, bacterial pathogenesis as well as basic biochemistry. In this review, we provide an up-to-date assessment of host manipulation mediated by the type III secretion system injectosome, exploring the cellular effects of diverse effector activities with a particular focus on PTMs and the implications for infection outcomes. We also highlight activities and functions of numerous effectors that remain poorly characterized.

Funding
This study was supported by the:
  • Sylvia and Charles Viertel Charitable Foundation (Award SMRF22008)
    • Principle Award Recipient: JaclynS Pearson
  • Medical Research Council (Award MR/V031058/1)
    • Principle Award Recipient: JaninaMuench
  • Medical Research Council (Award MR/V031058/1)
    • Principle Award Recipient: InesDiaz Del Olmo
  • Medical Research Council (Award MR/V031058/1)
    • Principle Award Recipient: TeresaL Thurston
  • Biotechnology and Biological Sciences Research Council (Award BB/R011834/)
    • Principle Award Recipient: TeresaL Thurston
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001342
2023-06-06
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/169/6/mic001342.html?itemId=/content/journal/micro/10.1099/mic.0.001342&mimeType=html&fmt=ahah

References

  1. Kirk MD, Pires SM, Black RE, Caipo M, Crump JA et al. World Health Organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: a data synthesis. PLoS Med 2015; 12:e1001921 [View Article]
    [Google Scholar]
  2. Lee H, Yoon Y. Etiological agents implicated in foodborne illness world wide. Food Sci Anim Resour 2021; 41:1–7 [View Article]
    [Google Scholar]
  3. Pires SM, Desta BN, Mughini-Gras L, Mmbaga BT, Fayemi OE et al. Burden of foodborne diseases: think global, act local. Curr Opin Food Sci 2021; 39:152–159 [View Article] [PubMed]
    [Google Scholar]
  4. Chang Y-J, Chen Y-C, Chen N-W, Hsu Y-J, Chu H-H et al. Changing antimicrobial resistance and epidemiology of non-typhoidal Salmonella infection in Taiwanese children. Front Microbiol 2021; 12:648008 [View Article] [PubMed]
    [Google Scholar]
  5. Holohan N, Wallat M, Hai Yen Luu T, Clark E, Truong DTQ et al. Analysis of antimicrobial resistance in non-typhoidal Salmonella collected from pork retail outlets and slaughterhouses in Vietnam using whole genome sequencing. Front Vet Sci 2022; 9:816279 [View Article] [PubMed]
    [Google Scholar]
  6. Parisi A, Phuong TLT, Mather AE, Jombart T, Tuyen HT et al. The role of animals as a source of antimicrobial resistant nontyphoidal Salmonella causing invasive and non-invasive human disease in Vietnam. Infect Genet Evol 2020; 85:104534 [View Article] [PubMed]
    [Google Scholar]
  7. Williamson DA, Lane CR, Easton M, Valcanis M, Strachan J et al. Increasing antimicrobial resistance in nontyphoidal Salmonella isolates in Australia from 1979 to 2015. Antimicrob Agents Chemother 2018; 62:e02012–17 [View Article]
    [Google Scholar]
  8. Coburn B, Sekirov I, Finlay BB. Type III secretion systems and disease. Clin Microbiol Rev 2007; 20:535–549 [View Article] [PubMed]
    [Google Scholar]
  9. Raffatellu M, Wilson RP, Chessa D, Andrews-Polymenis H, Tran QT et al. SipA, SopA, SopB, SopD, and SopE2 contribute to Salmonella enterica serotype Typhimurium invasion of epithelial cells. Infect Immun 2005; 73:146–154 [View Article]
    [Google Scholar]
  10. McGhie EJ, Brawn LC, Hume PJ, Humphreys D, Koronakis V. Salmonella takes control: effector-driven manipulation of the host. Curr Opin Microbiol 2009; 12:117–124 [View Article] [PubMed]
    [Google Scholar]
  11. Jennings E, Thurston TLM, Holden DW. Salmonella SPI-2 type III secretion system effectors: molecular mechanisms and physiological consequences. Cell Host Microbe 2017; 22:217–231 [View Article] [PubMed]
    [Google Scholar]
  12. Lou L, Zhang P, Piao R, Wang Y. Salmonella pathogenicity island 1 (SPI-1) and its complex regulatory network. Front Cell Infect Microbiol 2019; 9:270 [View Article] [PubMed]
    [Google Scholar]
  13. Macek B, Forchhammer K, Hardouin J, Weber-Ban E, Grangeasse C et al. Protein post-translational modifications in bacteria. Nat Rev Microbiol 2019; 17:651–664 [View Article]
    [Google Scholar]
  14. Chuh KN, Pratt MR. Chemical methods for the proteome-wide identification of posttranslationally modified proteins. Curr Opin Chem Biol 2015; 24:27–37 [View Article] [PubMed]
    [Google Scholar]
  15. Farley AR, Link AJ. Chapter 40 identification and quantification of protein posttranslational modifications. In Burgess RR, Deutscher MP. eds Methods in Enzymology 463: Academic Press; 2009 pp 725–763
    [Google Scholar]
  16. Galán JE, Curtiss R. Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc Natl Acad Sci 1989; 86:6383–6387 [View Article]
    [Google Scholar]
  17. Hensel M, Shea JE, Gleeson C, Jones MD, Dalton E et al. Simultaneous identification of bacterial virulence genes by negative selection. Science 1995; 269:400–403 [View Article] [PubMed]
    [Google Scholar]
  18. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science 2002; 298:1912–1934 [View Article] [PubMed]
    [Google Scholar]
  19. Hahn M, Covarrubias-Pinto A, Herhaus L, Satpathy S, Klann K et al. SIK2 orchestrates actin-dependent host response upon Salmonella infection. Proc Natl Acad Sci 2021; 118:e2024144118 [View Article] [PubMed]
    [Google Scholar]
  20. Imami K, Bhavsar AP, Yu H, Brown NF, Rogers LD et al. Global impact of Salmonella pathogenicity island 2-secreted effectors on the host phosphoproteome. Mol Cell Proteomics 2013; 12:1632–1643 [View Article] [PubMed]
    [Google Scholar]
  21. Heggie A, Cerny O, Holden DW. SteC and the intracellular Salmonella-induced F-actin meshwork. Cell Microbiol 2021; 23:e13315 [View Article] [PubMed]
    [Google Scholar]
  22. Poh J, Odendall C, Spanos A, Boyle C, Liu M et al. SteC is a Salmonella kinase required for SPI-2-dependent F-actin remodelling. Cell Microbiol 2008; 10:20–30 [View Article] [PubMed]
    [Google Scholar]
  23. Odendall C, Rolhion N, Förster A, Poh J, Lamont DJ et al. The Salmonella kinase SteC targets the MAP kinase MEK to regulate the host actin cytoskeleton. Cell Host Microbe 2012; 12:657–668 [View Article] [PubMed]
    [Google Scholar]
  24. Walch P, Selkrig J, Knodler LA, Rettel M, Stein F et al. Global mapping of Salmonella enterica-host protein-protein interactions during infection. Cell Host Microbe 2021; 29:1316–1332 [View Article] [PubMed]
    [Google Scholar]
  25. Park ER, Eblen ST, Catling AD. MEK1 activation by PAK: a novel mechanism. Cell Signal 2007; 19:1488–1496 [View Article] [PubMed]
    [Google Scholar]
  26. Kaniga K, Uralil J, Bliska JB, Galán JE. A secreted protein tyrosine phosphatase with modular effector domains in the bacterial pathogen Salmonella typhimurlum. Mol Microbiol 1996; 21:633–641 [View Article]
    [Google Scholar]
  27. Murli S, Watson RO, Galán JE. Role of tyrosine kinases and the tyrosine phosphatase SptP in the interaction of Salmonella with host cells. Cell Microbiol 2001; 3:795–810 [View Article] [PubMed]
    [Google Scholar]
  28. Pearl LH, Barford D. Regulation of protein kinases in insulin, growth factor and Wnt signalling. Curr Opin Struct Biol 2002; 12:761–767 [View Article] [PubMed]
    [Google Scholar]
  29. Stuckey JA, Schubert HL, Fauman EB, Zhang Z-Y, Dixon JE et al. Crystal structure of Yersinia protein tyrosine phosphatase at 2.5 A and the complex with tungstate. Nature 1994; 370:571–575 [View Article] [PubMed]
    [Google Scholar]
  30. Scheffzek K, Ahmadian MR, Wittinghofer A. GTPase-activating proteins: helping hands to complement an active site. Trends Biochem Sci 1998; 23:257–262 [View Article] [PubMed]
    [Google Scholar]
  31. Evdokimov AG, Tropea JE, Routzahn KM, Waugh DS. Crystal structure of the Yersinia pestis GTPase activator YopE. Protein Sci 2002; 11:401–408 [View Article] [PubMed]
    [Google Scholar]
  32. Würtele M, Renault L, Barbieri JT, Wittinghofer A, Wolf E. Structure of the ExoS GTPase activating domain. FEBS Lett 2001; 491:26–29 [View Article] [PubMed]
    [Google Scholar]
  33. Chen L-M, Hobbie S, Galán JE. Requirement of CDC42 for Salmonella -induced cytoskeletal and nuclear responses. Science 1996; 274:2115–2118 [View Article]
    [Google Scholar]
  34. Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 1992; 70:401–410 [View Article]
    [Google Scholar]
  35. Stebbins CE, Galán JE. Modulation of host signaling by a bacterial mimic: structure of the Salmonella effector SptP bound to Rac1. Mol Cell 2000; 6:1449–1460 [View Article] [PubMed]
    [Google Scholar]
  36. Fu Y, Galán JE. A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 1999; 401:293–297 [View Article]
    [Google Scholar]
  37. Hardt W-D, Chen L-M, Schuebel KE, Bustelo XR, Galán JE. S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 1998; 93:815–826 [View Article] [PubMed]
    [Google Scholar]
  38. Kubori T, Galán JE. Temporal regulation of Salmonella virulence effector function by proteasome-dependent protein degradation. Cell 2003; 115:333–342 [View Article]
    [Google Scholar]
  39. Lhocine N, Arena ET, Bomme P, Ubelmann F, Prévost M-C et al. Apical invasion of intestinal epithelial cells by Salmonella typhimurium requires villin to remodel the brush border actin cytoskeleton. Cell Host & Microbe 2015; 17:164–177 [View Article]
    [Google Scholar]
  40. Humphreys D, Hume PJ, Koronakis V. The Salmonella effector SptP dephosphorylates host AAA+ ATPase VCP to promote development of its intracellular replicative niche. Cell Host Microbe 2009; 5:225–233 [View Article] [PubMed]
    [Google Scholar]
