1887

Abstract

High levels of antimicrobial resistance among members of the complex (KoC) have led to renewed interest in the use of bacteriophage (phage) therapy to tackle infections caused by these bacteria. In this study we characterized two lytic phages, vB_KmiM-2Di and vB_KmiM-4Dii, that were isolated from sewage water against two GES-5-positive strains (PS_Koxy2 and PS_Koxy4, respectively). ViPTree analysis showed both phages belonged to the genus gene-based sequence analysis of 108 presumptive isolates (=59 clinical, =49 veterinary) found to be more prevalent (46 % clinical and 43 % veterinary, respectively) than (40 % clinical and 6 % veterinary, respectively). Host range analysis against these 108 isolates found both vB_KmiM-2Di and vB_KmiM-4Dii showed broad lytic activity against KoC species. Several hypothetical homing endonuclease genes were encoded within the genomes of both phages, which may contribute to their broad host range. Differences in the tail fibre protein may explain the non-identical host range of the two phages. Pangenome analysis of 24 slopekviruses found that genomes within this genus are highly conserved, with more than 50 % of all predicted coding sequences representing core genes at ≥95 % identity and ≥70 % coverage. Given their broad host ranges, our results suggest vB_KmiM-2Di and vB_KmiM-4Dii represent attractive potential therapeutics. In addition, current recommendations for phage-based pangenome analyses may require revision.

Funding
This study was supported by the:
  • Medical Research Council (Award MR/L01632X/1)
    • Principle Award Recipient: LesleyHoyles
  • Institute of Biomedical Science
    • Principle Award Recipient: PreethaShibu
  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001247
2022-09-26
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/168/9/mic001247.html?itemId=/content/journal/micro/10.1099/mic.0.001247&mimeType=html&fmt=ahah

References

  1. Merla C, Rodrigues C, Passet V, Corbella M, Thorpe HA et al. Description of Klebsiella spallanzanii sp. nov. and of Klebsiella pasteurii sp. nov. Front Microbiol 2019; 10:2360 [View Article]
    [Google Scholar]
  2. Granier SA, Leflon-Guibout V, Goldstein FW, Nicolas-Chanoine MH. New Klebsiella oxytoca beta-lactamase genes bla(OXY-3) and bla(OXY-4) and a third genetic group of K. oxytoca based on bla(OXY-3). Antimicrob Agents Chemother 2003; 47:2922–2928 [View Article]
    [Google Scholar]
  3. Fevre C, Jbel M, Passet V, Weill F-X, Grimont PAD et al. Six groups of the OXY beta-lactamase evolved over millions of years in Klebsiella oxytoca. Antimicrob Agents Chemother 2005; 49:3453–3462 [View Article]
    [Google Scholar]
  4. Youn Y, Lee SW, Cho H-H, Park S, Chung H-S et al. Antibiotics-associated hemorrhagic colitis caused by Klebsiella oxytoca: two case reports. Pediatr Gastroenterol Hepatol Nutr 2018; 21:141–146 [View Article]
    [Google Scholar]
  5. Abadi RM. Emerging carbapenemase Klebsiella oxytoca with multidrug resistance implicated in urinary tract infection. Biomed Biotechnol Res J 2020; 4:148–151
    [Google Scholar]
  6. England PH MSSA and Gram-negative Bacteraemia and CDI: Annual Report; 2020Dec https://www.gov.uk/government/statistics/mrsa-mssa-and-e-coli-bacteraemia-and-c-difficile-infection-annual-epidemiological-commentary accessed 18 January 2021
  7. Moradigaravand D, Martin V, Peacock SJ, Parkhill J. Population structure of multidrug resistant Klebsiella oxytoca within hospitals across the UK and Ireland identifies sharing of virulence and resistance genes with K. pneumoniae. Genome Biol Evol 2017; 9:574–587 [View Article]
