1887

Abstract

is a pathogen that causes disease in millions of people every year by colonizing the small intestine and then secreting the potent cholera toxin. How the pathogen overcomes the colonization barrier created by the host’s natural microbiota is, however, still not well understood. In this context, the type VI secretion system (T6SS) has gained considerable attention given its ability to mediate interbacterial killing. Interestingly, and in contrast to non-pandemic or environmental isolates, strains that are causing the ongoing cholera pandemic (7PET clade) are considered T6SS-silent under laboratory conditions. Since this idea was recently challenged, we performed a comparative study on T6SS activity using diverse strains or regulatory mutants. We show that modest T6SS activity is detectable in most of the tested strains under interbacterial competition conditions. The system’s activity was also observed through immunodetection of the T6SS tube protein Hcp in culture supernatants, a phenotype that can be masked by the strains’ haemagglutinin/protease. We further investigated the low T6SS activity within the bacterial populations by imaging 7PET at the single-cell level. The micrographs showed the production of the machinery in only a small fraction of cells within the population. This sporadic T6SS production was higher at 30 °C than at 37 °C and occurred independently of the known regulators TfoX and TfoY but was dependent on the VxrAB two-component system. Overall, our work provides new insight into the heterogeneity of T6SS production in populations of 7PET strains and provides a possible explanation of the system’s low activity in bulk measurements.

Funding
This study was supported by the:
  • Howard Hughes Medical Institute (Award 55008726)
    • Principle Award Recipient: MelanieBlokesch
  • H2020 European Research Council (Award 724630)
    • Principle Award Recipient: BlokeschMelanie
  • Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Award 310030_185022)
    • Principle Award Recipient: MelanieBlokesch
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001329
2023-05-03
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/169/5/mic001329.html?itemId=/content/journal/micro/10.1099/mic.0.001329&mimeType=html&fmt=ahah

References

  1. Ali M, Nelson AR, Lopez AL, Sack DA. Updated global burden of cholera in endemic countries. PLoS Negl Trop Dis 2015; 9:e0003832 [View Article] [PubMed]
    [Google Scholar]
  2. Clemens JD, Nair GB, Ahmed T, Qadri F, Holmgren J. Cholera. Lancet 2017; 390:1539–1549 [View Article] [PubMed]
    [Google Scholar]
  3. Holmgren J. Actions of cholera toxin and the prevention and treatment of cholera. Nature 1981; 292:413–417 [View Article] [PubMed]
    [Google Scholar]
  4. Taylor RK, Miller VL, Furlong DB, Mekalanos JJ. Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc Natl Acad Sci USA 1987; 84:2833–2837 [View Article] [PubMed]
    [Google Scholar]
  5. Aldová E, Láznicková K, Stĕpánková E, Lietava J. Isolation of nonagglutinable vibrios from an enteritis outbreak in Czechoslovakia. J Infect Dis 1968; 118:25–31 [View Article] [PubMed]
    [Google Scholar]
  6. World Health Organization (WHO).. Outbreak of gastro-enteritis by non agglutinable (NAG) vibrios. Wkly Epidemiol Rec 1969; 44:10
    [Google Scholar]
  7. Faruque SM, Albert MJ, Mekalanos JJ. Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae. Microbiol Mol Biol Rev 1998; 62:1301–1314 [View Article] [PubMed]
    [Google Scholar]
  8. Lipp EK, Huq A, Colwell RR. Effects of global climate on infectious disease: the cholera model. Clin Microbiol Rev 2002; 15:757–770 [View Article] [PubMed]
    [Google Scholar]
  9. Granato ET, Meiller-Legrand TA, Foster KR. The evolution and ecology of bacterial warfare. Curr Biol 2019; 29:R521–R537 [View Article] [PubMed]
