1887

Abstract

Resistance to antimicrobials is normally caused by mutations in the drug targets or genes involved in antimicrobial activation or expulsion. Here we show that an strain, named DOC14, selected for increased resistance to the bile salt sodium deoxycholate, has no mutations in any ORF, but instead has a 2.1 Mb chromosomal inversion. The breakpoints of the inversion are two inverted copies of an IS element. Besides lowering deoxycholate susceptibility, the IS-mediated chromosomal inversion in the DOC14 mutant was found to increase bacterial survival upon exposure to ampicillin and vancomycin, and sensitize the cell to ciprofloxacin and meropenem, but does not affect bacterial growth or cell morphology in a rich medium in the absence of antibacterial molecules. Overall, our findings support the notion that a large chromosomal inversion can benefit bacterial cells under certain conditions, contributing to genetic variability available for selection during evolution. The DOC14 mutant paired with its isogenic parental strain form a useful model as bacterial ancestors in evolution experiments to study how a large chromosomal inversion influences the evolutionary trajectory in response to various environmental stressors.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001232
2022-08-12
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/168/8/mic001232.html?itemId=/content/journal/micro/10.1099/mic.0.001232&mimeType=html&fmt=ahah

References

  1. Raeside C, Gaffé J, Deatherage DE, Tenaillon O, Briska AM et al. Large chromosomal rearrangements during a long-term evolution experiment with Escherichia coli. mBio 2014; 5:e01377–14 [View Article] [PubMed]
    [Google Scholar]
  2. Hoeksema M, Brul S, Ter Kuile BH. Influence of reactive oxygen species on De novo acquisition of resistance to bactericidal antibiotics. Antimicrob Agents Chemother 2018; 62:e02354-17 [View Article] [PubMed]
    [Google Scholar]
  3. Burmeister AR, Fortier A, Roush C, Lessing AJ, Bender RG et al. Pleiotropy complicates a trade-off between phage resistance and antibiotic resistance. Proc Natl Acad Sci U S A 2020; 117:11207–11216 [View Article] [PubMed]
    [Google Scholar]
  4. Hibbing ME, Fuqua C, Parsek MR, Peterson SB. Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 2010; 8:15–25 [View Article] [PubMed]
    [Google Scholar]
  5. Wetterstrand KA. DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program (GSP) [cited 15/03/2021]. n.d www.genome.gov/sequencingcostsdata
  6. Le VVH, Davies IG, Moon CD, Wheeler D, Biggs PJ et al. Novel 5-nitrofuran-activating reductase in Escherichia coli. Antimicrob Agents Chemother 2019; 63:e00868-19 [View Article]
    [Google Scholar]
  7. Lázár V, Nagy I, Spohn R, Csörgő B, Györkei Á et al. Genome-wide analysis captures the determinants of the antibiotic cross-resistance interaction network. Nat Commun 2014; 5:4352 [View Article] [PubMed]
    [Google Scholar]
  8. Praski Alzrigat L, Huseby DL, Brandis G, Hughes D. Resistance/fitness trade-off is a barrier to the evolution of MarR inactivation mutants in Escherichia coli. J Antimicrob Chemother 2021; 76:77–83 [View Article] [PubMed]
    [Google Scholar]
  9. Hill CW, Gray JA. Effects of chromosomal inversion on cell fitness in Escherichia coli K-12. Genetics 1988; 119:771–778 [View Article] [PubMed]
    [Google Scholar]
  10. Fitzgerald SF, Lupolova N, Shaaban S, Dallman TJ, Greig D et al. Genome structural variation in Escherichia coli O157:H7. Microb Genom 2021; 7:11 [View Article]
    [Google Scholar]
  11. Guérillot R, Kostoulias X, Donovan L, Li L, Carter GP et al. Unstable chromosome rearrangements in Staphylococcus aureus cause phenotype switching associated with persistent infections. Proc Natl Acad Sci U S A 2019; 116:20135–20140 [View Article] [PubMed]
    [Google Scholar]
  12. Cui L, Neoh H, Iwamoto A, Hiramatsu K. Coordinated phenotype switching with large-scale chromosome flip-flop inversion observed in bacteria. Proc Natl Acad Sci U S A 2012; 109:E1647–56 [View Article] [PubMed]