  41. Choi HW, Brooking-Dixon R, Neupane S, Lee C-J, Miao EA et al. Salmonella typhimurium impedes innate immunity with a mast-cell-suppressing protein tyrosine phosphatase, SptP. Immunity 2013; 39:1108–1120 [View Article] [PubMed]
    [Google Scholar]
  42. Zhu Y, Li H, Long C, Hu L, Xu H et al. Structural insights into the enzymatic mechanism of the pathogenic MAPK phosphothreonine lyase. Mol Cell 2007; 28:899–913 [View Article] [PubMed]
    [Google Scholar]
  43. Johnson R, Byrne A, Berger CN, Klemm E, Crepin VF et al. The type III secretion system effector SptP of Salmonella enterica serovar Typhi. J Bacteriol 2017; 199:e00647–16 [View Article]
    [Google Scholar]
  44. Chen L-M, Bagrodia S, Cerione RA, Galán JE. Requirement of p21-activated kinase (PAK) for Salmonella typhimurium-induced nuclear responses. J Exp Med 1999; 189:1479–1488 [View Article] [PubMed]
    [Google Scholar]
  45. Lin SL, Le TX, Cowen DS. SptP, a Salmonella typhimurium type III-secreted protein, inhibits the mitogen-activated protein kinase pathway by inhibiting Raf activation. Cell Microbiol 2003; 5:267–275 [View Article] [PubMed]
    [Google Scholar]
  46. Norris FA, Wilson MP, Wallis TS, Galyov EE, Majerus PW. SopB, a protein required for virulence of Salmonella dublin, is an inositol phosphate phosphatase. Proc Natl Acad Sci 1998; 95:14057–14059 [View Article] [PubMed]
    [Google Scholar]
  47. Patel JC, Galán JE. Differential activation and function of Rho GTPases during Salmonella-host cell interactions. J Cell Biol 2006; 175:453–463 [View Article] [PubMed]
    [Google Scholar]
  48. Patel JC, Hueffer K, Lam TT, Galán JE. Diversification of a Salmonella virulence protein function by ubiquitin-dependent differential localization. Cell 2009; 137:283–294 [View Article] [PubMed]
    [Google Scholar]
  49. Steele-Mortimer O, Knodler LA, Marcus SL, Scheid MP, Goh B et al. Activation of Akt/protein kinase B in epithelial cells by the Salmonella typhimurium effector sigD. J Biol Chem 2000; 275:37718–37724 [View Article] [PubMed]
    [Google Scholar]
  50. Mallo GV, Espina M, Smith AC, Terebiznik MR, Alemán A et al. SopB promotes phosphatidylinositol 3-phosphate formation on Salmonella vacuoles by recruiting Rab5 and Vps34. J Cell Biol 2008; 182:741–752 [View Article] [PubMed]
    [Google Scholar]
  51. Hänisch J, Kölm R, Wozniczka M, Bumann D, Rottner K et al. Activation of a RhoA/Myosin II-dependent but Arp2/3 complex-independent pathway facilitates Salmonella invasion. Cell Host & Microbe 2011; 9:273–285 [View Article]
    [Google Scholar]
  52. Burkinshaw BJ, Prehna G, Worrall LJ, Strynadka NCJ. Structure of Salmonella effector protein SopB N-terminal domain in complex with host Rho GTPase Cdc42. J Biol Chem 2012; 287:13348–13355 [View Article] [PubMed]
    [Google Scholar]
  53. Zhao S, Xu Q, Cui Y, Yao S, Jin S et al. Salmonella effector SopB reorganizes cytoskeletal vimentin to maintain replication vacuoles for efficient infection. Nat Commun 2023; 14: [View Article]
    [Google Scholar]
  54. Mazurkiewicz P, Thomas J, Thompson JA, Liu M, Arbibe L et al. SpvC is a Salmonella effector with phosphothreonine lyase activity on host mitogen-activated protein kinases. Mol Microbiol 2008; 67:1371–1383 [View Article] [PubMed]
    [Google Scholar]
  55. Smith GK, Ke Z, Hengge AC, Xu D, Xie D et al. Active-site dynamics of SpvC virulence factor from Salmonella typhimurium and density functional theory study of phosphothreonine lyase catalysis. J Phys Chem B 2009; 113:15327–15333 [View Article] [PubMed]
    [Google Scholar]
  56. Li H, Xu H, Zhou Y, Zhang J, Long C et al. The phosphothreonine lyase activity of a bacterial type III effector family. Science 2007; 315:1000–1003 [View Article]
    [Google Scholar]
  57. Miki T, Akiba K, Iguchi M, Danbara H, Okada N. The Chromobacterium violaceum type III effector CopE, a guanine nucleotide exchange factor for Rac1 and Cdc42, is involved in bacterial invasion of epithelial cells and pathogenesis. Mol Microbiol 2011; 80:1186–1203 [View Article] [PubMed]
    [Google Scholar]
  58. Zhang X, Liu W, Li Y, Li G, Xu JR. Expression of HopAI interferes with MAP kinase signalling in Magnaporthe oryzae. Environ Microbiol 2017; 19:4190–4204 [View Article]
    [Google Scholar]
  59. Haneda T, Ishii Y, Shimizu H, Ohshima K, Iida N et al. Salmonella type III effector SpvC, a phosphothreonine lyase, contributes to reduction in inflammatory response during intestinal phase of infection. Cell Microbiol 2012; 14:485–499 [View Article]
    [Google Scholar]
  60. Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem 1998; 67:425–479 [View Article]
    [Google Scholar]
  61. Lilienbaum A. Relationship between the proteasomal system and autophagy. Int J Biochem Mol Biol 2013; 4:1–26 [PubMed]
    [Google Scholar]
  62. Narayanan LA, Edelmann MJ. Ubiquitination as an efficient molecular strategy employed in Salmonella infection. Front Immunol 2014; 5:558 [View Article] [PubMed]
    [Google Scholar]
  63. Schreiber A, Peter M. Substrate recognition in selective autophagy and the ubiquitin-proteasome system. Biochim Biophys Acta 2014; 1843:163–181 [View Article] [PubMed]
    [Google Scholar]
  64. Shaid S, Brandts CH, Serve H, Dikic I. Ubiquitination and selective autophagy. Cell Death Differ 2013; 20:21–30 [View Article]
    [Google Scholar]
  65. Chen R-H, Chen Y-H, Huang T-Y. Ubiquitin-mediated regulation of autophagy. J Biomed Sci 2019; 26:80 [View Article] [PubMed]
    [Google Scholar]
  66. Otten EG, Werner E, Crespillo-Casado A, Boyle KB, Dharamdasani V et al. Ubiquitylation of lipopolysaccharide by RNF213 during bacterial infection. Nature 2021; 594:111–116 [View Article] [PubMed]
    [Google Scholar]
  67. French ME, Koehler CF, Hunter T. Emerging functions of branched ubiquitin chains. Cell Discov 2021; 7:6 [View Article] [PubMed]
    [Google Scholar]
  68. Fiskin E, Bionda T, Dikic I, Behrends C. Global analysis of host and bacterial ubiquitinome in response to Salmonella Typhimurium infection. Mol Cell 2016; 62:967–981 [View Article] [PubMed]
    [Google Scholar]
  69. Wood MW, Jones MA, Watson PR, Siber AM, McCormick BA et al. The secreted effector protein of Salmonella dublin, SopA, is translocated into eukaryotic cells and influences the induction of enteritis. Cell Microbiol 2000; 2:293–303 [View Article] [PubMed]
    [Google Scholar]
  70. Zhang S, Santos RL, Tsolis RM, Stender S, Hardt W-D et al. The Salmonella enterica serotype Typhimurium effector proteins SipA, SopA, SopB, SopD, and SopE2 act in concert to induce diarrhea in calves. Infect Immun 2002; 70:3843–3855 [View Article] [PubMed]
    [Google Scholar]
  71. Zhang Y, Higashide W, Dai S, Sherman DM, Zhou D. Recognition and ubiquitination of Salmonella type III effector SopA by a ubiquitin E3 ligase, HsRMA1. J Biol Chem 2005; 280:38682–38688 [View Article] [PubMed]
    [Google Scholar]
  72. Zhang Y, Higashide WM, McCormick BA, Chen J, Zhou D. The inflammation-associated Salmonella SopA is a HECT-like E3 ubiquitin ligase. Mol Microbiol 2006; 62:786–793 [View Article] [PubMed]
    [Google Scholar]
  73. Kamanova J, Sun H, Lara-Tejero M, Galán JE. The Salmonella effector protein SopA modulates innate immune responses by targeting TRIM E3 ligase family members. PLoS Pathog 2016; 12:e1005552 [View Article] [PubMed]
    [Google Scholar]
  74. Fiskin E, Bhogaraju S, Herhaus L, Kalayil S, Hahn M et al. Structural basis for the recognition and degradation of host TRIM proteins by Salmonella effector SopA. Nat Commun 2017; 8:14004 [View Article] [PubMed]
    [Google Scholar]
  75. Lin DY, Diao J, Zhou D, Chen J. Biochemical and structural studies of a HECT-like ubiquitin ligase from Escherichia coli O157:H7. J Biol Chem 2011; 286:441–449 [View Article] [PubMed]
    [Google Scholar]
  76. Lin DY, Diao J, Chen J. Crystal structures of two bacterial HECT-like E3 ligases in complex with a human E2 reveal atomic details of pathogen-host interactions. Proc Natl Acad Sci 2012; 109:1925–1930 [View Article]
    [Google Scholar]
  77. Piscatelli H, Kotkar SA, McBee ME, Muthupalani S, Schauer DB et al. The EHEC type III effector NleL is an E3 ubiquitin ligase that modulates pedestal formation. PLoS One 2011; 6:e19331 [View Article] [PubMed]
    [Google Scholar]
  78. Quezada CM, Hicks SW, Galán JE, Stebbins CE. A family of Salmonella virulence factors functions as a distinct class of autoregulated E3 ubiquitin ligases. Proc Natl Acad Sci 2009; 106:4864–4869 [View Article] [PubMed]
    [Google Scholar]
  79. Bernal-Bayard J, Cardenal-Muñoz E, Ramos-Morales F. The Salmonella type III secretion effector, salmonella leucine-rich repeat protein (SlrP), targets the human chaperone ERdj3. J Biol Chem 2010; 285:16360–16368 [View Article] [PubMed]
    [Google Scholar]
  80. Bernal-Bayard J, Ramos-Morales F. Salmonella type III secretion effector SlrP is an E3 ubiquitin ligase for mammalian thioredoxin. J Biol Chem 2009; 284:27587–27595 [View Article] [PubMed]
    [Google Scholar]
  81. Bullones-Bolaños A, Araujo-Garrido JL, Fernández-García J, Romero F, Bernal-Bayard J et al. SNRPD2 is a novel substrate for the ubiquitin ligase activity of the Salmonella type III secretion effector SlrP. Biology 2022; 11:1517 [View Article] [PubMed]
    [Google Scholar]
  82. Cook M, Delbecq SP, Schweppe TP, Guttman M, Klevit RE et al. The ubiquitin ligase SspH1 from Salmonella uses a modular and dynamic E3 domain to catalyze substrate ubiquitylation. J Biol Chem 2019; 294:783–793 [View Article] [PubMed]
    [Google Scholar]