    [Google Scholar]
  10. Peterson SB, Bertolli SK, Mougous JD. The central role of interbacterial antagonism in bacterial life. Curr Biol 2020; 30:R1203–R1214 [View Article] [PubMed]
    [Google Scholar]
  11. Galán JE, Waksman G. Protein-injection machines in bacteria. Cell 2018; 172:1306–1318 [View Article] [PubMed]
    [Google Scholar]
  12. Hood RD, Singh P, Hsu F, Güvener T, Carl MA et al. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 2010; 7:25–37 [View Article] [PubMed]
    [Google Scholar]
  13. Russell AB, Hood RD, Bui NK, LeRoux M, Vollmer W et al. Type VI secretion delivers bacteriolytic effectors to target cells. Nature 2011; 475:343–347 [View Article] [PubMed]
    [Google Scholar]
  14. MacIntyre DL, Miyata ST, Kitaoka M, Pukatzki S. The Vibrio cholerae type VI secretion system displays antimicrobial properties. Proc Natl Acad Sci USA 2010; 107:19520–19524 [View Article] [PubMed]
    [Google Scholar]
  15. Dong TG, Ho BT, Yoder-Himes DR, Mekalanos JJ. Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholerae. Proc Natl Acad Sci USA 2013; 110:2623–2628 [View Article] [PubMed]
    [Google Scholar]
  16. Unterweger D, Miyata ST, Bachmann V, Brooks TM, Mullins T et al. The Vibrio cholerae type VI secretion system employs diverse effector modules for intraspecific competition. Nat Commun 2014; 5:3549 [View Article] [PubMed]
    [Google Scholar]
  17. Boyer F, Fichant G, Berthod J, Vandenbrouck Y, Attree I. Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources?. BMC Genomics 2009; 10:104 [View Article] [PubMed]
    [Google Scholar]
  18. Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D et al. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci USA 2006; 103:1528–1533 [View Article] [PubMed]
    [Google Scholar]
  19. Unterweger D, Kitaoka M, Miyata ST, Bachmann V, Brooks TM et al. Constitutive type VI secretion system expression gives Vibrio cholerae intra- and interspecific competitive advantages. PLoS One 2012; 7:e48320 [View Article] [PubMed]
    [Google Scholar]
  20. Bernardy EE, Turnsek MA, Wilson SK, Tarr CL, Hammer BK. Diversity of clinical and environmental isolates of Vibrio cholerae in natural transformation and contact-dependent bacterial killing indicative of type VI secretion system activity. Appl Environ Microbiol 2016; 82:2833–2842 [View Article] [PubMed]
    [Google Scholar]
  21. Van der Henst C, Vanhove AS, Drebes Dörr NC, Stutzmann S, Stoudmann C et al. Molecular insights into Vibrio cholerae’s intra-amoebal host-pathogen interactions. Nat Commun 2018; 9:3460 [View Article] [PubMed]
    [Google Scholar]
  22. Drebes Dörr NC, Blokesch M. Interbacterial competition and anti-predatory behaviour of environmental Vibrio cholerae strains. Environ Microbiol 2020; 22:4485–4504 [View Article] [PubMed]
    [Google Scholar]
  23. Basler M, Pilhofer M, Henderson GP, Jensen GJ, Mekalanos JJ. 2012; Type VI secretion requires a dynamic contractile phage tail-like structure. Nature 483:182–6
    [Google Scholar]
  24. Borgeaud S, Metzger LC, Scrignari T, Blokesch M. The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer. Science 2015; 347:63–67 [View Article] [PubMed]
    [Google Scholar]
  25. Kostiuk B, Santoriello FJ, Diaz-Satizabal L, Bisaro F, Lee KJ et al. Type VI secretion system mutations reduced competitive fitness of classical Vibrio cholerae biotype. Nat Commun 2021; 12:6457 [View Article] [PubMed]
    [Google Scholar]
  26. Zhao W, Caro F, Robins W, Mekalanos JJ. Antagonism toward the intestinal microbiota and its effect on Vibrio cholerae virulence. Science 2018; 359:210–213 [View Article] [PubMed]
    [Google Scholar]
  27. Logan SL, Thomas J, Yan J, Baker RP, Shields DS et al. The Vibrio cholerae type VI secretion system can modulate host intestinal mechanics to displace gut bacterial symbionts. Proc Natl Acad Sci USA 2018; 115:E3779–E3787 [View Article] [PubMed]
