1887

Abstract

With an increase in the number of isolates resistant to multiple antibiotics, infection control has become increasingly important to help combat the spread of multi-drug-resistant pathogens. An important component of this is through the use of disinfectants and antiseptics (biocides). Antibiotic resistance has been well studied in bacteria, but little is known about potential biocide resistance genes and there have been few reported outbreaks in hospitals resulting from a breakdown in biocide effectiveness. Development of increased tolerance to biocides has been thought to be more difficult due to the mode of action of biocides which affect multiple cellular targets compared with antibiotics. Very few genes which contribute towards increased biocide tolerance have been identified. However, the majority of those that have are components or regulators of different efflux pumps or genes which modulate membrane function/modification. This review will examine the role of efflux in increased tolerance towards biocides, focusing on cationic biocides and heavy metals against Gram-negative bacteria. As many efflux pumps which are upregulated by biocide presence also contribute towards an antimicrobial resistance phenotype, the role of these efflux pumps in cross-resistance to both other biocides and antibiotics will be explored.

Funding
This study was supported by the:
  • UKHSA
    • Principle Award Recipient: MatthewE Wand
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001263
2022-11-30
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/168/11/mic001263.html?itemId=/content/journal/micro/10.1099/mic.0.001263&mimeType=html&fmt=ahah

References

  1. Russell AD. Introduction of biocides into clinical practice and the impact on antibiotic-resistant bacteria. J Appl Microbiol 2002; 92 Suppl:121S–35S [PubMed]
    [Google Scholar]
  2. Chen B, Han J, Dai H, Jia P. Biocide-tolerance and antibiotic-resistance in community environments and risk of direct transfers to humans: unintended consequences of community-wide surface disinfecting during COVID-19?. Environ Pollut 2021; 283:117074 [View Article] [PubMed]
    [Google Scholar]
  3. Dewey HM, Jones JM, Keating MR, Budhathoki-Uprety J. Increased use of disinfectants during the COVID-19 pandemic and its potential impacts on health and safety. ACS Chem Health Saf 2022; 29:27–38 [View Article]
    [Google Scholar]
  4. Maillard J-Y. Antimicrobial biocides in the healthcare environment: efficacy, usage, policies, and perceived problems. Ther Clin Risk Manag 2005; 1:307–320
    [Google Scholar]
  5. Pop-Vicas A, Safdar N. Pre-operative decolonization as a strategy to reduce surgical site infection. Curr Infect Dis Rep 2019; 21: [View Article] [PubMed]
    [Google Scholar]
  6. Carey DE, McNamara PJ. The impact of triclosan on the spread of antibiotic resistance in the environment. Front Microbiol 2014; 5:780 [View Article] [PubMed]
    [Google Scholar]
  7. Gray MJ, Wholey WY, Jakob U. Bacterial responses to reactive chlorine species. Annu Rev Microbiol 2013; 67:141–160 [View Article] [PubMed]
    [Google Scholar]
  8. Virto R, Mañas P, Alvarez I, Condon S, Raso J. Membrane damage and microbial inactivation by chlorine in the absence and presence of a chlorine-demanding substrate. Appl Environ Microbiol 2005; 71:5022–5028 [View Article] [PubMed]
    [Google Scholar]
  9. Dukan S, Touati D. Hypochlorous acid stress in Escherichia coli: resistance, DNA damage, and comparison with hydrogen peroxide stress. J Bacteriol 1996; 178:6145–6150 [View Article]
    [Google Scholar]
  10. Hurst JK, Barrette WC Jr, Michel BR, Rosen H. Hypochlorous acid and myeloperoxidase-catalyzed oxidation of iron-sulfur clusters in bacterial respiratory dehydrogenases. Eur J Biochem 1991; 202:1275–1282 [View Article] [PubMed]
    [Google Scholar]
  11. Soumet C, Méheust D, Pissavin C, Le Grandois P, Frémaux B et al. Reduced susceptibilities to biocides and resistance to antibiotics in food-associated bacteria following exposure to quaternary ammonium compounds. J Appl Microbiol 2016; 121:1275–1281 [View Article] [PubMed]
    [Google Scholar]
  12. Wales AD, Davies RH. Co-selection of resistance to antibiotics, biocides and heavy metals, and its relevance to foodborne pathogens. Antibiotics (Basel) 2015; 4:567–604 [View Article] [PubMed]
    [Google Scholar]
  13. Amsalu A, Sapula SA, De Barros Lopes M, Hart BJ, Nguyen AH et al. Efflux pump-driven antibiotic and biocide cross-resistance in Pseudomonas aeruginosa isolated from different ecological niches: a case study in the development of multidrug resistance in environmental hotspots. Microorganisms 2020; 8:1647 [View Article]
    [Google Scholar]
  14. Baker KS, Burnett E, McGregor H, Deheer-Graham A, Boinett C et al. The Murray collection of pre-antibiotic era Enterobacteriacae: a unique research resource. Genome Med 2015; 7:97 [View Article]
    [Google Scholar]