  83. Zouhir S, Bernal-Bayard J, Cordero-Alba M, Cardenal-Muñoz E, Guimaraes B et al. The structure of the Slrp-Trx1 complex sheds light on the autoinhibition mechanism of the type III secretion system effectors of the NEL family. Biochem J 2014; 464:135–144 [View Article] [PubMed]
    [Google Scholar]
  84. Holmgren A. Thioredoxin. Annu Rev Biochem 1985; 54:237–271 [View Article] [PubMed]
    [Google Scholar]
  85. Matthews JR, Wakasugi N, Virelizier JL, Yodoi J, Hay RT. Thioredoxin regulates the DNA binding activity of NF-kappa B by reduction of a disulphide bond involving cysteine 62. Nucleic Acids Res 1992; 20:3821–3830 [View Article] [PubMed]
    [Google Scholar]
  86. Muri J, Thut H, Feng Q, Kopf M. Thioredoxin-1 distinctly promotes NF-κB target DNA binding and NLRP3 inflammasome activation independently of Txnip. Elife 2020; 9:e53627 [View Article] [PubMed]
    [Google Scholar]
  87. Halici S, Zenk SF, Jantsch J, Hensel M. Functional analysis of the Salmonella pathogenicity island 2-mediated inhibition of antigen presentation in dendritic cells. Infect Immun 2008; 76:4924–4933 [View Article] [PubMed]
    [Google Scholar]
  88. Miao EA, Scherer CA, Tsolis RM, Kingsley RA, Adams LG et al. Salmonella typhimurium leucine-rich repeat proteins are targeted to the SPI1 and SPI2 type III secretion systems. Mol Microbiol 1999; 34:850–864 [View Article] [PubMed]
    [Google Scholar]
  89. Rao S, Schieber AMP, O’Connor CP, Leblanc M, Michel D et al. Pathogen-mediated inhibition of anorexia promotes host survival and transmission. Cell 2017; 168:503–516 [View Article]
    [Google Scholar]
  90. De Meyer M, Fijalkowski I, Jonckheere V, De Sutter D, Eyckerman S et al. Capturing Salmonella SspH2 host targets in virus-like particles. Front Med 2021; 8:725072 [View Article] [PubMed]
    [Google Scholar]
  91. Bullones-Bolaños A, Bernal-Bayard J, Ramos-Morales F. The NEL family of bacterial E3 ubiquitin ligases. Int J Mol Sci 2022; 23:7725 [View Article]
    [Google Scholar]
  92. Haraga A, Miller SI. A Salmonella enterica serovar typhimurium translocated leucine-rich repeat effector protein inhibits NF-kappa B-dependent gene expression. Infect Immun 2003; 71:4052–4058 [View Article] [PubMed]
    [Google Scholar]
  93. Keszei AFA, Tang X, McCormick C, Zeqiraj E, Rohde JR et al. Structure of an SspH1-PKN1 complex reveals the basis for host substrate recognition and mechanism of activation for a bacterial E3 ubiquitin ligase. Mol Cell Biol 2014; 34:362–373 [View Article] [PubMed]
    [Google Scholar]
  94. Haraga A, Miller SI. A Salmonella type III secretion effector interacts with the mammalian serine/threonine protein kinase PKN1. Cell Microbiol 2006; 8:837–846 [View Article]
    [Google Scholar]
  95. Metzger E, Imhof A, Patel D, Kahl P, Hoffmeyer K et al. Phosphorylation of histone H3T6 by PKCβI controls demethylation at histone H3K4. Nature 2010; 464:792–796 [View Article]
    [Google Scholar]
  96. Metzger E, Müller JM, Ferrari S, Buettner R, Schüle R. A novel inducible transactivation domain in the androgen receptor: implications for PRK in prostate cancer. EMBO J 2003; 22:270–280 [View Article] [PubMed]
    [Google Scholar]
  97. Metzger E, Yin N, Wissmann M, Kunowska N, Fischer K et al. Phosphorylation of histone H3 at threonine 11 establishes a novel chromatin mark for transcriptional regulation. Nat Cell Biol 2008; 10:53–60 [View Article]
    [Google Scholar]
  98. Rohde JR, Breitkreutz A, Chenal A, Sansonetti PJ, Parsot C. Type III secretion effectors of the IpaH family are E3 ubiquitin ligases. Cell Host Microbe 2007; 1:77–83 [View Article]
    [Google Scholar]
  99. Kato Jr T, Gotoh Y, Hoffmann A, Ono Y. Negative regulation of constitutive NF-κB and JNK signaling by PKN1-mediated phosphorylation of TRAF1. Genes Cells 2008; 13:509–520 [View Article]
    [Google Scholar]
  100. Bhavsar AP, Brown NF, Stoepel J, Wiermer M, Martin DDO et al. The Salmonella type III effector SspH2 specifically exploits the NLR co-chaperone activity of SGT1 to subvert immunity. PLoS Pathog 2013; 9:e1003518 [View Article]
    [Google Scholar]
  101. da Silva Correia J, Miranda Y, Leonard N, Ulevitch R. SGT1 is essential for Nod1 activation. Proc Natl Acad Sci 2007; 104:6764–6769 [View Article]
    [Google Scholar]
  102. Hong T-J, Hahn J-S. Application of SGT1-Hsp90 chaperone complex for soluble expression of NOD1 LRR domain in E. coli. Biochem Biophys Res Commun 2016; 478:1647–1652 [View Article] [PubMed]
    [Google Scholar]
  103. Sirard J-C, Vignal C, Dessein R, Chamaillard M. Nod-like receptors: cytosolic watchdogs for immunity against pathogens. PLoS Pathog 2007; 3:e152 [View Article] [PubMed]
    [Google Scholar]
  104. Wilmanski JM, Petnicki-Ocwieja T, Kobayashi KS. NLR proteins: integral members of innate immunity and mediators of inflammatory diseases. J Leukoc Biol 2008; 83:13–30 [View Article]
    [Google Scholar]
  105. Ashida H, Sasakawa C. Bacterial E3 ligase effectors exploit host ubiquitin systems. Curr Opin Microbiol 2017; 35:16–22 [View Article] [PubMed]
    [Google Scholar]
  106. Dranenko NO, Tutukina MN, Gelfand MS, Kondrashov FA, Bochkareva OO. Chromosome-encoded IpaH ubiquitin ligases indicate non-human enteroinvasive Escherichia. Sci Rep 2022; 12:6868 [View Article] [PubMed]
    [Google Scholar]
  107. Wandel MP, Pathe C, Werner EI, Ellison CJ, Boyle KB et al. GBPs inhibit motility of Shigella flexneri but are targeted for degradation by the bacterial ubiquitin ligase IpaH9.8. Cell Host Microbe 2017; 22:507–518 [View Article] [PubMed]
    [Google Scholar]
  108. Pruneda JN, Durkin CH, Geurink PP, Ovaa H, Santhanam B et al. The molecular basis for ubiquitin and ubiquitin-like specificities in bacterial effector proteases. Mol Cell 2016; 63:261–276 [View Article] [PubMed]
    [Google Scholar]
  109. Rytkönen A, Poh J, Garmendia J, Boyle C, Thompson A et al. SseL, a Salmonella deubiquitinase required for macrophage killing and virulence. Proc Natl Acad Sci 2007; 104:3502–3507 [View Article]
    [Google Scholar]
  110. Geng S, Wang Y, Xue Y, Wang H, Cai Y et al. The SseL protein inhibits the intracellular NF-κB pathway to enhance the virulence of Salmonella Pullorum in a chicken model. Microb Pathog 2019; 129:1–6 [View Article] [PubMed]
    [Google Scholar]
  111. Le Negrate G, Faustin B, Welsh K, Loeffler M, Krajewska M et al. Salmonella secreted factor L deubiquitinase of Salmonella typhimurium inhibits NF-kappaB, suppresses IkappaBalpha ubiquitination and modulates innate immune responses. J Immunol 2008; 180:5045–5056 [View Article] [PubMed]
    [Google Scholar]
  112. Mesquita FS, Holden DW, Rolhion N, Gorvel J-P. Lack of effect of the Salmonella deubiquitinase SseL on the NF-κB pathway. PLoS One 2013; 8:e53064 [View Article]
    [Google Scholar]
  113. Wan F, Anderson DE, Barnitz RA, Snow A, Bidere N et al. Ribosomal protein S3: a KH domain subunit in NF-kappaB complexes that mediates selective gene regulation. Cell 2007; 131:927–939 [View Article] [PubMed]
    [Google Scholar]
  114. Wan F, Lenardo MJ. Specification of DNA binding activity of NF-kappaB proteins. Cold Spring Harb Perspect Biol 2009; 1:a000067 [View Article] [PubMed]
    [Google Scholar]
  115. Wu M, El Qaidi S, Hardwidge PR. SseL deubiquitinates RPS3 to inhibit its nuclear translocation. Pathogens 2018; 7:86 [View Article]
    [Google Scholar]
  116. Le Negrate G, Krieg A, Faustin B, Loeffler M, Godzik A et al. Chla Dub1 of Chlamydia trachomatis suppresses NF-κB activation and inhibits IκBα ubiquitination and degradation. Cell Microbiol 2008; 10:1879–1892 [View Article]
    [Google Scholar]
  117. Misaghi S, Balsara ZR, Catic A, Spooner E, Ploegh HL et al. Chlamydia trachomatis -derived deubiquitinating enzymes in mammalian cells during infection. Mol Microbiol 2006; 61:142–150 [View Article]
    [Google Scholar]
  118. Catic A, Misaghi S, Korbel GA, Ploegh HL, Carr J. ElaD, a deubiquitinating protease expressed by E. coli. PLoS One 2007; 2:e381 [View Article]
    [Google Scholar]
  119. Mesquita FS, Thomas M, Sachse M, Santos AJM, Figueira R et al. The Salmonella deubiquitinase SseL inhibits selective autophagy of cytosolic aggregates. PLoS Pathog 2012; 8:e1002743 [View Article] [PubMed]
    [Google Scholar]
  120. Li S, Zhang L, Yao Q, Li L, Dong N et al. Pathogen blocks host death receptor signalling by arginine GlcNAcylation of death domains. Nature 2013; 501:242–246 [View Article] [PubMed]
    [Google Scholar]
  121. Pearson JS, Giogha C, Ong SY, Kennedy CL, Kelly M et al. A type III effector antagonizes death receptor signalling during bacterial gut infection. Nature 2013; 501:247–251 [View Article] [PubMed]
    [Google Scholar]
  122. Scott NE, Giogha C, Pollock GL, Kennedy CL, Webb AI et al. The bacterial arginine glycosyltransferase effector NleB preferentially modifies Fas-associated death domain protein (FADD). J Biol Chem 2017; 292:17337–17350 [View Article] [PubMed]
    [Google Scholar]
  123. Brown NF, Coombes BK, Bishop JL, Wickham ME, Lowden MJ et al. Salmonella phage ST64B encodes a member of the SseK/NleB effector family. PLoS One 2011; 6:e17824 [View Article] [PubMed]
    [Google Scholar]
  124. Kujat Choy SL, Boyle EC, Gal-Mor O, Goode DL, Valdez Y et al. SseK1 and SseK2 are novel translocated proteins of Salmonella enterica serovar typhimurium. Infect Immun 2004; 72:5115–5125 [View Article] [PubMed]
    [Google Scholar]
  125. Park JB, Kim YH, Yoo Y, Kim J, Jun S-H et al. Structural basis for arginine glycosylation of host substrates by bacterial effector proteins. Nat Commun 2018; 9: [View Article]
    [Google Scholar]