    [Google Scholar]
  28. Metzger LC, Stutzmann S, Scrignari T, Van der Henst C, Matthey N et al. Independent regulation of type VI secretion in Vibrio cholerae by TfoX and TfoY. Cell Rep 2016; 15:951–958 [View Article] [PubMed]
    [Google Scholar]
  29. Metzger LC, Matthey N, Stoudmann C, Collas EJ, Blokesch M. Ecological implications of gene regulation by TfoX and TfoY among diverse Vibrio species. Environ Microbiol 2019; 21:2231–2247 [View Article] [PubMed]
    [Google Scholar]
  30. Ben-Yaakov R, Salomon D. The regulatory network of Vibrio parahaemolyticus type VI secretion system 1. Environ Microbiol 2019; 21:2248–2260 [View Article] [PubMed]
    [Google Scholar]
  31. Pursley BR, Fernandez NL, Severin GB, Waters CM. The Vc2 Cyclic di-GMP-dependent riboswitch of Vibrio cholerae regulates expression of an upstream putative small RNA by controlling RNA stability. J Bacteriol 2019; 201:e00293-19 [View Article] [PubMed]
    [Google Scholar]
  32. Joshi A, Mahmoud SA, Kim S-K, Ogdahl JL, Lee VT et al. c-di-GMP inhibits LonA-dependent proteolysis of TfoY in Vibrio cholerae. PLoS Genet 2020; 16:e1008897 [View Article] [PubMed]
    [Google Scholar]
  33. Lo Scrudato M, Blokesch M. A transcriptional regulator linking quorum sensing and chitin induction to render Vibrio cholerae naturally transformable. Nucleic Acids Res 2013; 41:3644–3658 [View Article] [PubMed]
    [Google Scholar]
  34. Jaskólska M, Stutzmann S, Stoudmann C, Blokesch M. QstR-dependent regulation of natural competence and type VI secretion in Vibrio cholerae. Nucleic Acids Res 2018; 46:10619–10634 [View Article] [PubMed]
    [Google Scholar]
  35. Matthey N, Stutzmann S, Stoudmann C, Guex N, Iseli C et al. Neighbor predation linked to natural competence fosters the transfer of large genomic regions in Vibrio cholerae.. Elife 2019; 8:e48212 [View Article] [PubMed]
    [Google Scholar]
  36. Drebes Dörr NC, Proutière A, Jaskólska M, Stutzmann S, Bader L et al. Single nucleotide polymorphism determines constitutive versus inducible type VI secretion in Vibrio cholerae. ISME J 2022; 16:1868–1872 [View Article] [PubMed]
    [Google Scholar]
  37. Ng SL, Kammann S, Steinbach G, Hoffmann T, Yunker PJ et al. Evolution of a cis-acting SNP that controls type VI secretion in Vibrio cholerae. mBio 2022; 13:e0042222 [View Article] [PubMed]
    [Google Scholar]
  38. Ishikawa T, Sabharwal D, Bröms J, Milton DL, Sjöstedt A et al. Pathoadaptive conditional regulation of the type VI secretion system in Vibrio cholerae O1 strains. Infect Immun 2012; 80:575–584 [View Article] [PubMed]
    [Google Scholar]
  39. Cheng AT, Ottemann KM, Yildiz FH. Vibrio cholerae response regulator VxrB controls colonization and regulates the Type VI secretion system. PLoS Pathog 2015; 11:e1004933 [View Article] [PubMed]
    [Google Scholar]
  40. Dörr T, Alvarez L, Delgado F, Davis BM, Cava F et al. A cell wall damage response mediated by a sensor kinase/response regulator pair enables beta-lactam tolerance. Proc Natl Acad Sci USA 2016; 113:404–409 [View Article] [PubMed]
    [Google Scholar]
  41. Shin J-H, Choe D, Ransegnola B, Hong H-R, Onyekwere I et al. A multifaceted cellular damage repair and prevention pathway promotes high-level tolerance to β-lactam antibiotics. EMBO Rep 2021; 22:e51790 [View Article] [PubMed]
    [Google Scholar]
  42. Teschler JK, Cheng AT, Yildiz FH. The Two-component signal transduction system VxrAB positively regulates Vibrio cholerae biofilm formation. J Bacteriol 2017; 199:e00139-17 [View Article] [PubMed]
    [Google Scholar]
  43. Teschler JK, Jiménez-Siebert E, Jeckel H, Singh PK, Park JH et al. VxrB influences antagonism within biofilms by controlling competition through extracellular matrix production and Type 6 secretion. mBio 2022; 13:e0188522 [View Article] [PubMed]