  15. Wand ME, Baker KS, Benthall G, McGregor H, McCowen JWI et al. Characterization of pre-antibiotic era Klebsiella pneumoniae isolates with respect to antibiotic/disinfectant susceptibility and virulence in galleria mellonella. Antimicrob Agents Chemother 2015; 59:3966–3972 [View Article] [PubMed]
    [Google Scholar]
  16. Buxser S. Has resistance to chlorhexidine increased among clinically-relevant bacteria? A systematic review of time course and subpopulation data. PLoS One 2021; 16:e0256336 [View Article] [PubMed]
    [Google Scholar]
  17. Hardy K, Sunnucks K, Gil H, Shabir S, Trampari E et al. Increased usage of antiseptics is associated with reduced susceptibility in clinical isolates of Staphylococcus aureus. mBio 2018; 9:e00894-18 [View Article]
    [Google Scholar]
  18. Sethi DK, Felgate H, Diaz M, Faust K, Kiy C et al. Chlorhexidine gluconate usage is associated with antiseptic tolerance in staphylococci from the neonatal intensive care unit. JAC Antimicrob Resist 2021; 3:dlab173 [View Article] [PubMed]
    [Google Scholar]
  19. Ahn Y, Kim JM, Kweon O, Kim S-J, Jones RC et al. Intrinsic Resistance of Burkholderia cepacia Complex to Benzalkonium Chloride. mBio 2016; 7:e01716-16 [View Article]
    [Google Scholar]
  20. Heath RJ, Rock CO. A triclosan-resistant bacterial enzyme. Nature 2000; 406:145–146 [View Article] [PubMed]
    [Google Scholar]
  21. Zhu L, Lin J, Ma J, Cronan JE, Wang H. Triclosan resistance of Pseudomonas aeruginosa PAO1 is due to FabV, a triclosan-resistant enoyl-acyl carrier protein reductase. Antimicrob Agents Chemother 2010; 54:689–698 [View Article] [PubMed]
    [Google Scholar]
  22. Short FL, Lee V, Mamun R, Malmberg R, Li L et al. Benzalkonium chloride antagonises aminoglycoside antibiotics and promotes evolution of resistance. EBioMedicine 2021; 73:103653 [View Article]
    [Google Scholar]
  23. Jin M, Liu L, Wang DN, Yang D, Liu WL et al. Chlorine disinfection promotes the exchange of antibiotic resistance genes across bacterial genera by natural transformation. ISME J 2020; 14:1847–1856 [View Article] [PubMed]
    [Google Scholar]
  24. Zhang S, Wang Y, Lu J, Yu Z, Song H et al. Chlorine disinfection facilitates natural transformation through ROS-mediated oxidative stress. ISME J 2021; 15:2969–2985 [View Article] [PubMed]
    [Google Scholar]
  25. Wand ME, Darby EM, Blair JMA, Sutton JM. Contribution of the efflux pump AcrAB-TolC to the tolerance of chlorhexidine and other biocides in Klebsiella spp. J Med Microbiol 2022; 71: [View Article] [PubMed]
    [Google Scholar]
  26. Webber MA, Whitehead RN, Mount M, Loman NJ, Pallen MJ et al. Parallel evolutionary pathways to antibiotic resistance selected by biocide exposure. J Antimicrob Chemother 2015; 70:2241–2248 [View Article] [PubMed]
    [Google Scholar]
  27. Whitehead RN, Overton TW, Kemp CL, Webber MA, Bereswill S. Exposure of Salmonella enterica Serovar Typhimurium to high level biocide challenge can select multidrug resistant mutants in a single step. PLoS ONE 2011; 6:e22833 [View Article] [PubMed]
    [Google Scholar]
  28. Machado D, Antunes J, Simões A, Perdigão J, Couto I et al. Contribution of efflux to colistin heteroresistance in a multidrug resistant acinetobacter baumannii clinical isolate. J Med Microbiol 2018; 67:740–749 [View Article]
    [Google Scholar]
  29. Skiada A, Markogiannakis A, Plachouras D, Daikos GL. Adaptive resistance to cationic compounds in Pseudomonas aeruginosa. Int J Antimicrob Agents 2011; 37:187–193 [View Article]
    [Google Scholar]
  30. Lin MF, Lin YY, Lan CY. Contribution of EmrAB efflux pumps to colistin resistance in Acinetobacter baumannii. J Microbiol 2017; 55:130–136 [View Article]
    [Google Scholar]
  31. Rosenberg EY, Ma D, Nikaido H. AcrD of Escherichia coli is an aminoglycoside efflux pump. J Bacteriol 2000; 182:1754–1756 [View Article] [PubMed]
    [Google Scholar]
  32. Fox LJ, Kelly PP, Humphreys GJ, Waigh TA, Lu JR et al. Assessing the risk of resistance to cationic biocides incorporating realism-based and biophysical approaches. J Ind Microbiol Biotechnol 2022; 49: [View Article]
    [Google Scholar]
  33. Gilbert P, Moore LE. Cationic antiseptics: diversity of action under a common epithet. J Appl Microbiol 2005; 99:703–715 [View Article] [PubMed]
    [Google Scholar]
  34. Kholina EG, Kovalenko IB, Bozdaganyan ME, Strakhovskaya MG, Orekhov PS. Cationic antiseptics facilitate pore formation in model bacterial membranes. J Phys Chem B 2020; 124:8593–8600 [View Article] [PubMed]
    [Google Scholar]
  35. Brown MH, Skurray RA. Staphylococcal multidrug efflux protein QacA. J Mol Microbiol Biotechnol 2001; 3:163–170 [PubMed]
    [Google Scholar]
  36. Cervinkova D, Babak V, Marosevic D, Kubikova I, Jaglic Z. The role of the qacA gene in mediating resistance to quaternary ammonium compounds. Microb Drug Resist 2013; 19:160–167 [View Article] [PubMed]
    [Google Scholar]