  126. Esposito D, Günster RA, Martino L, El Omari K, Wagner A et al. Structural basis for the glycosyltransferase activity of the Salmonella effector SseK3. J Biol Chem 2018; 293:5064–5078 [View Article] [PubMed]
    [Google Scholar]
  127. Ding J, Pan X, Du L, Yao Q, Xue J et al. Structural and functional insights into host death domains inactivation by the bacterial arginine GlcNAcyltransferase effector. Molecular Cell 2019; 74:922–935 [View Article]
    [Google Scholar]
  128. Ardèvol A, Iglesias-Fernández J, Rojas-Cervellera V, Rovira C. The reaction mechanism of retaining glycosyltransferases. Biochem Soc Trans 2016; 44:51–60 [View Article] [PubMed]
    [Google Scholar]
  129. Albesa-Jové D, Sainz-Polo , Marina A, Guerin ME. Structural snapshots of α-1,3-galactosyltransferase with native substrates: insight into the catalytic mechanism of retaining glycosyltransferases. Angew Chem Int Ed Engl 2017; 56:14853–14857 [View Article] [PubMed]
    [Google Scholar]
  130. Ardèvol A, Rovira C. The molecular mechanism of enzymatic glycosyl transfer with retention of configuration: evidence for a short-lived oxocarbenium-like species. Angew Chem Int Ed Engl 2011; 50:10897–10901 [View Article] [PubMed]
    [Google Scholar]
  131. Schuman B, Evans SV, Fyles TM. Geometric attributes of retaining glycosyltransferase enzymes favor an orthogonal mechanism. PLoS One 2013; 8:e71077 [View Article] [PubMed]
    [Google Scholar]
  132. Lazarus MB, Nam Y, Jiang J, Sliz P, Walker S. Structure of human O-GlcNAc transferase and its complex with a peptide substrate. Nature 2011; 469:564–567 [View Article] [PubMed]
    [Google Scholar]
  133. Günster RA, Matthews SA, Holden DW, Thurston TLM, Bäumler AJ. SseK1 and SseK3 type III secretion system effectors inhibit NF-κB signaling and necroptotic cell death in Salmonella-infected macrophages. Infect Immun 2017; 85: [View Article]
    [Google Scholar]
  134. Pan M, Li S, Li X, Shao F, Liu L et al. Synthesis of and specific antibody generation for glycopeptides with arginine N -GlcNAcylation. Angew Chem Int Ed 2014; 53:14517–14521 [View Article]
    [Google Scholar]
  135. El Qaidi S, Chen K, Halim A, Siukstaite L, Rueter C et al. NleB/SseK effectors from Citrobacter rodentium, Escherichia coli, and Salmonella enterica display distinct differences in host substrate specificity. J Biol Chemist 2017; 292:11423–11430 [View Article] [PubMed]
    [Google Scholar]
  136. Newson JPM, Scott NE, Yeuk Wah Chung I, Wong Fok Lung T, Giogha C et al. Salmonella effectors SseK1 and SseK3 target death domain proteins in the TNF and TRAIL signaling pathways. Mol Cell Proteomics 2019; 18:1138–1156 [View Article] [PubMed]
    [Google Scholar]
  137. Yang Z, Soderholm A, Lung TWF, Giogha C, Hill MM et al. SseK3 is a Salmonella effector that binds TRIM32 and modulates the host’s NF-κB signalling activity. PLoS One 2015; 10:e0138529 [View Article] [PubMed]
    [Google Scholar]
  138. Gan J, Scott NE, Newson JPM, Wibawa RR, Wong Fok Lung T et al. The Salmonella effector SseK3 targets small Rab GTPases. Front Cell Infect Microbiol 2020; 10: [View Article]
    [Google Scholar]
  139. Meng K, Zhuang X, Peng T, Hu S, Yang J et al. Arginine GlcNAcylation of rab small GTPases by the pathogen Salmonella Typhimurium. Commun Biol 2020; 3:287 [View Article] [PubMed]
    [Google Scholar]
  140. Feng Z-Z, Jiang A-J, Mao A-W, Feng Y, Wang W et al. The Salmonella effectors SseF and SseG inhibit Rab1A-mediated autophagy to facilitate intracellular bacterial survival and replication. J Biol Chem 2018; 293:9662–9673 [View Article] [PubMed]
    [Google Scholar]
  141. Mukherjee K, Parashuraman S, Raje M, Mukhopadhyay A. SopE acts as an Rab5-specific nucleotide exchange factor and recruits non-prenylated Rab5 on Salmonella-containing phagosomes to promote fusion with early endosomes. J Biol Chem 2001; 276:23607–23615 [View Article] [PubMed]
    [Google Scholar]
  142. García-García A, Hicks T, El Qaidi S, Zhu C, Hardwidge PR et al. NleB/SseK-catalyzed arginine-glycosylation and enteropathogen virulence are finely tuned by a single variable position contiguous to the catalytic machinery. Chem Sci 2021; 12:12181–12191 [View Article]
    [Google Scholar]
  143. Giogha C, Scott NE, Wong Fok Lung T, Pollock GL, Harper M et al. NleB2 from enteropathogenic Escherichia coli is a novel arginine-glucose transferase effector. PLOS Pathog 2021; 17:e1009658 [View Article] [PubMed]
    [Google Scholar]
  144. Xue J, Huang Y, Zhang H, Hu J, Pan X et al. Arginine GlcNAcylation and activity regulation of PhoP by a type III secretion system effector in Salmonella. Front Microbiol 2021; 12: [View Article]
    [Google Scholar]
  145. Xue J, Pan X, Peng T, Duan M, Du L et al. Auto arginine-GlcNAcylation is crucial for bacterial pathogens in regulating host cell death. Front Cell Infect Microbiol 2020; 10:197 [View Article] [PubMed]
    [Google Scholar]
  146. Baisón-Olmo F, Galindo-Moreno M, Ramos-Morales F. Host cell type-dependent translocation and PhoP-mediated positive regulation of the effector SseK1 of Salmonella enterica. Front Microbiol 2015; 6: [View Article]
    [Google Scholar]
  147. Buckner MMC, Croxen M, Arena ET, Finlay BB. A comprehensive study of the contribution of Salmonella enterica serovar Typhimurium SPI2 effectors to bacterial colonization, survival, and replication in typhoid fever, macrophage, and epithelial cell infection models. Virulence 2011; 2:208–216 [View Article] [PubMed]
    [Google Scholar]
  148. Kidwai AS, Mushamiri I, Niemann GS, Brown RN, Adkins JN et al. Diverse secreted effectors are required for Salmonella persistence in a mouse infection model. PLoS One 2013; 8:e70753 [View Article] [PubMed]
    [Google Scholar]
  149. Yang Y, Yu C, Ding K, Zhang C, Liao C et al. Role of the sseK1 gene in the pathogenicity of Salmonella enterica serovar enteritidis in vitro and in vivo. Microb Pathog 2018; 117:270–275 [View Article] [PubMed]
    [Google Scholar]
  150. Hoch NC, Polo LM. ADP-ribosylation: from molecular mechanisms to human disease. Genet Mol Biol 2020; 43: [View Article] [PubMed]
    [Google Scholar]
  151. Caldwell AL, Gulig PA. The Salmonella typhimurium virulence plasmid encodes a positive regulator of a plasmid-encoded virulence gene. J Bacteriol 1991; 173:7176–7185 [View Article] [PubMed]
    [Google Scholar]
  152. Lesnick ML, Reiner NE, Fierer J, Guiney DG. The Salmonella spvB virulence gene encodes an enzyme that ADP-ribosylates actin and destabilizes the cytoskeleton of eukaryotic cells. Mol Microbiol 2001; 39:1464–1470 [View Article]
    [Google Scholar]
  153. Otto H, Tezcan-Merdol D, Girisch R, Haag F, Rhen M et al. The spvB gene-product of the Salmonella enterica virulence plasmid is a mono(ADP-ribosyl)transferase. Mol Microbiol 2000; 37:1106–1115 [View Article] [PubMed]
    [Google Scholar]
  154. Margarit SM, Davidson W, Frego L, Stebbins CE. A steric antagonism of actin polymerization by a Salmonella virulence protein. Structure 2006; 14:1219–1229 [View Article] [PubMed]
    [Google Scholar]
  155. Tezcan-Merdol D, Nyman T, Lindberg U, Haag F, Koch-Nolte F et al. Actin is ADP-ribosylated by the Salmonella enterica virulence-associated protein SpvB. Mol Microbiol 2001; 39:606–619 [View Article]
    [Google Scholar]
  156. Hochmann H, Pust S, von Figura G, Aktories K, Barth H. Salmonella enterica SpvB ADP-ribosylates actin at position arginine-177-characterization of the catalytic domain within the SpvB protein and a comparison to binary clostridial actin-ADP-ribosylating toxins. Biochemistry 2006; 45:1271–1277 [View Article] [PubMed]
    [Google Scholar]
  157. Schüler H, Nyåkern M, Schutt CE, Lindberg U, Karlsson R. Mutational analysis of arginine 177 in the nucleotide binding site of β-actin. Eur J Biochem 2000; 267:4054–4062 [View Article]
    [Google Scholar]
  158. Birmingham CL, Jiang X, Ohlson MB, Miller SI, Brumell JH. Salmonella -induced filament formation is a dynamic phenotype induced by rapidly replicating Salmonella enterica serovar Typhimurium in epithelial cells. Infect Immun 2005; 73:1204–1208 [View Article]
    [Google Scholar]
  159. Browne SH, Lesnick ML, Guiney DG. Genetic requirements for Salmonella-induced cytopathology in human monocyte-derived macrophages. Infect Immun 2002; 70:7126–7135 [View Article] [PubMed]
    [Google Scholar]
  160. Libby SJ, Lesnick M, Hasegawa P, Weidenhammer E, Guiney DG. The Salmonella virulence plasmid spv genes are required for cytopathology in human monocyte-derived macrophages. Cell Microbiol 2000; 2:49–58 [View Article]
    [Google Scholar]
  161. Eulalio A, Fröhlich KS, Mano M, Giacca M, Vogel J et al. A candidate approach implicates the secreted Salmonella effector protein SpvB in P-body disassembly. PLoS One 2011; 6:e17296 [View Article]
    [Google Scholar]
  162. Sun L, Yang S, Deng Q, Dong K, Li Y et al. Salmonella effector SpvB disrupts intestinal epithelial barrier integrity for bacterial translocation. Front Cell Infect Microbiol 2020; 10: [View Article]
    [Google Scholar]
  163. Yang S, Deng Q, Sun L, Dong K, Li Y et al. Salmonella effector SpvB interferes with intracellular iron homeostasis via regulation of transcription factor NRF2. FASEB J 2019; 33:13450–13464 [View Article] [PubMed]
    [Google Scholar]
  164. Yang S, Deng Q, Sun L, Zhu Y, Dong K. Salmonella effector SpvB inhibits NF-κB activity via KEAP1-mediated downregulation of IKKβ. Front Cell Infect Microbiol 2021; 11: [View Article]
    [Google Scholar]
  165. Basit A, Tahir H, Haider Z, Tariq H, Ullah A et al. CRISPR/Cas9-based deletion of SpvB gene from Salmonella gallinarum leads to loss of virulence in chicken. Front Bioeng Biotechnol 2022; 10: [View Article]
