1887

Abstract

The discovery of penicillin by Alexander Fleming marked a new era for modern medicine, allowing not only the treatment of infectious diseases, but also the safe performance of life-saving interventions, like surgery and chemotherapy. Unfortunately, resistance against penicillin, as well as more complex β-lactam antibiotics, has rapidly emerged since the introduction of these drugs in the clinic, and is largely driven by a single type of extra-cytoplasmic proteins, hydrolytic enzymes called β-lactamases. While the structures, biochemistry and epidemiology of these resistance determinants have been extensively characterized, their biogenesis, a complex process including multiple steps and involving several fundamental biochemical pathways, is rarely discussed. In this review, we provide a comprehensive overview of the journey of β-lactamases, from the moment they exit the ribosomal channel until they reach their final cellular destination as folded and active enzymes.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001217
2022-08-09
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/168/8/mic001217.html?itemId=/content/journal/micro/10.1099/mic.0.001217&mimeType=html&fmt=ahah

References

  1. Bozcal E, Dagdeviren M. Toxicity of β-lactam antibiotics: pathophysiology, molecular biology and possible recovery strategies. poisoning from specific toxic agents to novel rapid and simplified techniques for analysis; 201787–105
  2. Macheboeuf P, Contreras-Martel C, Job V, Dideberg O, Dessen A. Penicillin binding proteins: key players in bacterial cell cycle and drug resistance processes. FEMS Microbiol Rev 2006; 30:673–691 [View Article]
    [Google Scholar]
  3. Tooke CL, Hinchliffe P, Bragginton EC, Colenso CK, Hirvonen VHA et al. β-lactamases and β-lactamase inhibitors in the 21st century. J Mol Biol 2019; 431:3472–3500 [View Article]
    [Google Scholar]
  4. Abraham EP, Chain E. An enzyme from bacteria able to destroy penicillin. Nature 1940; 146:837 [View Article]
    [Google Scholar]
  5. Barlow M, Hall BG. Phylogenetic analysis shows that the OXA beta-lactamase genes have been on plasmids for millions of years. J Mol Evol 2002; 55:314–321 [View Article]
    [Google Scholar]
  6. Aminov RI, Otto M, Sommer A. A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol 2010; 1:1–7 [View Article]
    [Google Scholar]
  7. Furniss RCD, Kaderabkova N, Barker D, Bernal P, Maslova E et al. Breaking antimicrobial resistance by disrupting extracytoplasmic protein folding. Elife 2022; 11:e57974 [View Article]
    [Google Scholar]
  8. Bush K, Bradford PA. Interplay between β-lactamases and new β-lactamase inhibitors. Nat Rev Microbiol 2019; 17:295–306 [View Article]
    [Google Scholar]
  9. Ambler RP. The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci 1980; 289:321–331 [View Article]
    [Google Scholar]
  10. Matagne A, Lamotte-Brasseur J, Frere J-M. Catalytic properties of class A β-lactamases: efficiency and diversity. Biochem J 1998; 330:581–598 [View Article]
    [Google Scholar]
  11. Massova I, Mobashery S. Kinship and diversification of bacterial penicillin-binding proteins and beta-lactamases. Antimicrob Agents Chemother 1998; 42:1–17 [View Article] [PubMed]
    [Google Scholar]
  12. Pratt RF. Functional evolution of the serine β-lactamase active site. J Chem Soc 2002851–861 [View Article]
    [Google Scholar]
  13. Suvorov M, Vakulenko SB, Mobashery S. Cytoplasmic-membrane anchoring of a class A beta-lactamase and its capacity in manifesting antibiotic resistance. Antimicrob Agents Chemother 2007; 51:2937–2942 [View Article]
    [Google Scholar]
  14. Hong DJ, Bae IK, Jang I-H, Jeong SH, Kang H-K et al. Epidemiology and characteristics of metallo-β-lactamase-producing Pseudomonas aeruginosa. Infect Chemother 2015; 47:81–97 [View Article] [PubMed]