  37. Grkovic S, Brown MH, Roberts NJ, Paulsen IT, Skurray RA. QacR is a repressor protein that regulates expression of the Staphylococcus aureus multidrug efflux pump QacA. J Biol Chem 1998; 273:18665–18673 [View Article] [PubMed]
    [Google Scholar]
  38. McGann P, Kwak YI, Summers A, Cummings JF, Waterman PE et al. Detection of qacA/B in clinical isolates of methicillin-resistant Staphylococcus aureus from a regional healthcare network in the eastern United States. Infect Control Hosp Epidemiol 2011; 32:1116–1119 [View Article] [PubMed]
    [Google Scholar]
  39. Smith K, Gemmell CG, Hunter IS. The association between biocide tolerance and the presence or absence of qac genes among hospital-acquired and community-acquired MRSA isolates. J Antimicrob Chemother 2008; 61:78–84 [View Article] [PubMed]
    [Google Scholar]
  40. Worthing KA, Marcus A, Abraham S, Trott DJ, Norris JM. Qac genes and biocide tolerance in clinical veterinary methicillin-resistant and methicillin-susceptible Staphylococcus aureus and Staphylococcus pseudintermedius. Vet Microbiol 2018; 216:153–158 [View Article] [PubMed]
    [Google Scholar]
  41. Laraki N, Galleni M, Thamm I, Riccio ML, Amicosante G et al. Structure of In31, a blaIMP-containing Pseudomonas aeruginosa integron phyletically related to In5, which carries an unusual array of gene cassettes. Antimicrob Agents Chemother 1999; 43:890–901 [View Article] [PubMed]
    [Google Scholar]
  42. Paulsen IT, Littlejohn TG, Rådström P, Sundström L, Sköld O et al. The 3’ conserved segment of integrons contains a gene associated with multidrug resistance to antiseptics and disinfectants. Antimicrob Agents Chemother 1993; 37:761–768 [View Article] [PubMed]
    [Google Scholar]
  43. Bay DC, Rommens KL, Turner RJ. Small multidrug resistance proteins: a multidrug transporter family that continues to grow. Biochim Biophys Acta 2008; 1778:1814–1838 [View Article]
    [Google Scholar]
  44. Chung YJ, Saier MH. Overexpression of the Escherichia coli sugE gene confers resistance to a narrow range of quaternary ammonium compounds. J Bacteriol 2002; 184:2543–2545 [View Article] [PubMed]
    [Google Scholar]
  45. Kücken D, Feucht H, Kaulfers P. Association of qacE and qacEDelta1 with multiple resistance to antibiotics and antiseptics in clinical isolates of Gram-negative bacteria. FEMS Microbiol Lett 2000; 183:95–98 [View Article] [PubMed]
    [Google Scholar]
  46. Abuzaid A, Hamouda A, Amyes SGB. Klebsiella pneumoniae susceptibility to biocides and its association with cepA, qacΔE and qacE efflux pump genes and antibiotic resistance. J Hosp Infect 2012; 81:87–91 [View Article] [PubMed]
    [Google Scholar]
  47. Shafaati M, Boroumand M, Nowroozi J, Amiri P, Kazemian H. Correlation between qacE and qacE∆1 efflux pump genes, Antibiotic and disinfectant resistant among clinical isolates of E.coli. Recent Pat Antiinfect Drug Discov 2016; 11:189–195 [View Article] [PubMed]
    [Google Scholar]
  48. Slipski CJ, Jamieson-Datzkiw TR, Zhanel GG, Bay DC. Characterization of proteobacterial plasmid integron-encoded qac efflux pump sequence diversity and quaternary ammonium compound antiseptic selection in Escherichia coli grown planktonically and as biofilms. Antimicrob Agents Chemother 2021; 65:e0106921 [View Article] [PubMed]
    [Google Scholar]
  49. Addetia A, Greninger AL, Adler A, Yuan S, Makhsous N et al. A novel, widespread qacA Allele results in reduced chlorhexidine susceptibility in Staphylococcus epidermidis. Antimicrob Agents Chemother 2019; 63:e02607-18 [View Article] [PubMed]
    [Google Scholar]
  50. Wand ME, Jamshidi S, Bock LJ, Rahman KM, Sutton JM. SmvA is an important efflux pump for cationic biocides in Klebsiella pneumoniae and other Enterobacteriaceae. Sci Rep 2019; 9:1344 [View Article] [PubMed]
    [Google Scholar]
  51. Wand ME, Bock LJ, Bonney LC, Sutton JM. Mechanisms of increased resistance to chlorhexidine and cross-resistance to colistin following exposure of Klebsiella pneumoniae clinical isolates to chlorhexidine. Antimicrob Agents Chemother 2017; 61: [View Article] [PubMed]
    [Google Scholar]
  52. Bock LJ, Wand ME, Sutton JM. Varying activity of chlorhexidine-based disinfectants against Klebsiella pneumoniae clinical isolates and adapted strains. J Hosp Infect 2016; 93:42–48 [View Article]
    [Google Scholar]
  53. Cieplik F, Jakubovics NS, Buchalla W, Maisch T, Hellwig E et al. Resistance toward chlorhexidine in oral bacteria - is there cause for concern?. Front Microbiol 2019; 10:587 [View Article] [PubMed]
    [Google Scholar]
  54. Tag ElDein MA, Yassin AS, El-Tayeb O, Kashef MT. Chlorhexidine leads to the evolution of antibiotic-resistant Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis 2021; 40:2349–2361 [View Article]
    [Google Scholar]
  55. Adair FW, Geftic SG, Gelzer J. Resistance of Pseudomonas to quaternary ammonium compounds. I. Growth in benzalkonium chloride solution. Appl Microbiol 1969; 18:299–302 [View Article]
    [Google Scholar]