    [Google Scholar]
  166. Käppeli R, Kaiser P, Stecher B, Hardt WD. Roles of spvB and spvC in S. Typhimurium colitis via the alternative pathway. Int J Med Microbiol 2011; 301:117–124 [View Article] [PubMed]
    [Google Scholar]
  167. Matsui H, Bacot CM, Garlington WA, Doyle TJ, Roberts S et al. Virulence plasmid-borne spvB and spvC genes can replace the 90-Kilobase plasmid in conferring virulence to Salmonella enterica serovar Typhimurium in subcutaneously inoculated mice. J Bacteriol 2001; 183:4652–4658 [View Article]
    [Google Scholar]
  168. Cheng S, Wang L, Liu Q, Qi L, Yu K et al. Identification of a novel Salmonella type III effector by quantitative secretome profiling. Mol Cell Proteomics 2017; 16:2219–2228 [View Article] [PubMed]
    [Google Scholar]
  169. Xu Y, Zhou P, Cheng S, Lu Q, Nowak K et al. A bacterial effector reveals the V-ATPase-ATG16L1 axis that initiates xenophagy. Cell 2019; 178:552–566 [View Article]
    [Google Scholar]
  170. Xu Y, Cheng S, Zeng H, Zhou P, Ma Y et al. ARF GTPases activate Salmonella effector SopF to ADP-ribosylate host V-ATPase and inhibit endomembrane damage-induced autophagy. Nat Struct Mol Biol 2022; 29:67–77 [View Article]
    [Google Scholar]
  171. Lau N, Haeberle AL, O’Keeffe BJ, Latomanski EA, Celli J et al. SopF, a phosphoinositide binding effector, promotes the stability of the nascent Salmonella-containing vacuole. PLoS Pathog 2019; 15:e1007959 [View Article]
    [Google Scholar]
  172. Ohlson MB, Fluhr K, Birmingham CL, Brumell JH, Miller SI. SseJ deacylase activity by Salmonella enterica serovar Typhimurium promotes virulence in mice. Infect Immun 2005; 73:6249–6259 [View Article]
    [Google Scholar]
  173. Upton C, Buckley JT. A new family of lipolytic enzymes?. Trends Biochem Sci 1995; 20:178–179 [View Article] [PubMed]
    [Google Scholar]
  174. Lossi NS, Rolhion N, Magee AI, Boyle C, Holden DW. The Salmonella SPI-2 effector SseJ exhibits eukaryotic activator-dependent phospholipase A and glycerophospholipid: cholesterol acyltransferase activity. Microbiology 2008; 154:2680–2688 [View Article] [PubMed]
    [Google Scholar]
  175. Nawabi P, Catron DM, Haldar K. Esterification of cholesterol by a type III secretion effector during intracellular Salmonella infection. Mol Microbiol 2008; 68:173–185 [View Article]
    [Google Scholar]
  176. Christen M, Coye LH, Hontz JS, LaRock DL, Pfuetzner RA et al. Activation of a bacterial virulence protein by the GTPase RhoA. Sci Signal 2009; 2: [View Article]
    [Google Scholar]
  177. LaRock DL, Brzovic PS, Levin I, Blanc MP, Miller SI. A Salmonella typhimurium-translocated glycerophospholipid:cholesterol acyltransferase promotes virulence by binding to the RhoA protein switch regions. J Biol Chem 2012; 287:29654–29663 [View Article] [PubMed]
    [Google Scholar]
  178. Freeman JA, Ohl ME, Miller SI. The Salmonella enterica serovar Typhimurium translocated effectors SseJ and SifB are targeted to the Salmonella -containing vacuole. Infect Immun 2003; 71:418–427 [View Article]
    [Google Scholar]
  179. Ruiz-Albert J, Yu XJ, Beuzón CR, Blakey AN, Galyov EE et al. Complementary activities of SseJ and SifA regulate dynamics of the Salmonella typhimurium vacuolar membrane. Mol Microbiol 2002; 44:645–661 [View Article]
    [Google Scholar]
  180. Brumell JH, Goosney DL, Finlay BB. SifA, a type III secreted effector of Salmonella typhimurium, directs Salmonella-induced filament (Sif) formation along microtubules. Traffic 2002; 3:407–415 [View Article] [PubMed]
    [Google Scholar]
  181. Kolodziejek AM, Miller SI. Salmonella modulation of the phagosome membrane, role of SseJ. Cell Microbiol 2015; 17:333–341 [View Article] [PubMed]
    [Google Scholar]
  182. Beuzon CR. Salmonella maintains the integrity of its intracellular vacuole through the action of SifA. Embo j 2000; 19:3235–3249 [View Article]
    [Google Scholar]
  183. Ohlson MB, Huang Z, Alto NM, Blanc M-P, Dixon JE et al. Structure and function of Salmonella SifA indicate that its interactions with SKIP, SseJ, and RhoA family GTPases induce endosomal tubulation. Cell Host Microbe 2008; 4:434–446 [View Article] [PubMed]
    [Google Scholar]
  184. Kolodziejek AM, Altura MA, Fan J, Petersen EM, Cook M et al. Salmonella translocated effectors recruit OSBP1 to the phagosome to promote vacuolar membrane integrity. Cell Reports 2019; 27:2147–2156 [View Article]
    [Google Scholar]
  185. Greene AR, Owen KA, Casanova JE. Salmonella Typhimurium manipulates macrophage cholesterol homeostasis through the SseJ-mediated suppression of the host cholesterol transport protein ABCA1. Cell Microbiol 2021; 23:e13329 [View Article] [PubMed]
    [Google Scholar]
  186. Ma KW, Ma W. YopJ family effectors promote bacterial infection through a unique acetyltransferase activity. Microbiol Mol Biol Rev 2016; 80:1011–1027 [View Article]
    [Google Scholar]
  187. Mittal R, Peak-Chew SY, Sade RS, Vallis Y, McMahon HT. The acetyltransferase activity of the bacterial toxin YopJ of Yersinia is activated by eukaryotic host cell inositol hexakisphosphate. J Biol Chem 2010; 285:19927–19934 [View Article] [PubMed]
    [Google Scholar]
  188. Wu S, Ye Z, Liu X, Zhao Y, Xia Y et al. Salmonella typhimurium infection increases p53 acetylation in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2010; 298:G784–94 [View Article] [PubMed]
    [Google Scholar]
  189. Collier-Hyams LS, Zeng H, Sun J, Tomlinson AD, Bao ZQ et al. Cutting Edge: Salmonella AvrA effector inhibits the key proinflammatory, anti-apoptotic NF-κB pathway. J Immunol 2002; 169:2846–2850 [View Article] [PubMed]
    [Google Scholar]
  190. Du F, Galán JE, Stebbins CE. Selective inhibition of type III secretion activated signaling by the Salmonella effector AvrA. PLoS Pathog 2009; 5:e1000595 [View Article]
    [Google Scholar]
  191. Jones RM, Wu H, Wentworth C, Luo L, Collier-Hyams L et al. Salmonella AvrA coordinates suppression of host immune and apoptotic defenses via JNK pathway blockade. Cell Host Microbe 2008; 3:233–244 [View Article] [PubMed]
    [Google Scholar]
  192. Labriola JM, Zhou Y, Nagar B. Structural analysis of the bacterial effector AvrA identifies a critical helix involved in substrate recognition. Biochemistry 2018; 57:4985–4996 [View Article] [PubMed]
    [Google Scholar]
  193. Jiao Y, Zhang Y, Lin Z, Lu R, Xia Y et al. Salmonella enteritidis effector AvrA suppresses autophagy by reducing beclin-1 Protein. Front Immunol 2020; 11: [View Article]
    [Google Scholar]
  194. Liao AP, Petrof EO, Kuppireddi S, Zhao Y, Xia Y et al. Salmonella type III effector AvrA stabilizes cell tight junctions to inhibit inflammation in intestinal epithelial cells. PLoS One 2008; 3:e2369 [View Article]
    [Google Scholar]
  195. Liu X, Lu R, Wu S, Zhang Y-G, Xia Y et al. Wnt2 inhibits enteric bacterial-induced inflammation in intestinal epithelial cells. Inflamm Bowel Dis 2012; 18:418–429 [View Article] [PubMed]
    [Google Scholar]
  196. Lu R, Liu X, Wu S, Xia Y, Zhang Y-G et al. Consistent activation of the β-catenin pathway by Salmonella type-three secretion effector protein AvrA in chronically infected intestine. Am J Physiol Gastrointest Liver Physiol 2012; 303:G1113–25 [View Article] [PubMed]
    [Google Scholar]
  197. Lu R, Wu S, Zhang Y, Xia Y, Liu X et al. Enteric bacterial protein AvrA promotes colonic tumorigenesis and activates colonic beta-catenin signaling pathway. Oncogenesis 2014; 3:e105 [View Article] [PubMed]
    [Google Scholar]
  198. Lu R, Wu S, Zhang Y, Xia Y, Zhou Z et al. Salmonella protein AvrA activates the STAT3 signaling pathway in colon cancer. Neoplasia 2016; 18:307–316 [View Article] [PubMed]
    [Google Scholar]
  199. Ye Z, Petrof EO, Boone D, Claud EC, Sun J. Salmonella effector AvrA regulation of colonic epithelial cell inflammation by deubiquitination. Am J Pathol 2007; 171:882–892 [View Article] [PubMed]
    [Google Scholar]
  200. Yin C, Liu Z, Xian H, Jiao Y, Yuan Y et al. AvrA exerts inhibition of NF-κB pathway in its naïve Salmonella serotype through suppression of p-JNK and beclin-1 molecules. IJMS 2020; 21:6063 [View Article] [PubMed]
    [Google Scholar]
  201. Miller SI, Mekalanos JJ. Constitutive expression of the phoP regulon attenuates Salmonella virulence and survival within macrophages. J Bacteriol 1990; 172:2485–2490 [View Article]
    [Google Scholar]
  202. Verma S, Dixit R, Pandey KC. Cysteine proteases: modes of activation and future prospects as pharmacological targets. Front Pharmacol 2016; 7: [View Article]
    [Google Scholar]
  203. Kohler AC, Spanò S, Galán JE, Stebbins CE. Structural and enzymatic characterization of a host-specificity determinant from Salmonella. Acta Crystallogr D Biol Crystallogr 2014; 70:384–391 [View Article]
    [Google Scholar]
  204. Xu C, Kozlov G, Wong K, Gehring K, Cygler M et al. Crystal structure of the Salmonella Typhimurium effector GtgE. PLoS One 2016; 11:e0166643 [View Article]
    [Google Scholar]
  205. Savitskiy S, Wachtel R, Pourjafar-Dehkordi D, Kang H-S, Trauschke V et al. Proteolysis of Rab32 by Salmonella GtgE induces an inactive GTPase conformation. iScience 2021; 24:101940 [View Article] [PubMed]
    [Google Scholar]
  206. Wachtel R, Bräuning B, Mader SL, Ecker F, Kaila VRI et al. The protease GtgE from Salmonella exclusively targets inactive Rab GTPases. Nat Commun 2018; 9:44 [View Article] [PubMed]
    [Google Scholar]
  207. Spanò S, Gao X, Hannemann S, Lara-Tejero M, Galán JE. A bacterial pathogen targets a host rab-family GTPase defense pathway with a GAP. Cell Host Microbe 2016; 19:216–226 [View Article]
