1887

Abstract

Archaea have diverse cell wall types, yet none are identical to bacterial peptidoglycan (murein). Methanogens and possess cell walls of pseudomurein, a structural analogue of murein. Pseudomurein differs from murein in containing the unique archaeal sugar -acetyltalosaminuronic acid instead of -acetylmuramic acid, β−1,3 glycosidic bonds in place of β−1,4 bonds and only -amino acids in the peptide cross-links. We have determined crystal structures of methanogen pseudomurein peptide ligases (termed pMurE) from (Mfer762) and (Mth734) that are structurally most closely related to bacterial MurE peptide ligases. The homology of the archaeal pMurE and bacterial MurE enzymes is clear both in the overall structure and at the level of each of the three domains. In addition, we identified two UDP-binding sites in Mfer762 pMurE, one at the exterior surface of the interface of the N-terminal and middle domains, and a second site at an inner surface continuous with the highly conserved interface of the three domains. Residues involved in ATP binding in MurE are conserved in pMurE, suggesting that a similar ATP-binding pocket is present at the interface of the middle and the C-terminal domains of pMurE. The presence of pMurE ligases in members of the Methanobacteriales and Methanopyrales, that are structurally related to bacterial MurE ligases, supports the idea that the biosynthetic origins of archaeal pseudomurein and bacterial peptidoglycan cell walls are evolutionarily related.

Funding
This study was supported by the:
  • Marsden Fund (Award AGR1301)
    • Principle Award Recipient: RonimusRon S.
  • Australian Synchrotron
    • Principle Award Recipient: Sutherland-SmithAndrew J.
  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001235
2022-09-30
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/168/9/mic001235.html?itemId=/content/journal/micro/10.1099/mic.0.001235&mimeType=html&fmt=ahah

References

  1. Albers SV, Meyer BH. The archaeal cell envelope. Nat Rev Microbiol 2011; 9:414–426 [View Article] [PubMed]
    [Google Scholar]
  2. Hartmann E, König H. Comparison of the biosynthesis of the methanobacterial pseudomurein and the eubacterial murein. Naturwissenschaften 1990; 77:472–475 [View Article]
    [Google Scholar]
  3. Bugg TDH, Braddick D, Dowson CG, Roper DI. Bacterial cell wall assembly: still an attractive antibacterial target. Trends Biotechnol 2011; 29:167–173 [View Article] [PubMed]
    [Google Scholar]
  4. Schneider T, Sahl HG. An oldie but a goodie - cell wall biosynthesis as antibiotic target pathway. Int J Med Microbiol 2010; 300:161–169 [View Article] [PubMed]
    [Google Scholar]
  5. König H, Kandler O, Jensen M, Rietschel ET. The primary structure of the glycan moiety of pseudomurein from Methanobacterium thermoautotrophicum. Hoppe Seylers Z Physiol Chem 1983; 364:627–636 [View Article]
    [Google Scholar]
  6. König H, Kandler O, Hammes W. Biosynthesis of pseudomurein: isolation of putative precursors from Methanobacterium thermoautotrophicum. Can J Microbiol 1989; 35:176–181 [View Article] [PubMed]
    [Google Scholar]
  7. König H, Hartmann E, Kärcher U. Pathways and Principles of the Biosynthesis of Methanobacterial Cell Wall Polymers. Syst Appl Microbiol 1993; 16:510–517 [View Article]
    [Google Scholar]
  8. Smith CA. Structure, function and dynamics in the mur family of bacterial cell wall ligases. J Mol Biol 2006; 362:640–655 [View Article] [PubMed]
    [Google Scholar]
  9. Lovering AL, Safadi SS, Strynadka NCJ. Structural perspective of peptidoglycan biosynthesis and assembly. Annu Rev Biochem 2012; 81:451–478 [View Article] [PubMed]
    [Google Scholar]
  10. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477 [View Article] [PubMed]
    [Google Scholar]