  56. Malizia WF, Gangarosa EJ, Goley AF. Benzalkonium chloride as a source of infection. N Engl J Med 1960; 263:800–802 [View Article]
    [Google Scholar]
  57. Kampf G. Adaptive microbial response to low-level benzalkonium chloride exposure. J Hosp Infect 2018; 100:e1–e22 [View Article] [PubMed]
    [Google Scholar]
  58. Tandukar M, Oh S, Tezel U, Konstantinidis KT, Pavlostathis SG. Long-term exposure to benzalkonium chloride disinfectants results in change of microbial community structure and increased antimicrobial resistance. Environ Sci Technol 2013; 47:9730–9738 [View Article]
    [Google Scholar]
  59. Sakagami Y, Yokoyama H, Nishimura H, Ose Y, Tashima T. Mechanism of resistance to benzalkonium chloride by Pseudomonas aeruginosa. Appl Environ Microbiol 1989; 55:2036–2040 [View Article] [PubMed]
    [Google Scholar]
  60. Jiang X, Yu T, Liang Y, Ji S, Guo X et al. Efflux pump-mediated benzalkonium chloride resistance in Listeria monocytogenes isolated from retail food. Int J Food Microbiol 2016; 217:141–145 [View Article]
    [Google Scholar]
  61. Mc Cay PH, Ocampo-Sosa AA, Fleming GTA. Effect of subinhibitory concentrations of benzalkonium chloride on the competitiveness of Pseudomonas aeruginosa grown in continuous culture. Microbiology (Reading) 2010; 156:30–38 [View Article] [PubMed]
    [Google Scholar]
  62. Chittrakanwong J, Charoenlap N, Mongkolsuk S, Vattanaviboon P. mfsQ encoding an MFS efflux pump mediates adaptive protection of Stenotrophomonas maltophilia against benzalkonium chloride. Can J Microbiol 2021; 67:491–495 [View Article] [PubMed]
    [Google Scholar]
  63. Nordholt N, Kanaris O, Schmidt SBI, Schreiber F. Persistence against benzalkonium chloride promotes rapid evolution of tolerance during periodic disinfection. Nat Commun 2021; 12:6792 [View Article]
    [Google Scholar]
  64. Xu D, Nie Q, Wang W, Shi L, Yan H. Characterization of a transferable bcrABC and cadAC genes-harboring plasmid in Listeria monocytogenes strain isolated from food products of animal origin. Int J Food Microbiol 2016; 217:117–122 [View Article] [PubMed]
    [Google Scholar]
  65. Romanova NA, Wolffs PFG, Brovko LY, Griffiths MW. Role of efflux pumps in adaptation and resistance of Listeria monocytogenes to benzalkonium chloride. Appl Environ Microbiol 2006; 72:3498–3503 [View Article] [PubMed]
    [Google Scholar]
  66. Yu T, Jiang X, Zhang Y, Ji S, Gao W et al. Effect of benzalkonium chloride adaptation on sensitivity to antimicrobial agents and tolerance to environmental stresses in Listeria monocytogenes. Front Microbiol 2018; 9:2906 [View Article] [PubMed]
    [Google Scholar]
  67. Kim M, Weigand MR, Oh S, Hatt JK, Krishnan R et al. Widely used benzalkonium chloride disinfectants can promote antibiotic resistance. Appl Environ Microbiol 2018; 84:e01201-18 [View Article] [PubMed]
    [Google Scholar]
  68. Osman ME-S, El-Hendawy HH, El-All SMA, Hassan AM, Mahmoud DE. Correlation between resistance of Pseudomonas aeruginosa to benzalkonium chloride and expression of efflux pump genes. J App Pharm Sci 2018; 8:44–52 [View Article]
    [Google Scholar]
  69. Abdelaziz A, Sonbol F, Elbanna T, El-Ekhnawy E. exposure to sublethal concentrations of benzalkonium chloride induces antimicrobial resistance and cellular changes in Klebsiellae pneumoniae clinical isolates. Microb Drug Resist 2019; 25:631–638 [View Article] [PubMed]
    [Google Scholar]
  70. Hansen LH, Jensen LB, Sørensen HI, Sørensen SJ. Substrate specificity of the OqxAB multidrug resistance pump in Escherichia coli and selected enteric bacteria. J Antimicrob Chemother 2007; 60:145–147 [View Article] [PubMed]
    [Google Scholar]
  71. Stoitsova SO, Braun Y, Ullrich MS, Weingart H. Characterization of the RND-type multidrug efflux pump MexAB-OprM of the plant pathogen Pseudomonas syringae. Appl Environ Microbiol 2008; 74:3387–3393 [View Article]
    [Google Scholar]
  72. Machado I, Coquet L, Jouenne T, Pereira MO. Proteomic approach to Pseudomonas aeruginosa adaptive resistance to benzalkonium chloride. J Proteomics 2013; 89:273–279 [View Article]
    [Google Scholar]
  73. Frenzel E, Schmidt S, Niederweis M, Steinhauer K. Importance of porins for biocide efficacy against Mycobacterium smegmatis. Appl Environ Microbiol 2011; 77:3068–3073 [View Article] [PubMed]
    [Google Scholar]
  74. Moen B, Rudi K, Bore E, Langsrud S. Subminimal inhibitory concentrations of the disinfectant benzalkonium chloride select for a tolerant subpopulation of Escherichia coli with inheritable characteristics. Int J Mol Sci 2012; 13:4101–4123 [View Article]
    [Google Scholar]
  75. Kampf G. Acquired resistance to chlorhexidine - is it time to establish an “antiseptic stewardship” initiative?. J Hosp Infect 2016; 94:213–227 [View Article] [PubMed]
    [Google Scholar]
  76. Hongo E, Morimyo M, Mita K, Machida I, Hama-Inaba H et al. The methyl viologen-resistance-encoding gene smvA of Salmonella typhimurium. Gene 1994; 148:173–174 [View Article] [PubMed]
    [Google Scholar]