    [Google Scholar]
  8. Yang J, Long H, Hu Y, Feng Y, McNally A et al. Klebsiella oxytoca complex: update on taxonomy, antimicrobial resistance, and virulence. Clin Microbiol Rev 2022; 35:e0000621 [View Article]
    [Google Scholar]
  9. Ellington MJ, Davies F, Jauneikaite E, Hopkins KL, Turton JF et al. A multispecies cluster of GES-5 carbapenemase-producing Enterobacterales linked by a geographically disseminated plasmid. Clin Infect Dis 2020; 71:2553–2560 [View Article] [PubMed]
    [Google Scholar]
  10. Shibu P, McCuaig F, McCartney AL, Kujawska M, Hall LJ et al. Improved molecular characterization of the Klebsiella oxytoca complex reveals the prevalence of the kleboxymycin biosynthetic gene cluster. Microb Genom 2021; 7:000592 [View Article] [PubMed]
    [Google Scholar]
  11. Lee D, Oh JY, Sum S, Park HM. Prevalence and antimicrobial resistance of Klebsiella species isolated from clinically ill companion animals. J Vet Sci 2021; 22:1–13 [View Article] [PubMed]
    [Google Scholar]
  12. Loncaric I, Cabal Rosel A, Szostak MP, Licka T, Allerberger F et al. Broad-spectrum cephalosporin-resistant Klebsiella spp. isolated from diseased orses in Austria. Animals 2020; 10:332 [View Article]
    [Google Scholar]
  13. Klaper K, Hammerl JA, Rau J, Pfeifer Y, Werner G. Genome-based analysis of Klebsiella spp. isolates from animals and food products in Germany, 2013-2017. Pathogens 2021; 10:573 [View Article]
    [Google Scholar]
  14. Bridel S, Watts SC, Judd LM, Harshegyi T, Passet V et al. Klebsiella MALDI TypeR: a web-based tool for Klebsiella identification based on MALDI-TOF mass spectrometry. Res Microbiol 2021; 172:103835 [View Article]
    [Google Scholar]
  15. Boye K, Hansen DS. Sequencing of 16S rDNA of Klebsiella: taxonomic relations within the genus and to other Enterobacteriaceae. Int J Med Microbiol 2003; 292:495–503 [View Article]
    [Google Scholar]
  16. Hu Y, Wei L, Feng Y, Xie Y, Zong Z. Klebsiella huaxiensis sp. nov., recovered from human urine. Int J Syst Evol Microbiol 2019; 69:333–336 [View Article] [PubMed]
    [Google Scholar]
  17. Passet V, Brisse S. Description of Klebsiella grimontii sp. nov. Int J Syst Evol Microbiol 2018; 68:377–381 [View Article] [PubMed]
    [Google Scholar]
  18. Gómez M, Valverde A, Del Campo R, Rodríguez JM, Maldonado-Barragán A. Phenotypic and molecular characterization of commensal, community-acquired and Nosocomial Klebsiella spp. Microorganisms 2021; 9:2344 [View Article]
    [Google Scholar]
  19. Herridge WP, Shibu P, O’Shea J, Brook TC, Hoyles L. Bacteriophages of Klebsiella spp., their diversity and potential therapeutic uses. J Med Microbiol 2020; 69:176–194 [View Article] [PubMed]
    [Google Scholar]
  20. Li P, Zhang Y, Yan F, Zhou X. Characteristics of a bacteriophage, vB_Kox_ZX8, isolated from clinical Klebsiella oxytoca and its therapeutic effect on mice bacteremia. Front Microbiol 2021; 12:763136 [View Article]
    [Google Scholar]
  21. Townsend EM, Kelly L, Gannon L, Muscatt G, Dunstan R et al. Isolation and characterization of Klebsiella phages for phage therapy. Phage 2021; 2:26–42 [View Article]
    [Google Scholar]
  22. Ku H, Kabwe M, Chan HT, Stanton C, Petrovski S et al. Novel Drexlerviridae bacteriophage KMI8 with specific lytic activity against Klebsiella michiganensis and its biofilms. PLoS One 2021; 16:e0257102 [View Article]
    [Google Scholar]