  11. Basavannacharya C, Robertson G, Munshi T, Keep NH, Bhakta S. ATP-dependent MurE ligase in Mycobacterium tuberculosis: biochemical and structural characterisation. Tuberculosis 2010; 90:16–24 [View Article]
    [Google Scholar]
  12. Kouidmi I, Levesque RC, Paradis-Bleau C. The biology of Mur ligases as an antibacterial target. Mol Microbiol 2014; 94:242–253 [View Article] [PubMed]
    [Google Scholar]
  13. Patin D, Turk S, Barreteau H, Mainardi J-L, Arthur M et al. Unusual substrate specificity of the peptidoglycan MurE ligase from Erysipelothrix rhusiopathiae. Biochimie 2016; 121:209–218 [View Article] [PubMed]
    [Google Scholar]
  14. Mengin-Lecreulx D, Falla T, Blanot D, van Heijenoort J, Adams DJ et al. Expression of the Staphylococcus aureus UDP-N-acetylmuramoyl- L-alanyl-D-glutamate:L-lysine ligase in Escherichia coli and effects on peptidoglycan biosynthesis and cell growth. J Bacteriol 1999; 181:5909–5914 [View Article]
    [Google Scholar]
  15. Consaul SA, Wright LF, Mahapatra S, Crick DC, Pavelka MS. An unusual mutation results in the replacement of diaminopimelate with lanthionine in the peptidoglycan of a mutant strain of Mycobacterium smegmatis. J Bacteriol 2005; 187:1612–1620 [View Article] [PubMed]
    [Google Scholar]
  16. Kandler O, König H. Cell envelopes of archaea: structure and chemistry. In Kates M, Kushner DJ, Matheson AT. eds The Biochemistry of Archaea (Archaebacteria) Amsterdam: Elsevier; 1993 pp 223–259
    [Google Scholar]
  17. König H. Archaeobacterial cell envelopes. Can J Microbiol 1988; 34:395–406 [View Article]
    [Google Scholar]
  18. König H, Kandler O. N-Acetyltalosaminuronic acid a constituent of the pseudomurein of the genus Methanobacterium. Arch Microbiol 1979; 123:295–299 [View Article]
    [Google Scholar]
  19. Claus H, König H. Cell envelopes of methanogens. In König H, Claus H, Varma A. eds Prokaryotic Cell Wall Compounds: Structure and Biochemistry Berlin Springer: 2010 pp 231–251
    [Google Scholar]
  20. Hartmann E, König H. A novel pathway of peptide biosynthesis found in methanogenic Archaea. Arch Microbiol 1994; 162:430–432 [View Article] [PubMed]
    [Google Scholar]
  21. Subedi BP, Martin WF, Carbone V, Duin EC, Cronin B et al. Archaeal pseudomurein and bacterial murein cell wall biosynthesis share a common evolutionary ancestry. FEMS Microbes 2021; 2:xtab012: [View Article]
    [Google Scholar]
  22. Leahy SC, Kelly WJ, Altermann E, Ronimus RS, Yeoman CJ et al. The genome sequence of the rumen methanogen Methanobrevibacter ruminantium reveals new possibilities for controlling ruminant methane emissions. PLoS ONE 2010; 5:e8926 [View Article] [PubMed]
    [Google Scholar]
  23. Tamames J, González-Moreno M, Mingorance J, Valencia A, Vicente M. Bringing gene order into bacterial shape. Trends Genet 2001; 17:124–126 [View Article]
    [Google Scholar]
  24. Anderson MS, Eveland SS, Onishi HR, Pompliano DL. Kinetic mechanism of the Escherichia coli UDPMurNAc-tripeptide D-alanyl-D-alanine-adding enzyme: use of a glutathione S-transferase fusion. Biochemistry 1996; 35:16264–16269 [View Article]
    [Google Scholar]
  25. Basavannacharya C, Moody PR, Munshi T, Cronin N, Keep NH et al. Essential residues for the enzyme activity of ATP-dependent MurE ligase from Mycobacterium tuberculosis. Protein Cell 2010; 1:1011–1022 [View Article] [PubMed]
    [Google Scholar]
  26. Wolf M. Discovering the pathway of methanogen pseudomurein biosynthesis and the evolutionary correlation to bacterial murein [Bachelor thesis] University of Duisburg-Essen; 2011
    [Google Scholar]
  27. McPhillips TM, McPhillips SE, Chiu H-J, Cohen AE, Deacon AM et al. Blu-Ice and the distributed control system: software for data acquisition and instrument control at macromolecular crystallography beamlines. J Synchrotron Radiat 2002; 9:401–406 [View Article]