  77. Santiviago CA, Fuentes JA, Bueno SM, Trombert AN, Hildago AA et al. The Salmonella enterica sv. Typhimurium smvA, yddG and ompD (porin) genes are required for the efficient efflux of methyl viologen. Mol Microbiol 2002; 46:687–698 [View Article] [PubMed]
    [Google Scholar]
  78. Villagra NA, Hidalgo AA, Santiviago CA, Saavedra CP, Mora GC. SmvA, and not AcrB, is the major efflux pump for acriflavine and related compounds in Salmonella enterica serovar Typhimurium. J Antimicrob Chemother 2008; 62:1273–1276 [View Article] [PubMed]
    [Google Scholar]
  79. Ogawa W, Koterasawa M, Kuroda T, Tsuchiya T. KmrA multidrug efflux pump from Klebsiella pneumoniae. Biol Pharm Bull 2006; 29:550–553 [View Article] [PubMed]
    [Google Scholar]
  80. Guérin F, Gravey F, Plésiat P, Aubourg M, Beyrouthy R et al. The transcriptional repressor SmvR is important for decreased chlorhexidine susceptibility in Enterobacter cloacae Complex. Antimicrob Agents Chemother 2019; 64: [View Article]
    [Google Scholar]
  81. Pelling H, Bock LJ, Nzakizwanayo J, Wand ME, Denham EL et al. De-repression of the smvA efflux system arises in clinical isolates of Proteus mirabilis and reduces susceptibility to chlorhexidine and other biocides. Antimicrob Agents Chemother 2019:AAC.01535-19 [View Article]
    [Google Scholar]
  82. Fang CT, Chen HC, Chuang YP, Chang SC, Wang JT. Cloning of a cation efflux pump gene associated with chlorhexidine rCation Efflux Pump Gene Associated with Chlorhexidine Resistance in Klebsiella pneumoniae. Antimicrob Agents Chemother 2002; 46:2024–2028 [View Article]
    [Google Scholar]
  83. Srinivasan VB, Rajamohan G. KpnEF, a new member of the Klebsiella pneumoniae cell envelope stress response regulon, is an SMR-type efflux pump involved in broad-spectrum antimicrobial resistance. Antimicrob Agents Chemother 2013; 57:4449–4462 [View Article] [PubMed]
    [Google Scholar]
  84. Lescat M, Magnan M, Kenmoe S, Nordmann P, Poirel L. Co-lateral effect of octenidine, chlorhexidine and colistin selective pressures on four enterobacterial species: a comparative genomic analysis. Antibiotics (Basel) 2021; 11:50 [View Article] [PubMed]
    [Google Scholar]
  85. Ricci V, Piddock LJV. Only for substrate antibiotics are a functional AcrAB-TolC efflux pump and RamA required to select multidrug-resistant Salmonella Typhimurium. J Antimicrob Chemother 2009; 64:654–657 [View Article] [PubMed]
    [Google Scholar]
  86. Weston N, Sharma P, Ricci V, Piddock LJV. Regulation of the AcrAB-TolC efflux pump in Enterobacteriaceae. Research in Microbiology 2018; 169:425–431 [View Article] [PubMed]
    [Google Scholar]
  87. Garratt I, Aranega-Bou P, Sutton JM, Moore G, Wand ME. Long-term exposure to octenidine in a simulated sink trap environment results in selection of Pseudomonas aeruginosa, Citrobacter, and Enterobacter isolates with mutations in efflux pump regulators. Appl Environ Microbiol 2021; 87:e00210-21 [View Article]
    [Google Scholar]
  88. Thomas L, Maillard JY, Lambert RJ, Russell AD. Development of resistance to chlorhexidine diacetate in Pseudomonas aeruginosa and the effect of a “residual” concentration. J Hosp Infect 2000; 46:297–303 [View Article]
    [Google Scholar]
  89. Fraud S, Campigotto AJ, Chen Z, Poole K. MexCD-OprJ multidrug efflux system of Pseudomonas aeruginosa: involvement in chlorhexidine resistance and induction by membrane-damaging agents dependent upon the AlgU stress response sigma factor. Antimicrob Agents Chemother 2008; 52:4478–4482 [View Article] [PubMed]
    [Google Scholar]
  90. Nde CW, Jang HJ, Toghrol F, Bentley WE. Global transcriptomic response of Pseudomonas aeruginosa to chlorhexidine diacetate. Environ Sci Technol 2009; 43:8406–8415 [View Article] [PubMed]
    [Google Scholar]
  91. Rajamohan G, Srinivasan VB, Gebreyes WA. Novel role of Acinetobacter baumannii RND efflux transporters in mediating decreased susceptibility to biocides. J Antimicrob Chemother 2010; 65:228–232 [View Article]
    [Google Scholar]
  92. Hassan KA, Jackson SM, Penesyan A, Patching SG, Tetu SG et al. Transcriptomic and biochemical analyses identify a family of chlorhexidine efflux proteins. Proc Natl Acad Sci U S A 2013; 110:20254–20259 [View Article] [PubMed]
    [Google Scholar]
  93. Liu Q, Hassan KA, Ashwood HE, Gamage HKAH, Li L et al. Regulation of the aceI multidrug efflux pump gene in Acinetobacter baumannii. J Antimicrob Chemother 2018; 73:1492–1500 [View Article] [PubMed]
    [Google Scholar]
  94. Bolla JR, Howes AC, Fiorentino F, Robinson CV. Assembly and regulation of the chlorhexidine-specific efflux pump AceI. Proc Natl Acad Sci U S A 2020; 117:17011–17018 [View Article]
    [Google Scholar]
  95. Hassan KA, Liu Q, Henderson PJF, Paulsen IT. Homologs of the Acinetobacter baumannii AceI transporter represent a new family of bacterial multidrug efflux systems. mBio 2015; 6:e01982-14 [View Article]
    [Google Scholar]