    [Google Scholar]
  208. Spanò S, Liu X, Galán JE. Proteolytic targeting of Rab29 by an effector protein distinguishes the intracellular compartments of human-adapted and broad-host Salmonella. Proc Natl Acad Sci 2011; 108:18418–18423 [View Article]
    [Google Scholar]
  209. Fu P, Zhang X, Jin M, Xu L, Wang C et al. Complex structure of OspI and Ubc13: the molecular basis of Ubc13 deamidation and convergence of bacterial and host E2 recognition. PLoS Pathog 2013; 9:e1003322 [View Article] [PubMed]
    [Google Scholar]
  210. Russell AR, Ashfield T, Innes RW. Pseudomonas syringae effector AvrPphB suppresses AvrB-induced activation of RPM1 but not AvrRpm1-induced activation. Mol Plant Microbe Interact 2015; 28:727–735 [View Article] [PubMed]
    [Google Scholar]
  211. Grabe GJ, Zhang Y, Przydacz M, Rolhion N, Yang Y et al. The Salmonella effector SpvD is a cysteine hydrolase with a serovar-specific polymorphism influencing catalytic activity, suppression of immune responses, and bacterial virulence. J Biol Chem 2016; 291:25853–25863 [View Article] [PubMed]
    [Google Scholar]
  212. Rolhion N, Furniss RCD, Grabe G, Ryan A, Liu M et al. Inhibition of nuclear transport of NF-ĸB p65 by the Salmonella type III secretion system effector SpvD. PLoS Pathog 2016; 12:e1005653 [View Article] [PubMed]
    [Google Scholar]
  213. McLaughlin LM, Govoni GR, Gerke C, Gopinath S, Peng K et al. The Salmonella SPI2 effector SseI mediates long-term systemic infection by modulating host cell migration. PLoS Pathog 2009; 5:e1000671 [View Article] [PubMed]
    [Google Scholar]
  214. McLaughlin LM, Xu H, Carden SE, Fisher S, Reyes M et al. A microfluidic-based genetic screen to identify microbial virulence factors that inhibit dendritic cell migration. Integr Biol 2014; 6:438–449 [View Article]
    [Google Scholar]
  215. Bhaskaran SS, Stebbins CE. Structure of the catalytic domain of the Salmonella virulence factor SseI. Acta Crystallogr D Biol Crystallogr 2012; 68:1613–1621 [View Article]
    [Google Scholar]
  216. Brink T, Leiss V, Siegert P, Jehle D, Ebner JK et al. Salmonella Typhimurium effector SseI inhibits chemotaxis and increases host cell survival by deamidation of heterotrimeric Gi proteins. PLoS Pathog 2018; 14:e1007248 [View Article] [PubMed]
    [Google Scholar]
  217. Hicks SW, Charron G, Hang HC, Galán JE. Subcellular targeting of Salmonella virulence proteins by host-mediated S-palmitoylation. Cell Host Microbe 2011; 10:9–20 [View Article]
    [Google Scholar]
  218. Carden SE, Walker GT, Honeycutt J, Lugo K, Pham T et al. Pseudogenization of the secreted effector gene sseI confers rapid systemic dissemination of S. Typhimurium ST313 within migratory dendritic cells. Cell Host Microbe 2017; 21:182–194 [View Article]
    [Google Scholar]
  219. Thornbrough JM, Worley MJ, Zhou D. A naturally occurring single nucleotide polymorphism in the Salmonella SPI-2 type III effector srfH/sseI controls early extraintestinal dissemination. PLoS One 2012; 7:e45245 [View Article]
    [Google Scholar]
  220. Baruch K, Gur-Arie L, Nadler C, Koby S, Yerushalmi G et al. Metalloprotease type III effectors that specifically cleave JNK and NF-κB. EMBO J 2011; 30:221–231 [View Article]
    [Google Scholar]
  221. Sun H, Kamanova J, Lara-Tejero M, Galán JE, Philpott DJ. A family of Salmonella type III secretion effector proteins selectively targets the NF-κB signaling pathway to preserve host homeostasis. PLoS Pathog 2016; 12:e1005484 [View Article]
    [Google Scholar]
  222. Cerdà-Costa N, Gomis-Rüth FX. Architecture and function of metallopeptidase catalytic domains. Protein Sci 2014; 23:123–144 [View Article] [PubMed]
    [Google Scholar]
  223. Jennings E, Esposito D, Rittinger K, Thurston TLM. Structure-function analyses of the bacterial zinc metalloprotease effector protein GtgA uncover key residues required for deactivating NF-κB. J Biol Chem 2018; 293:15316–15329 [View Article] [PubMed]
    [Google Scholar]
  224. Giogha C, Lung TWF, Mühlen S, Pearson JS, Hartland EL. Substrate recognition by the zinc metalloprotease effector NleC from enteropathogenic Escherichia coli. Cell Microbiol 2015; 17:1766–1778 [View Article] [PubMed]
    [Google Scholar]
  225. Hodgson A, Wier EM, Fu K, Sun X, Yu H et al. Metalloprotease NleC suppresses host NF-κB/inflammatory responses by cleaving p65 and interfering with the p65/RPS3 interaction. PLoS Pathog 2015; 11:e1004705 [View Article]
    [Google Scholar]
  226. Li W, Liu Y, Sheng X, Yin P, Hu F et al. Structure and mechanism of a type III secretion protease, NleC. Acta Crystallogr D Biol Crystallogr 2014; 70:40–47 [View Article]
    [Google Scholar]
  227. Pearson JS, Riedmaier P, Marchès O, Frankel G, Hartland EL. A type III effector protease NleC from enteropathogenic Escherichia coli targets NF-κB for degradation. Mol Microbiol 2011; 80:219–230 [View Article]
    [Google Scholar]
  228. Sham HP, Shames SR, Croxen MA, Ma C, Chan JM et al. Attaching and effacing bacterial effector NleC suppresses epithelial inflammatory responses by inhibiting NF-κB and p38 mitogen-activated protein kinase activation. Infect Immun 2011; 79:3552–3562 [View Article]
    [Google Scholar]
  229. Shames SR, Bhavsar AP, Croxen MA, Law RJ, Mak SHC et al. The pathogenic Escherichia coli type III secreted protease NleC degrades the host acetyltransferase p300. Cell Microbiol 2011; 13:1542–1557 [View Article]
    [Google Scholar]
  230. Stolle A-S, Norkowski S, Körner B, Schmitz J, Lüken L et al. T3SS-independent uptake of the short-trip toxin-related recombinant NleC effector of enteropathogenic Escherichia coli leads to NF-κB p65 cleavage. Front Cell Infect Microbiol 2017; 7:119 [View Article] [PubMed]
    [Google Scholar]
  231. Yen H, Ooka T, Iguchi A, Hayashi T, Sugimoto N et al. NleC, a type III secretion protease, compromises NF-κB activation by targeting p65/RelA. PLoS Pathog 2010; 6:e1001231 [View Article] [PubMed]
    [Google Scholar]
  232. Viana F, Peringathara SS, Rizvi A, Schroeder GN. Host manipulation by bacterial type III and type IV secretion system effector proteases. Cell Microbiol 2021; 23:e13384 [View Article] [PubMed]
    [Google Scholar]
  233. Bos JL, Rehmann H, Wittinghofer A. GEFs and GAPs: critical elements in the control of small G proteins. Cell 2007; 129:865–877 [View Article] [PubMed]
    [Google Scholar]
  234. Cherfils J, Zeghouf M. Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev 2013; 93:269–309 [View Article] [PubMed]
    [Google Scholar]
  235. Jiang X, Rossanese OW, Brown NF, Kujat-Choy S, Galán JE et al. The related effector proteins SopD and SopD2 from Salmonella enterica serovar Typhimurium contribute to virulence during systemic infection of mice. Mol Microbiol 2004; 54:1186–1198 [View Article] [PubMed]
    [Google Scholar]
  236. Bakowski MA, Cirulis JT, Brown NF, Finlay BB, Brumell JH. SopD acts cooperatively with SopB during Salmonella enterica serovar Typhimurium invasion. Cell Microbiol 2007; 9:2839–2855 [View Article] [PubMed]
    [Google Scholar]
  237. Boddy KC, Zhu H, D’Costa VM, Xu C, Beyrakhova K et al. Salmonella effector SopD promotes plasma membrane scission by inhibiting Rab10. Nat Commun 2021; 12: [View Article]
    [Google Scholar]
  238. Lian H, Jiang K, Tong M, Chen Z, Liu X et al. The Salmonella effector protein SopD targets Rab8 to positively and negatively modulate the inflammatory response. Nat Microbiol 2021; 6:658–671 [View Article]
    [Google Scholar]
  239. Savitskiy S, Itzen A. SopD from Salmonella specifically inactivates Rab8. Biochim Biophys Acta Proteins Proteom 2021; 1869:140661 [View Article] [PubMed]
    [Google Scholar]
  240. Luo L, Wall AA, Tong SJ, Hung Y, Xiao Z et al. TLR crosstalk activates LRP1 to recruit Rab8a and PI3Kγ for suppression of inflammatory responses. Cell Reports 2018; 24:3033–3044 [View Article]
    [Google Scholar]
  241. Tong SJ, Wall AA, Hung Y, Luo L, Stow JL. Guanine nucleotide exchange factors activate Rab8a for Toll-like receptor signalling. Small GTPases 2021; 12:27–43 [View Article] [PubMed]
    [Google Scholar]
  242. Wall AA, Luo L, Hung Y, Tong SJ, Condon ND et al. Small GTPase Rab8a-recruited phosphatidylinositol 3-kinase γ regulates signaling and cytokine outputs from endosomal toll-like receptors. J Biol Chem 2017; 292:4411–4422 [View Article] [PubMed]
    [Google Scholar]
  243. D’Costa VM, Braun V, Landekic M, Shi R, Proteau A et al. Salmonella disrupts host endocytic trafficking by SopD2-mediated inhibition of Rab7. Cell Rep 2015; 12:1508–1518 [View Article] [PubMed]
    [Google Scholar]
  244. Knuff-Janzen K, Serapio-Palacios A, McCoy J, Krekhno Z, Moon K-M et al. Quantitative proteomic screen identifies annexin A2 as a host target for Salmonella pathogenicity island-2 effectors SopD2 and PipB2. Sci Rep 2021; 11:23630 [View Article] [PubMed]
    [Google Scholar]
  245. Schroeder N, Henry T, de Chastellier C, Zhao W, Guilhon A-A et al. The virulence protein SopD2 regulates membrane dynamics of Salmonella-containing vacuoles. PLoS Pathog 2010; 6:e1001002 [View Article] [PubMed]
    [Google Scholar]
  246. Brumell JH, Kujat-Choy S, Brown NF, Vallance BA, Knodler LA et al. SopD2 is a novel type III secreted effector of Salmonella typhimurium that targets late endocytic compartments upon delivery into host cells. Traffic 2003; 4:36–48 [View Article] [PubMed]
    [Google Scholar]
  247. Teo WX, Yang Z, Kerr MC, Luo L, Guo Z et al. Salmonella effector SopD2 interferes with Rab34 function. Cell Biol Int 2017; 41:433–446 [View Article] [PubMed]