    [Google Scholar]
  15. Selleck C, Larrabee JA, Harmer J, Guddat LW, Mitić N et al. AIM-1: an antibiotic-degrading metallohydrolase that displays mechanistic flexibility. Chemistry 2016; 22:17704–17714 [View Article] [PubMed]
    [Google Scholar]
  16. Brooke JS. Stenotrophomonas maltophilia: an emerging global opportunistic pathogen. Clin Microbiol Rev 2012; 25:2–41 [View Article] [PubMed]
    [Google Scholar]
  17. Calvopiña K, Hinchliffe P, Brem J, Heesom KJ, Johnson S et al. Structural/mechanistic insights into the efficacy of nonclassical β-lactamase inhibitors against extensively drug resistant Stenotrophomonas maltophilia clinical isolates. Mol Microbiol 2017; 106:492–504 [View Article]
    [Google Scholar]
  18. Esposito A, Pompilio A, Bettua C, Crocetta V, Giacobazzi E et al. Evolution of Stenotrophomonas maltophilia in cystic fibrosis lung over chronic infection: a genomic and phenotypic population study. Front Microbiol 2017; 8:1590 [View Article] [PubMed]
    [Google Scholar]
  19. Petty LA, Henig O, Patel TS, Pogue JM, Kaye KS. Overview of meropenem-vaborbactam and newer antimicrobial agents for the treatment of carbapenem-resistant Enterobacteriaceae. Infect Drug Resist 2018; 11:1461–1472 [View Article] [PubMed]
    [Google Scholar]
  20. Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 1995; 39:1211–1233 [View Article]
    [Google Scholar]
  21. Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother 2010; 54:969–976 [View Article] [PubMed]
    [Google Scholar]
  22. Poirel L, Weldhagen GF, Naas T, De Champs C, Dove MG et al. GES-2, A class A beta-lactamase from Pseudomonas aeruginosa with increased hydrolysis of imipenem. Antimicrob Agents Chemother 2001; 45:2598–2603 [View Article] [PubMed]
    [Google Scholar]
  23. Bebrone C, Bogaerts P, Delbrück H, Bennink S, Kupper MB et al. GES-18, a new carbapenem-hydrolyzing GES-Type β-lactamase from Pseudomonas aeruginosa that contains Ile80 and Ser170 residues. Antimicrob Agents Chemother 2013; 57:396–401 [View Article] [PubMed]
    [Google Scholar]
  24. Cuzon G, Bogaerts P, Bauraing C, Huang T-D, Bonnin RA et al. Spread of plasmids carrying multiple GES variants. Antimicrob Agents Chemother 2016; 60:5040–5043 [View Article] [PubMed]
    [Google Scholar]
  25. Laudy AE, Róg P, Smolińska-Król K, Ćmiel M, Słoczyńska A et al. Prevalence of ESBL-producing Pseudomonas aeruginosa isolates in Warsaw, Poland, detected by various phenotypic and genotypic methods. PLoS One 2017; 12:1–15 [View Article] [PubMed]
    [Google Scholar]
  26. Tooke CL, Hinchliffe P, Bonomo RA, Schofield CJ, Mulholland AJ et al. Natural variants modify Klebsiella pneumoniae carbapenemase (KPC) acyl-enzyme conformational dynamics to extend antibiotic resistance. J Biol Chem 2021; 296:100–126 [View Article]
    [Google Scholar]
  27. Ramadan AA, Abdelaziz NA, Amin MA, Aziz RK. Novel blaCTX-M variants and genotype-phenotype correlations among clinical isolates of extended spectrum beta lactamase-producing Escherichia coli. Sci Rep 2019; 9:1–12 [View Article]
    [Google Scholar]
  28. Girlich D, Leclercq R, Naas T, Nordmann P. Molecular and biochemical characterization of the chromosome-encoded class A beta-lactamase BCL-1 from Bacillus clausii. Antimicrob Agents Chemother 2007; 51:4009–4014 [View Article]
    [Google Scholar]
  29. Hackbarth CJ, Unsal I, Chambers HF. Cloning and sequence analysis of A class A beta-lactamase from Mycobacterium tuberculosis H37Ra. Antimicrob Agents Chemother 1997; 41:1182–1185 [View Article]
    [Google Scholar]
  30. Flores AR, Parsons LM, Pavelka MS. Genetic analysis of the beta-lactamases of Mycobacterium tuberculosis and Mycobacterium smegmatis and susceptibility to beta-lactam antibiotics. Microbiology 2005; 151:521–532 [View Article] [PubMed]