  96. Bock LJ, Ferguson PM, Clarke M, Pumpitakkul V, Wand ME et al. Pseudomonas aeruginosa adapts to octenidine via a combination of efflux and membrane remodelling. Commun Biol 2021; 4:1058 [View Article]
    [Google Scholar]
  97. Colclough AL, Alav I, Whittle EE, Pugh HL, Darby EM et al. RND efflux pumps in Gram-negative bacteria; regulation, structure and role in antibiotic resistance. Future Microbiol 2020; 15:143–157 [View Article] [PubMed]
    [Google Scholar]
  98. Gaze WH, Krone SM, Larsson DGJ, Li X-Z, Robinson JA et al. Influence of humans on evolution and mobilization of environmental antibiotic resistome. Emerg Infect Dis 2013; 19: [View Article]
    [Google Scholar]
  99. Jenkins DJ, Stekel DJ. Stochasticity versus determinism: consequences for realistic gene regulatory network modelling and evolution. J Mol Evol 2010; 70:215–231 [View Article] [PubMed]
    [Google Scholar]
  100. Pal C, Bengtsson-Palme J, Kristiansson E, Larsson DGJ. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genomics 2015; 16:964 [View Article] [PubMed]
    [Google Scholar]
  101. Bazzi W, Abou Fayad AG, Nasser A, Haraoui L-P, Dewachi O et al. Heavy metal toxicity in armed conflicts potentiates AMR in A. baumannii by selecting for antibiotic and heavy metal co-resistance mechanisms. Front Microbiol 2020; 11:11 [View Article]
    [Google Scholar]
  102. Di Cesare A, Eckert EM, D’Urso S, Bertoni R, Gillan DC et al. Co-occurrence of integrase 1, antibiotic and heavy metal resistance genes in municipal wastewater treatment plants. Water Res 2016; 94:208–214 [View Article] [PubMed]
    [Google Scholar]
  103. Yu MF, Shu B, Li Z, Liu G, Liu W et al. Co-selective pressure of cadmium and doxycycline on the antibiotic and heavy metal resistance genes in Ditch Wetlands. Front Microbiol 2022; 13:820920 [View Article] [PubMed]
    [Google Scholar]
  104. Pal C, Asiani K, Arya S, Rensing C, Stekel DJ et al. Metal resistance and its association with antibiotic resistance. Adv Microb Physiol 2017; 70:261–313 [View Article] [PubMed]
    [Google Scholar]
  105. Delmar JA, Su CC, Yu EW. Heavy metal transport by the CusCFBA efflux system. Protein Sci 2015; 24:1720–1736 [View Article] [PubMed]
    [Google Scholar]
  106. Pontel LB, Soncini FC. Alternative periplasmic copper-resistance mechanisms in Gram negative bacteria. Mol Microbiol 2009; 73:212–225 [View Article] [PubMed]
    [Google Scholar]
  107. Bondarczuk K, Piotrowska-Seget Z. Molecular basis of active copper resistance mechanisms in Gram-negative bacteria. Cell Biol Toxicol 2013; 29:397–405 [View Article]
    [Google Scholar]
  108. Munson GP, Lam DL, Outten FW, O’Halloran TV. Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12. J Bacteriol 2000; 182:5864–5871 [View Article]
    [Google Scholar]
  109. Zimmermann M, Udagedara SR, Sze CM, Ryan TM, Howlett GJ et al. PcoE--a metal sponge expressed to the periplasm of copper resistance Escherichia coli. Implication of its function role in copper resistance. J Inorg Biochem 2012; 115:186–197 [View Article] [PubMed]
    [Google Scholar]
  110. Randall CP, Gupta A, Jackson N, Busse D, O’Neill AJ. Silver resistance in Gram-negative bacteria: a dissection of endogenous and exogenous mechanisms. J Antimicrob Chemother 2015; 70:1037–1046 [View Article]
    [Google Scholar]
  111. Hobman JL, Crossman LC. Bacterial antimicrobial metal ion resistance. J Med Microbiol 2015; 64:471–497 [View Article] [PubMed]
    [Google Scholar]
  112. Chabert V, Hologne M, Sénèque O, Crochet A, Walker O et al. Model peptide studies of Ag+ binding sites from the silver resistance protein SilE. Chem Commun (Camb) 2017; 53:6105–6108 [View Article] [PubMed]
    [Google Scholar]
  113. Woolley CA, Sutton JM, Wand ME. Mutations in SilS and CusS/OmpC represent different routes to achieve high level silver ion tolerance in Klebsiella pneumoniae. BMC Microbiol 2022; 22:113 [View Article] [PubMed]
    [Google Scholar]
  114. Mijnendonckx K, Leys N, Mahillon J, Silver S, Van Houdt R. Antimicrobial silver: uses, toxicity and potential for resistance. Biometals 2013; 26:609–621 [View Article] [PubMed]
    [Google Scholar]
  115. Maunders EA, Ganio K, Hayes AJ, Neville SL, Davies MR et al. The role of ZntA in Klebsiella pneumoniae zinc homeostasis. Microbiol Spectr 2022; 10:e0177321 [View Article] [PubMed]
    [Google Scholar]
  116. Rensing C, Mitra B, Rosen BP. The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase. Proc Natl Acad Sci U S A 1997; 94:14326–14331 [View Article]
    [Google Scholar]
  117. Takahashi H, Oshima T, Hobman JL, Doherty N, Clayton SR et al. The dynamic balance of import and export of zinc in Escherichia coli suggests a heterogeneous population response to stress. J R Soc Interface 2015; 12:20150069 [View Article]
    [Google Scholar]
  118. Wang D, Hosteen O, Fierke CA. ZntR-mediated transcription of zntA responds to nanomolar intracellular free zinc. Journal of Inorganic Biochemistry 2012; 111:173–181 [View Article] [PubMed]
    [Google Scholar]
