1887
Preview this article:

There is no abstract available.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001250
2022-09-22
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/168/8/mic001250.html?itemId=/content/journal/micro/10.1099/mic.0.001250&mimeType=html&fmt=ahah

References

  1. Jensen PR. Microbe Profile: Salinispora tropica: natural products and the evolution of a unique marine bacterium. Microbiology 2022; 168:1–3 [View Article]
    [Google Scholar]
  2. Filloux A. Bacterial protein secretion systems: gGame of types. Microbiology 2022; 168:1–16 [View Article]
    [Google Scholar]
  3. Unni R, Pintor KL, Diepold A, Unterweger D. Presence and absence of type VI secretion systems in bacteria. Microbiology 2022; 168:1–13 [View Article]
    [Google Scholar]
  4. Lin J, Zhang W, Cheng J, Yang X, Zhu K et al. A Pseudomonas T6SS effector recruits PQS-containing outer membrane vesicles for iron acquisition. Nat Commun 2017; 8:14888 [View Article]
    [Google Scholar]
  5. Wang T, Si M, Song Y, Zhu W, Gao F et al. Type VI secretion system transports Zn2+ to combat multiple stresses and host immunity. PLOS Pathog 2015; 11:e1005020 [View Article]
    [Google Scholar]
  6. Han Y, Wang T, Chen G, Pu Q, Liu Q et al. A Pseudomonas aeruginosa type VI secretion system regulated by CueR facilitates copper acquisition. PLOS Pathog 2019; 15:e1008198 [View Article]
    [Google Scholar]
  7. Coulthurst S. The tType VI secretion system: a versatile bacterial weapon. Microbiology 2019; 165:503–515 [View Article]
    [Google Scholar]
  8. Patrick S. A tale of two habitats: Bacteroides fragilis, A A lethal pathogen and resident in the human gastrointestinal microbiome. Microbiology 2022; 168: [View Article]
    [Google Scholar]
  9. Brigham C, Caughlan R, Gallegos R, Dallas MB, Godoy VG et al. Sialic acid (N-acetyl neuraminic acid) utilization by Bacteroides fragilis requires a novel N-acetyl mannosamine epimerase. J Bacteriol 2009; 191:3629–3638 [View Article]
    [Google Scholar]
  10. Phansopa C, Roy S, Rafferty JB, Douglas CWI, Pandhal J et al. Structural and functional characterization of NanU, a novel high-affinity sialic acid-inducible binding protein of oral and gut-dwelling Bacteroidetes species. Biochem J 2014; 458:499–511 [View Article] [PubMed]
    [Google Scholar]
  11. Severi E, Rudden M, Bell A, Palmer T, Juge N et al. Multiple evolutionary origins reflect the importance of sialic acid transporters in the colonization potential of bacterial pathogens and commensals. Microb Genom 2021; 7: [View Article]
    [Google Scholar]
  12. Cerdeño-Tárraga AM, Patrick S, Crossman LC, Blakely G, Abratt V et al. Extensive DNA inversions in the B. fragilis genome control variable gene expression. Science 2005; 307:1463–1465 [View Article]
    [Google Scholar]
  13. Stewart L, D M Edgar J, Blakely G, Patrick S. Antigenic mimicry of ubiquitin by the gut bacterium Bacteroides fragilis: a potential link with autoimmune disease. Clin Exp Immunol 2018; 194:153–165 [View Article]
    [Google Scholar]
  14. Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V et al. The complete genome sequence of Escherichia coli K-12. Science 1997; 277:1453–1462 [View Article]
    [Google Scholar]
  15. Thomas GH, Bettelheim KA. Escherichia coli on the WWW. Lett Appl Microbiol 1998; 27:122–123 [View Article]
    [Google Scholar]
  16. Thomas GH. Completing the E. coli proteome: a database of gene products characterised since the completion of the genome sequence. Bioinformatics 1999; 15:860–861 [View Article]
    [Google Scholar]
  17. Misra RV, Horler RSP, Reindl W, Goryanin II, Thomas GH. EchoBASE: an integrated post-genomic database for Escherichia coli. Nucleic Acids Res 2005; 33:D329–33 [View Article]
    [Google Scholar]
  18. Hinton JCD. The Escherichia coli genome sequence: the end of an era or the start of the FUN?. Mol Microbiol 1997; 26:417–422 [View Article]
    [Google Scholar]
  19. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2006; 2:2006.0008 [View Article]
    [Google Scholar]
  20. Rangarajan AA, Yilmaz C, Schnetz K. Deletion of FRT-sites by no-SCAR recombineering in escherichia coli. Microbiology 2022; 168:1–5 [View Article]
    [Google Scholar]
  21. Bayer ME. Areas of adhesion between wall and membrane of Escherichia coli. J Gen Microbiol 1968; 53:395–404 [View Article] [PubMed]
    [Google Scholar]
  22. Yeow J, Chng SS. Of zones, bridges and chaperones – phospholipid transport in bacterial outer membrane assembly and homeostasis. Microbiology 2022; 168: [View Article]
    [Google Scholar]
  23. Bogdanov M, Pyrshev K, Yesylevskyy S, Ryabichko S, Boiko V et al. Phospholipid distribution in the cytoplasmic membrane of Gram-negative bacteria is highly asymmetric, dynamic, and cell shape-dependent. Sci Adv 2020; 6: [View Article]
    [Google Scholar]
  24. Denoncourt A, Downey M. Model systems for studying polyphosphate biology: a focus on microorganisms. Curr Genet 2021; 67:331–346 [View Article] [PubMed]
    [Google Scholar]
  25. Bowlin MQ, Long AR, Huffines JT, Gray MJ. The role of nitrogen-responsive regulators in controlling inorganic polyphosphate synthesis in Escherichia coli. Microbiology 2022; 168: [View Article]
    [Google Scholar]
  26. Downey M. A stringent analysis of polyphosphate dynamics in Escherichia coli. J Bacteriol 2019; 201:e00070-19 [View Article]
    [Google Scholar]
  27. Kornberg A. Inorganic polyphosphate: toward making a forgotten polymer unforgettable. J Bacteriol 1995; 177:491–496 [View Article] [PubMed]
    [Google Scholar]
  28. Nandy P. The role of sigma factor competition in bacterial adaptation under prolonged starvation. Microbiology 2022; 168:1–11 [View Article]
    [Google Scholar]
  29. Repoila F, Majdalani N, Gottesman S. Small non-coding RNAs, co-ordinators of adaptation processes in Escherichia coli: the RpoS paradigm. Mol Microbiol 2003; 48:855–861 [View Article] [PubMed]
    [Google Scholar]
  30. Ferenci T. Maintaining a healthy SPANC balance through regulatory and mutational adaptation. Mol Microbiol 2005; 57:1–8 [View Article] [PubMed]
    [Google Scholar]
  31. Ratib NR, Seidl F, Ehrenreich IM, Finkel SE. Evolution in long-term stationary-phase batch culture: emergence of divergent Escherichia coli lineages over 1,200 days. mBio 2021; 12:1–18 [View Article] [PubMed]
    [Google Scholar]
  32. Weiss A, Jackson JK, Shaw LN, Skaar EP. Screening transcriptional connections in Staphylococcus aureus using high-throughput transduction of bioluminescent reporter plasmids. Microbiology 2022; 168:1–7 [View Article]
    [Google Scholar]
  33. Fey PD, Endres JL, Yajjala VK, Widhelm TJ, Boissy RJ et al. A genetic resource for rapid and comprehensive phenotype screening of nonessential Staphylococcus aureus genes. MBio 2013; 4:e00537-12 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001250
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error