    [Google Scholar]
  13. Wardell SJT, Gauthier J, Martin LW, Potvin M, Brockway B et al. Genome evolution drives transcriptomic and phenotypic adaptation in Pseudomonas aeruginosa during 20 years of infection. Microb Genom 2021; 7:11 [View Article] [PubMed]
    [Google Scholar]
  14. Savic DJ, Nguyen SV, McCullor K, McShan WM. Biological impact of a large-scale genomic inversion that grossly disrupts the relative positions of the origin and terminus loci of the Streptococcus pyogenes chromosome. J Bacteriol 2019; 201:17 [View Article] [PubMed]
    [Google Scholar]
  15. Shukla SK, Kislow J, Briska A, Henkhaus J, Dykes C. Optical mapping reveals a large genetic inversion between two methicillin-resistant Staphylococcus aureus strains. J Bacteriol 2009; 191:5717–5723 [View Article] [PubMed]
    [Google Scholar]
  16. Casse F, Pascal MC, Chippaux M. Comparison between the chromosomal maps of Escherichia coli and Salmonella typhimurium. Length of the inverted segment in the trp region. Mol Gen Genet 1973; 124:253–257 [View Article]
    [Google Scholar]
  17. Alokam S, Liu SL, Said K, Sanderson KE. Inversions over the terminus region in Salmonella and Escherichia coli: IS200s as the sites of homologous recombination inverting the chromosome of Salmonella enterica serovar typhi. J Bacteriol 2002; 184:6190–6197 [View Article] [PubMed]
    [Google Scholar]
  18. Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K et al. Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol 2006; 2:0007 [View Article] [PubMed]
    [Google Scholar]
  19. Le VVH, Biggs PJ, Wheeler D, Davies IG, Rakonjac J. Novel mechanisms of TolC-independent decreased bile-salt susceptibility in Escherichia coli. FEMS Microbiol Lett 2020; 367:10 [View Article] [PubMed]
    [Google Scholar]
  20. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2006; 2:2006 [View Article] [PubMed]
    [Google Scholar]
  21. Cox MP, Peterson DA, Biggs PJ. SolexaQA: at-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinformatics 2010; 11:485 [View Article] [PubMed]
    [Google Scholar]
  22. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9:357–359 [View Article] [PubMed]
    [Google Scholar]
  23. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The sequence alignment/ap format and SAMtools. Bioinformatics 2009; 25:2078–2079 [View Article] [PubMed]
    [Google Scholar]
  24. R-Core-Team R: a language and environment for statistical computing Vienna, Austria: R Foundation for Statistical Computing;
    [Google Scholar]
  25. Garrison E, Marth G. n.d Haplotype-based variant detection from short-read sequencing. arXiv 2012:arXiv:12073907 [q-bioGN
    [Google Scholar]
  26. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly (Austin) 2012; 6:80–92 [View Article]
    [Google Scholar]
  27. Boža V, Perešíni P, Brejová B, Vinař T. DeepNano-blitz: a fast base caller for MinION nanopore sequencers. Bioinformatics 2020; 36:4191–4192 [View Article] [PubMed]
    [Google Scholar]
  28. De Coster W, D’Hert S, Schultz DT, Cruts M, Van Broeckhoven C. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics 2018; 34:2666–2669 [View Article] [PubMed]
    [Google Scholar]
  29. Wick RR, Judd LM, Cerdeira LT, Hawkey J, Méric G et al. Trycycler: consensus long-read assemblies for bacterial genomes. Genome Biol 2021; 22:266 [View Article] [PubMed]
    [Google Scholar]
  30. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 2019; 37:540–546 [View Article] [PubMed]
    [Google Scholar]
  31. Wick RR, Holt KE. Benchmarking of long-read assemblers for prokaryote whole genome sequencing. F1000Res 2019; 8:2138 [View Article] [PubMed]
    [Google Scholar]
  32. Li H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics 2016; 32:2103–2110 [View Article] [PubMed]
    [Google Scholar]