  23. Zamani I, Bouzari M, Emtiazi G, Ghasemi SM, Chang H-I. Molecular investigation of two novel bacteriophages of a facultative methylotroph, Raoultella ornithinolytica: first report of Raoultella phages. Arch Virol 2019; 164:2015–2022 [View Article]
    [Google Scholar]
  24. Fofanov MV, Morozova VV, Kozlova YN, Tikunov AY, Babkin IV et al. Raoultella bacteriophage RP180, a new member of the genus Kagunavirus, subfamily Guernseyvirinae. Arch Virol 2019; 164:2637–2640 [View Article] [PubMed]
    [Google Scholar]
  25. Shibu P. Investigations of carbapenem-resistant Klebsiella species and associated clinical considerations. PhD thesis University of Westminster; 2019
    [Google Scholar]
  26. Herzog KAT, Schneditz G, Leitner E, Feierl G, Hoffmann KM et al. Genotypes of Klebsiella oxytoca isolates from patients with nosocomial pneumonia are distinct from those of isolates from patients with antibiotic-associated hemorrhagic colitis. J Clin Microbiol 2014; 52:1607–1616 [View Article] [PubMed]
    [Google Scholar]
  27. Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res 2018; 3:124 [View Article]
    [Google Scholar]
  28. Ma Y, Wu X, Li S, Tang L, Chen M et al. Proposal for reunification of the genus Raoultella with the genus Klebsiella and reclassification of Raoultella electrica as Klebsiella electrica comb. nov. Res Microbiol 2021; 172:103851 [View Article]
    [Google Scholar]
  29. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 2019; 47:W256–W259 [View Article]
    [Google Scholar]
  30. Haines MEK, Hodges FE, Nale JY, Mahony J, van Sinderen D et al. Analysis of selection methods to develop novel phage therapy cocktails against antimicrobial resistant clinical isolates of bacteriaClinical Isolates of Bacteria. Front Microbiol 2021; 12:564 [View Article]
    [Google Scholar]
  31. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  32. Wick RR, Schultz MB, Zobel J, Holt KE. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 2015; 31:3350–3352 [View Article]
    [Google Scholar]
  33. Nayfach S, Camargo AP, Schulz F, Eloe-Fadrosh E, Roux S et al. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat Biotechnol 2021; 39:578–585 [View Article] [PubMed]
    [Google Scholar]
  34. Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 2020; 48:D517–D525 [View Article]
    [Google Scholar]
  35. Nishimura Y, Yoshida T, Kuronishi M, Uehara H, Ogata H et al. ViPTree: the viral proteomic tree server. Bioinformatics 2017; 33:2379–2380 [View Article] [PubMed]
    [Google Scholar]
  36. Kęsik-Szeloch A, Drulis-Kawa Z, Weber-Dąbrowska B, Kassner J, Majkowska-Skrobek G et al. Characterising the biology of novel lytic bacteriophages infecting multidrug resistant Klebsiella pneumoniae. Virol J 2013; 10:1–12 [View Article]
    [Google Scholar]
  37. Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods 2016; 8:12–24 [View Article]
    [Google Scholar]
  38. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  39. Terzian P, Olo Ndela E, Galiez C, Lossouarn J, Pérez Bucio RE et al. PHROG: families of prokaryotic virus proteins clustered using remote homology. NAR Genom Bioinform 2021; 3:lqab067 [View Article]
    [Google Scholar]
  40. Pagès H, Aboyoun P, Gentleman R, DebRoy S. Biostrings: efficient manipulation of biological stringsR package version 2.64.0 2022
  41. Letunic I, Bork P. Interactive tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 2021; 49:W293–W296 [View Article]
    [Google Scholar]
  42. Rangel-Pineros G, Millard A, Michniewski S, Scanlan D, Sirén K et al. From trees to clouds: PhageClouds for fast comparison of ∼640,000 phage genomic sequences and host-centric visualization using genomic network graphs. PHAGE 2021; 2:194–203 [View Article]