    [Google Scholar]
  28. Cowieson NP, Aragao D, Clift M, Ericsson DJ, Gee C et al. MX1: a bending-magnet crystallography beamline serving both chemical and macromolecular crystallography communities at the Australian Synchrotron. J Synchrotron Radiat 2015; 22:187–190 [View Article]
    [Google Scholar]
  29. Aragão D, Aishima J, Cherukuvada H, Clarken R, Clift M et al. MX2: a high-flux undulator microfocus beamline serving both the chemical and macromolecular crystallography communities at the Australian Synchrotron. J Synchrotron Radiat 2018; 25:885–891 [View Article] [PubMed]
    [Google Scholar]
  30. Casanas A, Warshamanage R, Finke AD, Panepucci E, Olieric V et al. EIGER detector: application in macromolecular crystallography. Acta Crystallogr D Struct Biol 2016; 72:1036–1048 [View Article] [PubMed]
    [Google Scholar]
  31. Kabsch W. XDS. Acta Crystallogr D Biol Crystallogr 2010; 66:125–132 [View Article]
    [Google Scholar]
  32. Evans PR, Murshudov GN. How good are my data and what is the resolution?. Acta Crystallogr D Biol Crystallogr 2013; 69:1204–1214 [View Article]
    [Google Scholar]
  33. Evans PR. An introduction to data reduction: space-group determination, scaling and intensity statistics. Acta Crystallogr D Biol Crystallogr 2011; 67:282–292 [View Article] [PubMed]
    [Google Scholar]
  34. Keegan RM, Winn MD. MrBUMP: an automated pipeline for molecular replacement. Acta Crystallogr D Biol Crystallogr 2008; 64:119–124 [View Article] [PubMed]
    [Google Scholar]
  35. Thorn A, Sheldrick GM. Extending molecular-replacement solutions with SHELXE. Acta Crystallogr D Biol Crystallogr 2013; 69:2251–2256 [View Article] [PubMed]
    [Google Scholar]
  36. Cowtan K. The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr D Biol Crystallogr 2006; 62:1002–1011 [View Article] [PubMed]
    [Google Scholar]
  37. Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P et al. Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 2011; 67:235–242 [View Article] [PubMed]
    [Google Scholar]
  38. Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr D Biol Crystallogr 2010; 66:486–501 [View Article] [PubMed]
    [Google Scholar]
  39. Murshudov GN, Skubák P, Lebedev AA, Pannu NS, Steiner RA et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 2011; 67:355–367 [View Article] [PubMed]
    [Google Scholar]
  40. Liebschner D, Afonine PV, Baker ML, Bunkóczi G, Chen VB et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr D Struct Biol 2019; 75:861–877 [View Article] [PubMed]
    [Google Scholar]
  41. Davis IW, Murray LW, Richardson JS, Richardson DC. MOLPROBITY: structure validation and all-atom contact analysis for nucleic acids and their complexes. Nucleic Acids Res 2004; 32:W615–9 [View Article] [PubMed]
    [Google Scholar]
  42. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC et al. Phaser crystallographic software. J Appl Crystallogr 2007; 40:658–674 [View Article] [PubMed]
    [Google Scholar]
  43. Schrödinger L. The PyMOL Molecular Graphics System, Version 1.8. Schrödinger, LLC;
    [Google Scholar]
  44. Holm L, Laakso LM. Dali server update. Nucleic Acids Res 2016; 44:W351–5 [View Article] [PubMed]
    [Google Scholar]
  45. Landau M, Mayrose I, Rosenberg Y, Glaser F, Martz E et al. ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res 2005; 33:W299–302 [View Article] [PubMed]
    [Google Scholar]
  46. Favini-Stabile S, Contreras-Martel C, Thielens N, Dessen A. MreB and MurG as scaffolds for the cytoplasmic steps of peptidoglycan biosynthesis. Environ Microbiol 2013; 15:3218–3228 [View Article] [PubMed]
    [Google Scholar]
  47. Longenecker KL, Stamper GF, Hajduk PJ, Fry EH, Jakob CG et al. Structure of MurF from Streptococcus pneumoniae co-crystallized with a small molecule inhibitor exhibits interdomain closure. Protein Sci 2005; 14:3039–3047 [View Article] [PubMed]