    [Google Scholar]
  44. Zheng J, Shin OS, Cameron DE, Mekalanos JJ. Quorum sensing and a global regulator TsrA control expression of type VI secretion and virulence in Vibrio cholerae. Proc Natl Acad Sci USA 2010; 107:21128–21133 [View Article] [PubMed]
    [Google Scholar]
  45. Meibom KL, Blokesch M, Dolganov NA, Wu C-Y, Schoolnik GK. Chitin induces natural competence in Vibrio cholerae. Science 2005; 310:1824–1827 [View Article] [PubMed]
    [Google Scholar]
  46. De Souza Silva O, Blokesch M. Genetic manipulation of Vibrio cholerae by combining natural transformation with FLP recombination. Plasmid 2010; 64:186–195 [View Article] [PubMed]
    [Google Scholar]
  47. Marvig RL, Blokesch M. Natural transformation of Vibrio cholerae as a tool-optimizing the procedure. BMC Microbiol 2010; 10:155 [View Article] [PubMed]
    [Google Scholar]
  48. Blokesch M. TransFLP-a method to genetically modify Vibrio cholerae based on natural transformation and FLP-recombination. J Vis Exp 20123761 [View Article] [PubMed]
    [Google Scholar]
  49. Meibom KL, Li XB, Nielsen AT, Wu C-Y, Roseman S et al. The Vibrio cholerae chitin utilization program. Proc Natl Acad Sci USA 2004; 101:2524–2529 [View Article] [PubMed]
    [Google Scholar]
  50. Bao Y, Lies DP, Fu H, Roberts GP. An improved Tn7-based system for the single-copy insertion of cloned genes into chromosomes of Gram-negative bacteria. Gene 1991; 109:167–168 [View Article] [PubMed]
    [Google Scholar]
  51. Keene ON. The log transformation is special. Stat Med 1995; 14:811–819 [View Article] [PubMed]
    [Google Scholar]
  52. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M et al. Fiji: an open-source platform for biological-image analysis. Nat Methods 2012; 9:676–682 [View Article] [PubMed]
    [Google Scholar]
  53. Bartoli A, Fusiello A. Computer Vision – ECCV 2020 Workshops. In Bartoli A, Fusiello A. eds DenoiSeg: Joint Denoising and Segmentation Cham: Springer International Publishing; 2020 pp 324–337 [View Article]
    [Google Scholar]
  54. Bankhead P, Loughrey MB, Fernández JA, Dombrowski Y, McArt DG et al. QuPath: open source software for digital pathology image analysis. Sci Rep 2017; 7:16878 [View Article] [PubMed]
    [Google Scholar]
  55. Ducret A, Quardokus EM, Brun YV. MicrobeJ, a tool for high throughput bacterial cell detection and quantitative analysis. Nat Microbiol 2016; 1:16077 [View Article] [PubMed]
    [Google Scholar]
  56. Ishikawa T, Rompikuntal PK, Lindmark B, Milton DL, Wai SN. Quorum sensing regulation of the two hcp alleles in Vibrio cholerae O1 strains. PLoS One 2009; 4:e6734 [View Article] [PubMed]
    [Google Scholar]
  57. Taylor NMI, van Raaij MJ, Leiman PG. Contractile injection systems of bacteriophages and related systems. Mol Microbiol 2018; 108:6–15 [View Article] [PubMed]
    [Google Scholar]
  58. Manera K, Caro F, Li H, Pei T-T, Hersch SJ et al. Sensing of intracellular Hcp levels controls T6SS expression in Vibrio cholerae. Proc Natl Acad Sci USA 2021; 118:e2104813118 [View Article] [PubMed]
    [Google Scholar]
  59. Jobling MG, Holmes RK. Characterization of hapR, a positive regulator of the Vibrio cholerae HA/protease gene hap, and its identification as a functional homologue of the Vibrio harveyi luxR gene. Mol Microbiol 1997; 26:1023–1034 [View Article] [PubMed]
    [Google Scholar]
  60. Overbye LJ, Sandkvist M, Bagdasarian M. Genes required for extracellular secretion of enterotoxin are clustered in Vibrio cholerae. Gene 1993; 132:101–106 [View Article] [PubMed]
    [Google Scholar]
  61. Durand E, Nguyen VS, Zoued A, Logger L, Péhau-Arnaudet G et al. Biogenesis and structure of a type VI secretion membrane core complex. Nature 2015; 523:555–560 [View Article] [PubMed]