  33. Vaser R, Šikić M. Time- and memory-efficient genome assembly with Raven. Nat Comput Sci 2021; 1:332–336 [View Article]
    [Google Scholar]
  34. Wick RR, Holt KE. Polypolish: short-read polishing of long-read bacterial genome assemblies. Bioinformatics 2021 [View Article]
    [Google Scholar]
  35. Zimin AV, Salzberg SL. The genome polishing tool POLCA makes fast and accurate corrections in genome assemblies. PLoS Comput Biol 2020; 16:e1007981 [View Article] [PubMed]
    [Google Scholar]
  36. Darling AE, Mau B, Perna NT. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 2010; 5:e11147 [View Article] [PubMed]
    [Google Scholar]
  37. Darling ACE, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 2004; 14:1394–1403 [View Article] [PubMed]
    [Google Scholar]
  38. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 2018; 34:3094–3100 [View Article] [PubMed]
    [Google Scholar]
  39. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES et al. Integrative genomics viewer. Nat Biotechnol 2011; 29:24–26 [View Article] [PubMed]
    [Google Scholar]
  40. Dashti AA, Jadaon MM, Abdulsamad AM, Dashti HM. Heat treatment of bacteria: a simple method of DNA extraction for molecular techniques. Kuwait Med J 2009; 41:117–122
    [Google Scholar]
  41. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S et al. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 2012; 13:134 [View Article] [PubMed]
    [Google Scholar]
  42. Wiegand I, Hilpert K, Hancock REW. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 2008; 3:163–175 [View Article] [PubMed]
    [Google Scholar]
  43. Wickham H. ggplot2. In Ggplot2: Elegant Graphics for Data Analysis Cham: Springer-Verlag New York; 2016 [View Article]
    [Google Scholar]
  44. Skovgaard O, Bak M, Løbner-Olesen A, Tommerup N. Genome-wide detection of chromosomal rearrangements, indels, and mutations in circular chromosomes by short read sequencing. Genome Res 2011; 21:1388–1393 [View Article] [PubMed]
    [Google Scholar]
  45. Kono N, Tomita M, Arakawa K. eRP arrangement: a strategy for assembled genomic contig rearrangement based on replication profiling in bacteria. BMC Genomics 2017; 18:784 [View Article] [PubMed]
    [Google Scholar]
  46. Goldberg A, Fridman O, Ronin I, Balaban NQ. Systematic identification and quantification of phase variation in commensal and pathogenic Escherichia coli. Genome Med 2014; 6:11 [View Article] [PubMed]
    [Google Scholar]
  47. Band VI, Hufnagel DA, Jaggavarapu S, Sherman EX, Wozniak JE et al. Antibiotic combinations that exploit heteroresistance to multiple drugs effectively control infection. Nat Microbiol 2019; 4:1627–1635 [View Article] [PubMed]
    [Google Scholar]
  48. Rueggeberg KG, Toba FA, Thompson MG, Campbell BR, Hay AG. A Q-like transcription factor regulates biofilm development in Escherichia coli by controlling expression of the DLP12 lysis cassette. Microbiology (Reading) 2013; 159:691–700 [View Article] [PubMed]
    [Google Scholar]
  49. Wang X, Kim Y, Wood TK. Control and benefits of CP4-57 prophage excision in Escherichia coli biofilms. ISME J 2009; 3:1164–1179 [View Article] [PubMed]
    [Google Scholar]
  50. Maduike NZ, Tehranchi AK, Wang JD, Kreuzer KN. Replication of the Escherichia coli chromosome in RNase HI-deficient cells: multiple initiation regions and fork dynamics. Mol Microbiol 2014; 91:39–56 [View Article] [PubMed]
    [Google Scholar]
  51. Rudolph CJ, Upton AL, Stockum A, Nieduszynski CA, Lloyd RG. Avoiding chromosome pathology when replication forks collide. Nature 2013; 500:608–611 [View Article] [PubMed]
    [Google Scholar]
  52. Veetil RT, Malhotra N, Dubey A, Seshasayee ASN. Laboratory evolution experiments help identify a predominant region of constitutive stable DNA replication initiation. mSphere 2020; 5:e00939-19 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001232
Loading
/content/journal/micro/10.1099/mic.0.001232
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error