    [Google Scholar]
  48. Jung KH, Kim Y-G, Kim CM, Ha HJ, Lee CS et al. Wide-open conformation of UDP-MurNc-tripeptide ligase revealed by the substrate-free structure of MurE from Acinetobacter baumannii. FEBS Lett 2021; 595:275–283 [View Article] [PubMed]
    [Google Scholar]
  49. El Zoeiby A, Sanschagrin F, Levesque RC. Structure and function of the Mur enzymes: development of novel inhibitors. Mol Microbiol 2003; 47:1–12 [View Article] [PubMed]
    [Google Scholar]
  50. Gordon E, Flouret B, Chantalat L, van Heijenoort J, Mengin-Lecreulx D et al. Crystal structure of UDP-N-acetylmuramoyl-L-alanyl-D-glutamate: meso-diaminopimelate ligase from Escherichia coli. J Biol Chem 2001; 276:10999–11006 [View Article] [PubMed]
    [Google Scholar]
  51. Ruane KM, Lloyd AJ, Fülöp V, Dowson CG, Barreteau H et al. Specificity determinants for lysine incorporation in Staphylococcus aureus peptidoglycan as revealed by the structure of a MurE enzyme ternary complex. J Biol Chem 2013; 288:33439–33448 [View Article] [PubMed]
    [Google Scholar]
  52. Cha SS, An YJ, Jeong CS, Yu JH, Chung KM. ATP-binding mode including a carbamoylated lysine and two Mg(2+) ions, and substrate-binding mode in Acinetobacter baumannii MurF. Biochem Biophys Res Commun 2014; 450:1045–1050 [View Article] [PubMed]
    [Google Scholar]
  53. Bouhss A, Mengin-Lecreulx D, Blanot D, van Heijenoort J, Parquet C. Invariant amino acids in the Mur peptide synthetases of bacterial peptidoglycan synthesis and their modification by site-directed mutagenesis in the UDP-MurNAc:L-alanine ligase from Escherichia coli. Biochemistry 1997; 36:11556–11563 [View Article]
    [Google Scholar]
  54. Mol CD, Brooun A, Dougan DR, Hilgers MT, Tari LW et al. Crystal structures of active fully assembled substrate- and product-bound complexes of UDP-N-acetylmuramic acid:L-alanine ligase (MurC) from Haemophilus influenzae. J Bacteriol 2003; 185:4152–4162 [View Article] [PubMed]
    [Google Scholar]
  55. Zheng K, Ngo PD, Owens VL, Yang XP, Mansoorabadi SO. The biosynthetic pathway of coenzyme F430 in methanogenic and methanotrophic archaea. Science 2016; 354:339–342 [View Article] [PubMed]
    [Google Scholar]
  56. Moore SJ, Sowa ST, Schuchardt C, Deery E, Lawrence AD et al. Elucidation of the biosynthesis of the methane catalyst coenzyme F430. Nature 2017; 543:78–82 [View Article] [PubMed]
    [Google Scholar]
  57. Subedi BP. Structural and functional studies of pseudomurein peptide ligases in methanogenic archaea: a dissertation presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Biochemistry [Doctoral thesis] Massey University; Manawatu, New Zealand: 2018
    [Google Scholar]
  58. Deva T, Baker EN, Squire CJ, Smith CA. Structure of Escherichia coli UDP-N-acetylmuramoyl:L-alanine ligase (MurC). Acta Crystallogr D Biol Crystallogr 2006; 62:1466–1474 [View Article] [PubMed]
    [Google Scholar]
  59. Emanuele JJ, Jin H, Yanchunas J, Villafranca JJ. Evaluation of the kinetic mechanism of Escherichia coli uridine diphosphate-N-acetylmuramate:L-alanine ligase. Biochemistry 1997; 36:7264–7271 [View Article] [PubMed]
    [Google Scholar]
  60. Bertrand JA, Auger G, Martin L, Fanchon E, Blanot D et al. Determination of the MurD mechanism through crystallographic analysis of enzyme complexes. J Mol Biol 1999; 289:579–590 [View Article]
    [Google Scholar]
  61. Šink R, Kotnik M, Zega A, Barreteau H, Gobec S et al. Crystallographic study of peptidoglycan biosynthesis Enzyme MurD: domain movement revisited. PLoS One 2016; 11:e0152075 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001235
Loading
/content/journal/micro/10.1099/mic.0.001235
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error