    [Google Scholar]
  43. Moraru C, Varsani A, Kropinski AM. VIRIDIC-A Novel Tool to Calculate the Intergenomic Similarities of Prokaryote-Infecting Viruses. Viruses 2020; 12:E1268 [View Article]
    [Google Scholar]
  44. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article] [PubMed]
    [Google Scholar]
  45. Wang L-G, Lam TT-Y, Xu S, Dai Z, Zhou L et al. Treeio: an R package for phylogenetic tree input and output with richly annotated and associated data. Mol Biol Evol 2020; 37:599–603 [View Article]
    [Google Scholar]
  46. Yu G, Smith DK, Zhu H, Guan Y, ggtree L. Ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol 2017; 8:28–36
    [Google Scholar]
  47. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article]
    [Google Scholar]
  48. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010; 59:307–321 [View Article]
    [Google Scholar]
  49. Maciejewska B, Roszniowski B, Espaillat A, Kęsik-Szeloch A, Majkowska-Skrobek G et al. Klebsiella phages representing a novel clade of viruses with an unknown DNA modification and biotechnologically interesting enzymes. Appl Microbiol Biotechnol 2017; 101:673–684 [View Article] [PubMed]
    [Google Scholar]
  50. Turner D, Kropinski AM, Adriaenssens EM. A roadmap for genome-based phage taxonomy. Viruses 2021; 13:506 [View Article]
    [Google Scholar]
  51. Chen Y, Brook TC, Soe CZ, O’Neill I, Alcon-Giner C et al. Preterm infants harbour diverse Klebsiella populations, including atypical species that encode and produce an array of antimicrobial resistance- and virulence-associated factors. Microb Genom 2020; 6: [View Article]
    [Google Scholar]
  52. Thorpe H, Booton R, Kallonen T, Gibbon MJ, Couto N et al. One health or three? transmission modelling of Klebsiella isolates reveals ecological barriers to transmission between humans, animals and the environment. MicrobiologybioRxiv [View Article]
    [Google Scholar]
  53. Cai Z, Guo Q, Yao Z, Zheng W, Xie J et al. Comparative genomics of Klebsiella michiganensis BD177 and related members of Klebsiella sp. reveal the symbiotic relationship with Bactrocera dorsalis. BMC Genet 2020; 21:Suppl [View Article] [PubMed]
    [Google Scholar]
  54. McDougall FK, Wyres KL, Judd LM, Boardman WSJ, Holt KE et al. Novel strains of Klebsiella africana and Klebsiella pneumoniae in Australian fruit bats (Pteropus poliocephalus). Res Microbiol 2021; 172:103879 [View Article]
    [Google Scholar]
  55. Oliveira RA, Ng KM, Correia MB, Cabral V, Shi H et al. Klebsiella michiganensis transmission enhances resistance to Enterobacteriaceae gut invasion by nutrition competition. Nat Microbiol 2020; 5:630–641 [View Article] [PubMed]
    [Google Scholar]
  56. Holt KE, Wertheim H, Zadoks RN, Baker S, Whitehouse CA et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc Natl Acad Sci U S A 2015; 112:E3574–81 [View Article]
    [Google Scholar]
  57. Pan Y-J, Lin T-L, Chen C-C, Tsai Y-T, Cheng Y-H et al. Klebsiella phage ΦK64-1 encodes multiple depolymerases for multiple host capsular types. J Virol 2017; 91:e02457-16 [View Article]
    [Google Scholar]
  58. Verma V, Harjai K, Chhibber S. Characterization of a T7-like lytic bacteriophage of Klebsiella pneumoniae B5055: a potential therapeutic agent. Curr Microbiol 2009; 59:274–281 [View Article]
    [Google Scholar]
  59. Wu L-T, Chang S-Y, Yen M-R, Yang T-C, Tseng Y-H. Characterization of extended-host-range pseudo-T-even bacteriophage Kpp95 isolated on Klebsiella pneumoniae. Appl Environ Microbiol 2007; 73:2532–2540 [View Article]