    [Google Scholar]
  248. Spanò S, Galán JE. A Rab32-dependent pathway contributes to Salmonella Typhi host restriction. Science 2012; 338:960–963 [View Article]
    [Google Scholar]
  249. Figueira R, Watson KG, Holden DW, Helaine S. Identification of Salmonella pathogenicity island-2 type III secretion system effectors involved in intramacrophage replication of S. enterica serovar typhimurium: implications for rational vaccine design. mBio 2013; 4:e00065 [View Article] [PubMed]
    [Google Scholar]
  250. Knuff-Janzen K, Tupin A, Yurist-Doutsch S, Rowland JL, Finlay BB. Multiple Salmonella-pathogenicity island 2 effectors are required to facilitate bacterial establishment of its intracellular niche and virulence. PLoS One 2020; 15:e0235020 [View Article] [PubMed]
    [Google Scholar]
  251. Trombert AN, Rodas PI, Mora GC. Reduced invasion to human epithelial cell lines of Salmonella enterica serovar Typhi carrying S. Typhimurium sopD2. FEMS Microbiol Lett 2011; 322:150–156 [View Article] [PubMed]
    [Google Scholar]
  252. Stender S, Friebel A, Linder S, Rohde M, Mirold S et al. Identification of SopE2 from Salmonella typhimurium, a conserved guanine nucleotide exchange factor for Cdc42 of the host cell. Mol Microbiol 2000; 36:1206–1221 [View Article]
    [Google Scholar]
  253. Vonaesch P, Sellin ME, Cardini S, Singh V, Barthel M et al. The S almonella Typhimurium effector protein SopE transiently localizes to the early SCV and contributes to intracellular replication. Cell Microbiol 2014; 16:1723–1735 [View Article]
    [Google Scholar]
  254. Friebel A, Ilchmann H, Aepfelbacher M, Ehrbar K, Machleidt W et al. SopE and SopE2 from Salmonella typhimurium activate different sets of RhoGTPases of the host cell. J Biol Chem 2001; 276:34035–34040 [View Article] [PubMed]
    [Google Scholar]
  255. Buchwald G, Friebel A, Galán JE, Hardt W-D, Wittinghofer A et al. Structural basis for the reversible activation of a Rho protein by the bacterial toxin SopE. EMBO J 2002; 21:3286–3295 [View Article]
    [Google Scholar]
  256. Panagi I, Jennings E, Zeng J, Günster RA, Stones CD et al. Salmonella effector SteE converts the mammalian serine/threonine kinase GSK3 into a tyrosine kinase to direct macrophage polarization. Cell Host Microbe 2020; 27:41–53 [View Article] [PubMed]
    [Google Scholar]
  257. Gibbs KD, Washington EJ, Jaslow SL, Bourgeois JS, Foster MW et al. The Salmonella secreted effector SarA/SteE mimics cytokine receptor signaling to activate STAT3. Cell Host Microbe 2020; 27:129–139 [View Article]
    [Google Scholar]
  258. Jaslow SL, Gibbs KD, Fricke WF, Wang L, Pittman KJ et al. Salmonella activation of STAT3 signaling by SarA effector promotes intracellular replication and production of IL-10. Cell Rep 2018; 23:3525–3536 [View Article] [PubMed]
    [Google Scholar]
  259. Pham THM, Brewer SM, Thurston T, Massis LM, Honeycutt J et al. Salmonella-driven polarization of granuloma macrophages antagonizes TNF-mediated pathogen restriction during persistent infection. Cell Host Microbe 2020; 27:54–67 [View Article] [PubMed]
    [Google Scholar]
  260. Stapels DAC, Hill PWS, Westermann AJ, Fisher RA, Thurston TL et al. Salmonella persisters undermine host immune defenses during antibiotic treatment. Science 2018; 362:1156–1160 [View Article] [PubMed]
    [Google Scholar]
  261. Liu Z, Wang L, Yu Y, Fotin A, Wang Q et al. SteE enhances the virulence of Salmonella pullorum in chickens by regulating the inflammation response. Front Vet Sci 2022; 9: [View Article] [PubMed]
    [Google Scholar]
  262. Godlee C, Cerny O, Liu M, Blundell S, Gallagher AE et al. The Salmonella transmembrane effector SteD hijacks AP1-mediated vesicular trafficking for delivery to antigen-loading MHCII compartments. PLoS Pathog 2022; 18:e1010252 [View Article] [PubMed]
    [Google Scholar]
  263. Bayer-Santos E, Durkin CH, Rigano LA, Kupz A, Alix E et al. The Salmonella effector SteD mediates MARCH8-dependent ubiquitination of MHC II molecules and inhibits T cell activation. Cell Host Microbe 2016; 20:584–595 [View Article]
    [Google Scholar]
  264. Alix E, Godlee C, Cerny O, Blundell S, Tocci R et al. The tumour suppressor TMEM127 Is a Nedd4-family E3 ligase adaptor required by Salmonella SteD to ubiquitinate and degrade MHC class II molecules. Cell Host Microbe 2020; 28:54–68 [View Article]
    [Google Scholar]
  265. Cerny O, Godlee C, Tocci R, Cross NE, Shi H et al. CD97 stabilises the immunological synapse between dendritic cells and T cells and is targeted for degradation by the Salmonella effector SteD. PLoS Pathog 2021; 17:e1009771 [View Article] [PubMed]
    [Google Scholar]
  266. Pilar AVC, Reid-Yu SA, Cooper CA, Mulder DT, Coombes BK et al. GogB Is an anti-inflammatory effector that limits tissue damage during Salmonella infection through interaction with human FBXO22 and Skp1. PLoS Pathog 2012; 8:e1002773 [View Article]
    [Google Scholar]
  267. Skowyra D, Craig KL, Tyers M, Elledge SJ, Harper JW. F-Box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 1997; 91:209–219 [View Article]
    [Google Scholar]
  268. Dai S, Zhou D. Secretion and function of Salmonella SPI-2 effector SseF require its Chaperone, SscB. J Bacteriol 2004; 186:5078–5086 [View Article]
    [Google Scholar]
  269. Deiwick J, Salcedo SP, Boucrot E, Gilliland SM, Henry T et al. The translocated Salmonella effector proteins SseF and SseG interact and are required to establish an intracellular replication niche. Infect Immun 2006; 74:6965–6972 [View Article] [PubMed]
    [Google Scholar]
  270. Müller P, Chikkaballi D, Hensel M, Webber MA. Functional dissection of SseF, a membrane-integral effector protein of intracellular Salmonella enterica. PLOS One 2012; 7:e35004 [View Article]
    [Google Scholar]
  271. Abrahams GL, Müller P, Hensel M. Functional dissection of SseF, a type III effector protein involved in positioning the Salmonella-containing vacuole. Traffic 2006; 7:950–965 [View Article]
    [Google Scholar]
  272. Salcedo SP, Holden DW. SseG, a virulence protein that targets Salmonella to the Golgi network. EMBO J 2003; 22:5003–5014 [View Article] [PubMed]
    [Google Scholar]
  273. Yu X-J, Liu M, Holden DW, Hultgren SJ. Salmonella effectors SseF and SseG interact with mammalian protein ACBD3 (GCP60) to anchor Salmonella-containing vacuoles at the golgi network. mBio 2016; 7:e00474-16 [View Article] [PubMed]
    [Google Scholar]
  274. Kuhle V, Hensel M. SseF and SseG are translocated effectors of the type III secretion system of Salmonella pathogenicity island 2 that modulate aggregation of endosomal compartments. Cell Microbiol 2002; 4:813–824 [View Article] [PubMed]
    [Google Scholar]
  275. Kuhle V, Jäckel D, Hensel M. Effector proteins encoded by Salmonella pathogenicity island 2 interfere with the microtubule cytoskeleton after translocation into host cells. Traffic 2004; 5:356–370 [View Article] [PubMed]
    [Google Scholar]
  276. Ramsden AE, Mota LJ, Münter S, Shorte SL, Holden DW. The SPI-2 type III secretion system restricts motility of Salmonella-containing vacuoles. Cell Microbiol 2007; 9:2517–2529 [View Article] [PubMed]
    [Google Scholar]
  277. Krieger V, Liebl D, Zhang Y, Rajashekar R, Chlanda P et al. Reorganization of the endosomal system in Salmonella-infected cells: the ultrastructure of Salmonella-induced tubular compartments. PLoS Pathog 2014; 10:e1004374 [View Article] [PubMed]
    [Google Scholar]
  278. Moest T, Zhao W, Zhao Y, Schüssler JM, Yan W et al. Contribution of bacterial effectors and host proteins to the composition and function of Salmonella-induced tubules. Cell Microbiol 2018; 20:e12951 [View Article] [PubMed]
    [Google Scholar]
  279. Liss V, Swart AL, Kehl A, Hermanns N, Zhang Y et al. Salmonella enterica remodels the host cell endosomal system for efficient intravacuolar nutrition. Cell Host Microbe 2017; 21:390–402 [View Article]
    [Google Scholar]
  280. Noster J, Chao T-C, Sander N, Schulte M, Reuter T et al. Proteomics of intracellular Salmonella enterica reveals roles of Salmonella pathogenicity island 2 in metabolism and antioxidant defense. PLoS Pathog 2019; 15:e1007741 [View Article] [PubMed]
    [Google Scholar]
  281. Kehl A, Göser V, Reuter T, Liss V, Franke M et al. A trafficome-wide RNAi screen reveals deployment of early and late secretory host proteins and the entire late endo-/lysosomal vesicle fusion machinery by intracellular Salmonella. PLoS Pathog 2020; 16:e1008220 [View Article] [PubMed]
    [Google Scholar]
  282. Wang X, Li D, Qu D, Zhou D. Involvement of TIP60 acetyltransferase in intracellular Salmonella replication. BMC Microbiol 2010; 10: [View Article]
    [Google Scholar]
  283. Auweter SD, Bhavsar AP, de Hoog CL, Li Y, Chan YA et al. Quantitative mass spectrometry catalogues Salmonella pathogenicity island-2 effectors and identifies their cognate host binding partners. J Biol Chem 2011; 286:24023–24035 [View Article] [PubMed]
    [Google Scholar]
  284. Liss V, Hensel M. Take the tube: remodelling of the endosomal system by intracellular Salmonella enterica. Cell Microbiol 2015; 17:639–647 [View Article] [PubMed]
    [Google Scholar]
  285. McGourty K, Thurston TL, Matthews SA, Pinaud L, Mota LJ et al. Salmonella inhibits retrograde trafficking of mannose-6-phosphate receptors and lysosome function. Science 2012; 338:963–967 [View Article] [PubMed]
    [Google Scholar]
  286. Sindhwani A, Arya SB, Kaur H, Jagga D, Tuli A et al. Salmonella exploits the host endolysosomal tethering factor HOPS complex to promote its intravacuolar replication. PLoS Pathog 2017; 13:e1006700 [View Article] [PubMed]