  119. Hou ZJ, Mitra B. The metal specificity and selectivity of ZntA from Escherichia coli using the acylphosphate intermediate. J Biol Chem 2003; 278:28455–28461 [View Article] [PubMed]
    [Google Scholar]
  120. Perron K, Caille O, Rossier C, Van Delden C, Dumas J-L et al. CzcR-CzcS, a two-component system involved in heavy metal and carbapenem resistance in Pseudomonas aeruginosa. J Biol Chem 2004; 279:8761–8768 [View Article] [PubMed]
    [Google Scholar]
  121. Martínez-Suárez JV, Ortiz S, López-Alonso V. Potential impact of the resistance to quaternary ammonium disinfectants on the persistence of listeria monocytogenes in food processing environments. Front Microbiol 2016; 7:638 [View Article] [PubMed]
    [Google Scholar]
  122. Voumard M, Venturelli L, Borgatta M, Croxatto A, Kasas S et al. Adaptation of Pseudomonas aeruginosa to constant sub-inhibitory concentrations of quaternary ammonium compounds. Environ Sci: Water Res Technol 2020; 6:1139–1152 [View Article]
    [Google Scholar]
  123. Silver S, Phung LT. A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J IND MICROBIOL BIOTECHNOL 2005; 32:587–605 [View Article]
    [Google Scholar]
  124. Yazdankhah S, Rudi K, Bernhoft A. Zinc and copper in animal feed - development of resistance and co-resistance to antimicrobial agents in bacteria of animal origin. Microb Ecol Health Dis 2014; 25: [View Article] [PubMed]
    [Google Scholar]
  125. Fang LX, Li XP, Li L, Li SM, Liao XP et al. Co-spread of metal and antibiotic resistance within ST3-IncHI2 plasmids from E. coli isolates of food-producing animals. Sci Rep 2016; 6: [View Article] [PubMed]
    [Google Scholar]
  126. Zurfluh K, Klumpp J, Nüesch-Inderbinen M, Stephan R. Full-length nucleotide sequences of mcr-1-harboring plasmids isolated from extended-spectrum-β-lactamase-producing Escherichia coli isolates of different origins. Antimicrob Agents Chemother 2016; 60:5589–5591 [View Article] [PubMed]
    [Google Scholar]
  127. Gregorchuk BSJ, Reimer SL, Slipski CJ, Milner KA, Hiebert SL et al. Applying fluorescent dye assays to discriminate Escherichia coli chlorhexidine resistance phenotypes from porin and mlaA deletions and efflux pumps. Sci Rep 2022; 12:12149 [View Article] [PubMed]
    [Google Scholar]
  128. Choi U, Lee CR. Distinct roles of outer membrane porins in antibiotic resistance and membrane integrity in Escherichia coli. Front Microbiol 2019; 10:953 [View Article] [PubMed]
    [Google Scholar]
  129. Pérez A, Poza M, Aranda J, Latasa C, Medrano FJ et al. Effect of transcriptional activators SoxS, RobA, and RamA on expression of multidrug efflux pump AcrAB-TolC in Enterobacter cloacae. Antimicrob Agents Chemother 2012; 56:6256–6266 [View Article] [PubMed]
    [Google Scholar]
  130. Rosenblatt J, Vargas-Cruz N, Reitzel RA, Raad II. Assessment of the potential for inducing resistance in multidrug-resistant organisms from exposure to minocycline, rifampin, and chlorhexidine used to treat intravascular devices. Antimicrob Agents Chemother 2019; 63:e00040-19 [View Article] [PubMed]
    [Google Scholar]
  131. Hamel M, Rolain J-M, Baron SA. The history of colistin resistance mechanisms in bacteria: progress and challenges. Microorganisms 2021; 9:442 [View Article] [PubMed]
    [Google Scholar]
  132. Olaitan AO, Morand S, Rolain JM. Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front Microbiol 2014; 5:643 [View Article] [PubMed]
    [Google Scholar]
  133. Shepherd MJ, Moore G, Wand ME, Sutton JM, Bock LJ. Pseudomonas aeruginosa adapts to octenidine in the laboratory and a simulated clinical setting, leading to increased tolerance to chlorhexidine and other biocides. J Hosp Infect 2018; 100:e23–e29 [View Article]
    [Google Scholar]
  134. Wand ME, Bock LJ, Sutton JM. Retention of virulence following colistin adaptation in Klebsiella pneumoniae is strain-dependent rather than associated with specific mutations. J Med Microbiol 2017; 66:959–964 [View Article] [PubMed]
    [Google Scholar]
  135. Alav I, Sutton JM, Rahman KM. Role of bacterial efflux pumps in biofilm formation. J Antimicrob Chemother 2018; 73:2003–2020 [View Article]
    [Google Scholar]
  136. Holden ER, Webber MA. MarA, RamA, and SoxS as mediators of the stress response: survival at a cost. Front Microbiol 2020; 11:828 [View Article] [PubMed]
    [Google Scholar]
  137. Srinivasan VB, Vaidyanathan V, Rajamohan G. AbuO, a TolC-like outer membrane protein of Acinetobacter baumannii, is involved in antimicrobial and oxidative stress resistance. Antimicrob Agents Chemother 2015; 59:1236–1245 [View Article] [PubMed]
    [Google Scholar]
  138. Hassan KA, Brzoska AJ, Wilson NL, Eijkelkamp BA, Brown MH et al. Roles of DHA2 family transporters in drug resistance and iron homeostasis in Acinetobacter spp. J Mol Microbiol Biotechnol 2011; 20:116–124 [View Article] [PubMed]
    [Google Scholar]
  139. Dutta V, Elhanafi D, Kathariou S. Conservation and distribution of the benzalkonium chloride resistance cassette bcrABC in Listeria monocytogenes. Appl Environ Microbiol 2013; 79:6067–6074 [View Article]