    [Google Scholar]
  60. Wendel BM, Cole JM, Courcelle CT, Courcelle J. SbcC-SbcD and ExoI process convergent forks to complete chromosome replication. Proc Natl Acad Sci U S A 2018; 115:349–354 [View Article] [PubMed]
    [Google Scholar]
  61. Garcia-Doval C, van Raaij MJ. Structure of the receptor-binding carboxy-terminal domain of bacteriophage T7 tail fibers. Proc Natl Acad Sci USA 2012; 109:9390–9395 [View Article] [PubMed]
    [Google Scholar]
  62. Dunne M, Denyes JM, Arndt H, Loessner MJ, Leiman PG et al. Salmonella phage S16 tail fiber adhesin features a rare polyglycine rich domain for host recognition. Structure 2018; 26:1573–1582 [View Article]
    [Google Scholar]
  63. North OI, Sakai K, Yamashita E, Nakagawa A, Iwazaki T et al. Phage tail fibre assembly proteins employ a modular structure to drive the correct folding of diverse fibres. Nat Microbiol 2012; 4:1645–1653 [View Article] [PubMed]
    [Google Scholar]
  64. Jensen EC, Schrader HS, Rieland B, Thompson TL, Lee KW et al. Prevalence of broad-host-range lytic bacteriophages of Sphaerotilus natans, Escherichia coli, and Pseudomonas aeruginosa. Appl Environ Microbiol 1998; 64:575–580 [View Article]
    [Google Scholar]
  65. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article]
    [Google Scholar]
  66. Provasek VE, Lessor LE, Cahill JL, Rasche ES, Kuty Everett GF. Complete genome sequence of carbapenemase-producing Klebsiella pneumoniae myophage Matisse. Genome Announc 2015; 3:e01136-15 [View Article]
    [Google Scholar]
  67. Pereira C, Moreirinha C, Teles L, Rocha RJM, Calado R et al. Application of phage therapy during bivalve depuration improves Escherichia coli decontamination. Food Microbiol 2017; 61:102–112 [View Article] [PubMed]
    [Google Scholar]
  68. Zhao J, Zhang Z, Tian C, Chen X, Hu L et al. Characterizing the biology of lytic bacteriophage vB_EaeM_φEap-3 infecting multidrug-resistant Enterobacter aerogenes. Front Microbiol 2019; 10:420 [View Article]
    [Google Scholar]
  69. Mijalis EM, Lessor LE, Cahill JL, Rasche ES, Kuty Everett GF. Complete genome sequence of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae myophage miro. Genome Announc 2015; 3:e01137-15 [View Article]
    [Google Scholar]
  70. Koberg S, Brinks E, Fiedler G, Hüsing C, Cho G-S et al. Genome sequence of Klebsiella pneumoniae bacteriophage PMBT1 isolated from raw sewage. Genome Announc 2017; 5:e00914-16 [View Article]
    [Google Scholar]
  71. Wang Z, Cai R, Wang G, Guo Z, Liu X et al. Combination therapy of phage vB_KpnM_P-KP2 and gentamicin combats acute pneumonia caused by K47 serotype Klebsiella pneumoniae. Front Microbiol 2021; 12:674068 [View Article]
    [Google Scholar]
  72. Tisza MJ, Buck CB. A catalog of tens of thousands of viruses from human metagenomes reveals hidden associations with chronic diseases. Proc Natl Acad Sci U S A 2021; 118:e2023202118 [View Article]
    [Google Scholar]
  73. Camarillo-Guerrero LF, Almeida A, Rangel-Pineros G, Finn RD, Lawley TD. Massive expansion of human gut bacteriophage diversity. Cell 2021; 184:1098–1109 [View Article]
    [Google Scholar]
  74. Gregory AC, Zablocki O, Zayed AA, Howell A, Bolduc B et al. The gut virome database reveals age-dependent patterns of virome diversity in the human gut. Cell Host Microbe 2020; 28:724–740 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001247
Loading
/content/journal/micro/10.1099/mic.0.001247
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error