    [Google Scholar]
  287. Boucrot E, Henry T, Borg J-P, Gorvel J-P, Méresse S. The intracellular fate of Salmonella depends on the recruitment of kinesin. Science 2005; 308:1174–1178 [View Article]
    [Google Scholar]
  288. Kaniuk NA, Canadien V, Bagshaw RD, Bakowski M, Braun V et al. Salmonella exploits Arl8B-directed kinesin activity to promote endosome tubulation and cell-to-cell transfer. Cell Microbiol 2011; 13:1812–1823 [View Article]
    [Google Scholar]
  289. Rosa-Ferreira C, Munro S. Arl8 and SKIP act together to link lysosomes to kinesin-1. Dev Cell 2011; 21:1171–1178 [View Article] [PubMed]
    [Google Scholar]
  290. Henry T, Couillault C, Rockenfeller P, Boucrot E, Dumont A et al. The Salmonella effector protein PipB2 is a linker for kinesin-1. Proc Natl Acad Sci 2006; 103:13497–13502 [View Article] [PubMed]
    [Google Scholar]
  291. McEwan DG, Richter B, Claudi B, Wigge C, Wild P et al. PLEKHM1 regulates Salmonella-containing vacuole biogenesis and infection. Cell Host Microbe 2015; 17:58–71 [View Article]
    [Google Scholar]
  292. Jackson LK, Nawabi P, Hentea C, Roark EA, Haldar K. The Salmonella virulence protein SifA is a G protein antagonist. Proc Natl Acad Sci 2008; 105:14141–14146 [View Article] [PubMed]
    [Google Scholar]
  293. Arbeloa A, Garnett J, Lillington J, Bulgin RR, Berger CN et al. EspM2 is a RhoA guanine nucleotide exchange factor. Cell Microbiol 2010; 12:654–664 [View Article] [PubMed]
    [Google Scholar]
  294. Huang Z, Sutton SE, Wallenfang AJ, Orchard RC, Wu X et al. Structural insights into host GTPase isoform selection by a family of bacterial GEF mimics. Nat Struct Mol Biol 2009; 16:853–860 [View Article] [PubMed]
    [Google Scholar]
  295. Patel S, Wall DM, Castillo A, McCormick BA. Caspase-3 cleavage of Salmonella type III secreted effector protein SifA is required for localization of functional domains and bacterial dissemination. Gut Microbes 2019; 10:172–187 [View Article] [PubMed]
    [Google Scholar]
  296. Zhao W, Moest T, Zhao Y, Guilhon A-A, Buffat C et al. The Salmonella effector protein SifA plays a dual role in virulence. Sci Rep 2015; 5: [View Article]
    [Google Scholar]
  297. Reinicke AT, Hutchinson JL, Magee AI, Mastroeni P, Trowsdale J et al. A Salmonella typhimurium effector protein SifA is modified by host cell prenylation and S-acylation machinery. J Biol Chem 2005; 280:14620–14627 [View Article] [PubMed]
    [Google Scholar]
  298. Diacovich L, Dumont A, Lafitte D, Soprano E, Guilhon A-A et al. Interaction between the SifA virulence factor and its host target SKIP is essential for Salmonella pathogenesis. J Biol Chem 2009; 284:33151–33160 [View Article] [PubMed]
    [Google Scholar]
  299. Namakchian M, Kassler K, Sticht H, Hensel M, Deiwick J. Structure-based functional analysis of effector protein SifA in living cells reveals motifs important for Salmonella intracellular proliferation. Int J Med Microbiol 2018; 308:84–96 [View Article] [PubMed]
    [Google Scholar]
  300. McGhie EJ, Hayward RD, Koronakis V. Control of actin turnover by a Salmonella invasion protein. Mol Cell 2004; 13:497–510 [View Article] [PubMed]
    [Google Scholar]
  301. Singh PK, Kapoor A, Lomash RM, Kumar K, Kamerkar SC et al. Salmonella SipA mimics a cognate SNARE for host Syntaxin8 to promote fusion with early endosomes. J Cell Biol 2018; 217:4199–4214 [View Article] [PubMed]
    [Google Scholar]
  302. Auweter SD, Yu HB, Arena ET, Guttman JA, Finlay BB. Oxysterol-binding protein (OSBP) enhances replication of intracellular Salmonella and binds the Salmonella SPI-2 effector SseL via its N-terminus. Microbes Infect 2012; 14:148–154 [View Article] [PubMed]
    [Google Scholar]
  303. Arena ET, Auweter SD, Antunes LCM, Vogl AW, Han J et al. The deubiquitinase activity of the Salmonella pathogenicity island 2 effector, SseL, prevents accumulation of cellular lipid droplets. Infect Immun 2011; 79:4392–4400 [View Article]
    [Google Scholar]
  304. Young AM, Minson M, McQuate SE, Palmer AE. Optimized fluorescence complementation platform for visualizing Salmonella effector proteins reveals distinctly different intracellular niches in different cell types. ACS Infect Dis 2017; 3:575–584 [View Article] [PubMed]
    [Google Scholar]
  305. Meng K, Yang J, Xue J, Lv J, Zhu P et al. A host E3 ubiquitin ligase regulates Salmonella virulence by targeting an SPI-2 effector involved in SIF biogenesis. Cell Biol 2022 [View Article]
    [Google Scholar]
  306. Geddes K, Worley M, Niemann G, Heffron F. Identification of new secreted effectors in Salmonella enterica serovar Typhimurium. Infect Immun 2005; 73:6260–6271 [View Article] [PubMed]
    [Google Scholar]
  307. Yeom J, Pontes MH, Choi J, Groisman EA. A protein that controls the onset of a Salmonella virulence program. EMBO J 2018; 37:e96977 [View Article] [PubMed]
    [Google Scholar]
  308. Cordero-Alba M, Bernal-Bayard J, Ramos-Morales F. SrfJ, a Salmonella type III secretion system effector regulated by PhoP, RcsB, and IolR. J Bacteriol 2012; 194:4226–4236 [View Article] [PubMed]
    [Google Scholar]
  309. Domingues L, Ismail A, Charro N, Rodríguez-Escudero I, Holden DW et al. The Salmonella effector SteA binds phosphatidylinositol 4-phosphate for subcellular targeting within host cells. Cell Microbiol 2016; 18:949–969 [View Article] [PubMed]
    [Google Scholar]
  310. McQuate SE, Young AM, Silva-Herzog E, Bunker E, Hernandez M et al. Long-term live-cell imaging reveals new roles for Salmonella effector proteins SseG and SteA. Cell Microbiol 2017; 19: [View Article] [PubMed]
    [Google Scholar]
  311. Gulati A, Shukla R, Mukhopadhaya A. Salmonella effector SteA suppresses proinflammatory responses of the host by interfering with IκB degradation. Front Immunol 2019; 10: [View Article]
    [Google Scholar]
  312. Lilic M, Vujanac M, Stebbins CE. A common structural motif in the binding of virulence factors to bacterial secretion chaperones. Mol Cell 2006; 21:653–664 [View Article] [PubMed]
    [Google Scholar]
  313. Barta ML, Dickenson NE, Patil M, Keightley A, Wyckoff GJ et al. The structures of coiled-coil domains from type III secretion system translocators reveal homology to pore-forming toxins. J Mol Biol 2012; 417:395–405 [View Article] [PubMed]
    [Google Scholar]
  314. Chatterjee S, Zhong D, Nordhues BA, Battaile KP, Lovell S et al. The crystal structures of the Salmonella type III secretion system tip protein SipD in complex with deoxycholate and chenodeoxycholate. Protein Sci 2011; 20:75–86 [View Article] [PubMed]
    [Google Scholar]
  315. Diao J, Zhang Y, Huibregtse JM, Zhou D, Chen J. Crystal structure of SopA, a Salmonella effector protein mimicking a eukaryotic ubiquitin ligase. Nat Struct Mol Biol 2008; 15:65–70 [View Article]
    [Google Scholar]
  316. Williams C, Galyov EE, Bagby S. Solution structure, backbone dynamics, and interaction with Cdc42 of Salmonella guanine nucleotide exchange factor SopE2. Biochemistry 2004; 43:11998–12008 [View Article] [PubMed]
    [Google Scholar]
  317. Stebbins CE, Galán JE. Maintenance of an unfolded polypeptide by a cognate chaperone in bacterial type III secretion. Nature 2001; 414:77–81 [View Article]
    [Google Scholar]
  318. Chen L, Wang H, Zhang J, Gu L, Huang N et al. Structural basis for the catalytic mechanism of phosphothreonine lyase. Nat Struct Mol Biol 2008; 15:101–102 [View Article]
    [Google Scholar]
  319. Kim Y-G, Kim J-H, Kim K-J. Crystal structure of the Salmonella enterica serovar Typhimurium virulence factor Srfj, a glycoside hydrolase family enzyme. J Bacteriol 2009; 191: [View Article]
    [Google Scholar]
  320. Wang L, Yan J, Niu H, Huang R, Wu S. Autophagy and ubiquitination in Salmonella infection and the related inflammatory responses. Front Cell Infect Microbiol 2018; 8:78 [View Article] [PubMed]
    [Google Scholar]
  321. Zhang W, Sidhu SS. Development of inhibitors in the ubiquitination cascade. FEBS Lett 2014; 588:356–367 [View Article]
    [Google Scholar]
  322. Horn-Ghetko D, Schulman BA. New classes of E3 ligases illuminated by chemical probes. Curr Opin Struct Biol 2022; 73:102341 [View Article] [PubMed]
    [Google Scholar]
  323. Oh E, Akopian D, Rape M. Principles of ubiquitin-dependent signaling. Annu Rev Cell Dev Biol 2018; 34:137–162 [View Article] [PubMed]
    [Google Scholar]
  324. Kocaturk NM, Gozuacik D. Crosstalk between mammalian autophagy and the ubiquitin-proteasome system. Front Cell Dev Biol 2018; 6:128 [View Article] [PubMed]
    [Google Scholar]
  325. Thurston TLM, Ryzhakov G, Bloor S, von Muhlinen N, Randow F. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat Immunol 2009; 10:1215–1221 [View Article] [PubMed]
    [Google Scholar]
  326. Wild P, Farhan H, McEwan DG, Wagner S, Rogov VV et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 2011; 333:228–233 [View Article] [PubMed]
    [Google Scholar]
  327. Ciechanover A, Schwartz AL. The ubiquitin-proteasome pathway: the complexity and myriad functions of proteins death. Proc Natl Acad Sci 1998; 95:2727–2730 [View Article] [PubMed]
    [Google Scholar]
  328. Coux O, Tanaka K, Goldberg AL. Structure and functions of the 20s and 26s proteasomes. Annu Rev Biochem 1996; 65:801–847 [View Article] [PubMed]
    [Google Scholar]
  329. Mani A, Gelmann EP. The ubiquitin-proteasome pathway and its role in cancer. J Clin Oncol 2005; 23:4776–4789 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001342
Loading
/content/journal/micro/10.1099/mic.0.001342
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error