    [Google Scholar]
  62. Vettiger A, Winter J, Lin L, Basler M. The type VI secretion system sheath assembles at the end distal from the membrane anchor. Nat Commun 2017; 8:16088 [View Article] [PubMed]
    [Google Scholar]
  63. Constantin de Magny G, Murtugudde R, Sapiano MRP, Nizam A, Brown CW et al. Environmental signatures associated with cholera epidemics. Proc Natl Acad Sci USA 2008; 105:17676–17681 [View Article] [PubMed]
    [Google Scholar]
  64. Stutzmann S, Blokesch M. Circulation of a quorum-sensing-impaired variant of Vibrio cholerae strain C6706 masks important phenotypes. mSphere 2016; 1:e00098-16 [View Article] [PubMed]
    [Google Scholar]
  65. Veening JW, Blokesch M. Interbacterial predation as a strategy for DNA acquisition in naturally competent bacteria. Nat Rev Microbiol 2017; 15:621–629 [View Article]
    [Google Scholar]
  66. Caro F, Caro JA, Place NM, Mekalanos JJ, Miller JF. Transcriptional silencing by TsrA in the evolution of pathogenic Vibrio cholerae biotypes. mBio 2020; 11:e02901-20 [View Article] [PubMed]
    [Google Scholar]
  67. Veening JW, Smits WK, Kuipers OP. Bistability, epigenetics, and bet-hedging in bacteria. Annu Rev Microbiol 2008; 62:193–210 [View Article] [PubMed]
    [Google Scholar]
  68. Mandlik A, Livny J, Robins WP, Ritchie JM, Mekalanos JJ et al. RNA-Seq-based monitoring of infection-linked changes in Vibrio cholerae gene expression. Cell Host Microbe 2011; 10:165–174 [View Article] [PubMed]
    [Google Scholar]
  69. Fu Y, Waldor MK, Mekalanos JJ. Tn-Seq analysis of Vibrio cholerae intestinal colonization reveals a role for T6SS-mediated antibacterial activity in the host. Cell Host Microbe 2013; 14:652–663 [View Article] [PubMed]
    [Google Scholar]
  70. Nair GB, Qadri F, Holmgren J, Svennerholm A-M, Safa A et al. Cholera due to altered El Tor strains of Vibrio cholerae O1 in Bangladesh. J Clin Microbiol 2006; 44:4211–4213 [View Article] [PubMed]
    [Google Scholar]
  71. Yildiz FH, Schoolnik GK. Role of rpoS in stress survival and virulence of Vibrio cholerae. J Bacteriol 1998; 180:773–784 [View Article] [PubMed]
    [Google Scholar]
  72. Matthey N, Drebes Dörr NC, Blokesch M. Long-read-based genome sequences of pandemic and environmental Vibrio cholerae strains. Microbiol Resour Announc 2018; 7:e01574-18 [View Article] [PubMed]
    [Google Scholar]
  73. Nielsen AT, Dolganov NA, Otto G, Miller MC, Wu CY et al. RpoS controls the Vibrio cholerae mucosal escape response. PLoS Pathog 2006; 2:e109 [View Article] [PubMed]
    [Google Scholar]
  74. Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML et al. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 2000; 406:477–483 [View Article] [PubMed]
    [Google Scholar]
  75. Wachsmuth IK, Evins GM, Fields PI, Olsvik O, Popovic T et al. The molecular epidemiology of cholera in Latin America. J Infect Dis 1993; 167:621–626 [View Article] [PubMed]
    [Google Scholar]
  76. Miller VL, DiRita VJ, Mekalanos JJ. Identification of toxS, a regulatory gene whose product enhances ToxR-mediated activation of the cholera toxin promoter. J Bacteriol 1989; 171:1288–1293 [View Article] [PubMed]
    [Google Scholar]
  77. Pearson GD, Woods A, Chiang SL, Mekalanos JJ. CTX genetic element encodes a site-specific recombination system and an intestinal colonization factor. Proc Natl Acad Sci 1993; 90:3750–3754 [View Article] [PubMed]
    [Google Scholar]
  78. Simon R, Priefer U, Pühler A. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Nat Biotechnol 1983; 1:784–791 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001329
Loading
/content/journal/micro/10.1099/mic.0.001329
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

MOVIE
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error