    [Google Scholar]
  140. Nishino K, Yamaguchi A. Analysis of a complete library of putative drug transporter genes in Escherichia coli. J Bacteriol 2001; 183:5803–5812 [View Article]
    [Google Scholar]
  141. Horiyama T, Yamaguchi A, Nishino K. TolC dependency of multidrug efflux systems in Salmonella enterica serovar Typhimurium. J Antimicrob Chemother 2010; 65:1372–1376 [View Article] [PubMed]
    [Google Scholar]
  142. Zhang YL, Xiao MF, Horiyama T, Zhang YF, Li XC et al. The multidrug efflux pump MdtEF protects against nitrosative damage during the anaerobic respiration in Escherichia coli. J Biol Chem 2011; 286:26576–26584 [View Article] [PubMed]
    [Google Scholar]
  143. Holdsworth SR, Law CJ. The major facilitator superfamily transporter MdtM contributes to the intrinsic resistance of Escherichia coli to quaternary ammonium compounds. J Antimicrob Chemother 2013; 68:831–839 [View Article] [PubMed]
    [Google Scholar]
  144. Morita Y, Murata T, Mima T, Shiota S, Kuroda T et al. Induction of mexCD-oprJ operon for a multidrug efflux pump by disinfectants in wild-type Pseudomonas aeruginosa PAO1. J Antimicrob Chemother 2003; 51:991–994 [View Article] [PubMed]
    [Google Scholar]
  145. Rouquette-Loughlin C, Dunham SA, Kuhn M, Balthazar JT, Shafer WM. The NorM efflux pump of Neisseria gonorrhoeae and Neisseria meningitidis recognizes antimicrobial cationic compounds. J Bacteriol 2003; 185:1101–1106 [View Article] [PubMed]
    [Google Scholar]
  146. Li J, Zhang HY, Ning JA, Sajid A, Cheng GY et al. The nature and epidemiology of OqxAB, a multidrug efflux pump. Antimicrob Resist Infect Control 2019; 8:44 [View Article] [PubMed]
    [Google Scholar]
  147. He GX, Kuroda T, Mima T, Morita Y, Mizushima T et al. An H(+)-coupled multidrug efflux pump, PmpM, a member of the MATE family of transporters, from Pseudomonas aeruginosa. J Bacteriol 2004; 186:262–265 [View Article] [PubMed]
    [Google Scholar]
  148. Ploy MC, Courvalin P, Lambert T. Characterization of In40 of Enterobacter aerogenes BM2688, a class 1 integron with two new gene cassettes, cmlA2 and qacF. Antimicrob Agents Chemother 1998; 42:2557–2563 [View Article] [PubMed]
    [Google Scholar]
  149. Shahcheraghi F, Minato Y, Chen J, Mizushima T, Ogawa W et al. Molecular cloning and characterization of a multidrug efflux pump, SmfY, from Serratia marcescens. Biol Pharm Bull 2007; 30:798–800 [View Article]
    [Google Scholar]
  150. Kaur P, Rosen BP. Plasmid-encoded resistance to arsenic and antimony. Plasmid 1992; 27:29–40 [View Article] [PubMed]
    [Google Scholar]
  151. Cooksey DA. Copper uptake and resistance in bacteria. Mol Microbiol 1993; 7:1–5 [View Article] [PubMed]
    [Google Scholar]
  152. Nies DH. Microbial heavy-metal resistance. Appl Microbiol Biotechnol 1999; 51:730–750 [View Article]
    [Google Scholar]
  153. Adaikkalam V, Swarup S. Molecular characterization of an operon, cueAR, encoding a putative P1-type ATPase and a MerR-type regulatory protein involved in copper homeostasis in Pseudomonas putida. Microbiology 2002; 148:2857–2867 [View Article]
    [Google Scholar]
  154. Odermatt A, Suter H, Krapf R, Solioz M. Primary structure of two P-type ATPases involved in copper homeostasis in Enterococcus hirae. J Biol Chem 1993; 268:12775–12779 [View Article]
    [Google Scholar]
  155. Rensing C, Fan B, Sharma R, Mitra B, Rosen BP. CopA: An Escherichia coli Cu(I)-translocating P-type ATPase. Proc Natl Acad Sci USA 2000; 97:652–656 [View Article] [PubMed]
    [Google Scholar]
  156. Ducret V, Gonzalez MR, Leoni S, Valentini M, Perron K. The CzcCBA Efflux System Requires the CadA P-Type ATPase for timely expression upon zinc excess in Pseudomonas aeruginosa. Front Microbiol 2020; 11:911 [View Article]
    [Google Scholar]
  157. Nishino K, Nikaido E, Yamaguchi A. Regulation of multidrug efflux systems involved in multidrug and metal resistance of Salmonella enterica serovar Typhimurium. J Bacteriol 2007; 189:9066–9075 [View Article]
    [Google Scholar]
  158. Valencia EY, Braz VS, Guzzo C, Marques MV. Two RND proteins involved in heavy metal efflux in Caulobacter crescentus belong to separate clusters within proteobacteria. BMC Microbiol 2013; 13:79 [View Article] [PubMed]
    [Google Scholar]
  159. Hynninen A, Touzé T, Pitkänen L, Mengin-Lecreulx D, Virta M. An efflux transporter PbrA and a phosphatase PbrB cooperate in a lead-resistance mechanism in bacteria. Mol Microbiol 2009; 74:384–394 [View Article] [PubMed]
    [Google Scholar]
  160. Lee SM, Grass G, Rensing C, Barrett SR, Yates CJD et al. The Pco proteins are involved in periplasmic copper handling in Escherichia coli. Biochem Biophys Res Commun 2002; 295:616–620 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001263
Loading
/content/journal/micro/10.1099/mic.0.001263
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error