    [Google Scholar]
  31. Magdalena J, Gérard C, Joris B, Forsman M, Dusart J. The two beta-lactamase genes of Streptomyces cacaoi, blaL and blaU, are under the control of the same regulatory system. Mol Gen Genet 1997; 255:187–193 [View Article]
    [Google Scholar]
  32. Ambler RP, Coulson AF, Frère JM, Ghuysen JM, Joris B et al. A standard numbering scheme for the class A beta-lactamases. Biochem J 1991; 276:269–270 [View Article]
    [Google Scholar]
  33. Leszczynski JF, Rose GD. Loops in globular proteins: a novel category of secondary structure. Science 1986; 234:849–855 [View Article] [PubMed]
    [Google Scholar]
  34. Fetrow JS. Omega loops: nonregular secondary structures significant in protein function and stability. FASEB J 1995; 9:708–717 [PubMed]
    [Google Scholar]
  35. Herzberg O, Moult J. Analysis of the steric strain in the polypeptide backbone of protein molecules. Proteins 1991; 11:223–229 [View Article] [PubMed]
    [Google Scholar]
  36. Vandenameele J, Lejeune A, Di Paolo A, Brans A, Frère JM et al. Folding of class A β-lactamases is rate-limited by peptide bond isomerization and occurs via parallel pathways. Biochemistry 2010; 49:4264–4275 [View Article]
    [Google Scholar]
  37. Banerjee S, Pieper U, Kapadia G, Pannell LK, Herzberg O. Role of the ω-loop in the activity, substrate specificity, and structure of class A β-lactamase. Biochemistry 1998; 37:3286–3296
    [Google Scholar]
  38. Papp-Wallace KM, Bethel CR, Distler AM, Kasuboski C, Taracila M et al. Inhibitor resistance in the KPC-2 β-lactamase, a preeminent property of this class A β-lactamase. Antimicrob Agents Chemother 2010; 54:890–897
    [Google Scholar]
  39. Joris B, Ledent P, Dideberg O, Fonzé E, Lamotte-Brasseur J et al. Comparison of the sequences of class A beta-lactamases and of the secondary structure elements of penicillin-recognizing proteins. Antimicrob Agents Chemother 1991; 35:2294–2301 [View Article]
    [Google Scholar]
  40. Jacoby GA. AmpC β-lactamases. Clin Microbiol Rev 2009; 22:161–182 [View Article]
    [Google Scholar]
  41. Naas T, Oueslati S, Bonnin RA, Dabos ML, Zavala A et al. Beta-lactamase database (BLDB) - structure and function. J Enzyme Inhib Med Chem 2017; 32:917–919 [View Article]
    [Google Scholar]
  42. Bauernfeind A, Stemplinger I, Jungwirth R, Giamarellou AH. Characterization of the plasmidic beta-lactamase CMY-2, which is responsible for cephamycin resistance. Antimicrob Agents Chemother 1996; 40:221–224 [View Article]
    [Google Scholar]
  43. Merida-Vieyra J, De Colsa-Ranero A, Calderón-Castañeda Y, Aquino-Andrade A. Detection of CMY-type β-lactamases in escherichia coli isolates from paediatric patients in a tertiary care hospital in mexico. Antimicrob Agents Chemother 2020; 9:1–10
    [Google Scholar]
  44. Bou G, Martínez-Beltrán J. Cloning, nucleotide sequencing, and analysis of the gene encoding an AmpC β-lactamase in Acinetobacter baumannii. Antimicrob Agents Chemother 2000; 44:428–432
    [Google Scholar]
  45. Bradford PA, Urban C, Mariano N, Projan SJ, Rahal JJ et al. Imipenem resistance in Klebsiella pneumoniae is associated with the combination of ACT-1, a plasmid-mediated AmpC β-lactamase, and the foss of an outer membrane protein. Antimicrob Agents Chemother 1997; 41:563–569
    [Google Scholar]
  46. Rottman M, Benzerara Y, Hanau-Berçot B, Bizet C, Philippon A et al. Chromosomal ampC genes in Enterobacter species other than Enterobacter cloacae, and ancestral association of the ACT-1 plasmid-encoded cephalosporinase to Enterobacter asburiae. FEMS Microbiol Lett 2002; 210:87–92 [View Article]
    [Google Scholar]
  47. Barnaud G, Arlet G, Verdet C, Gaillot O, Lagrange PH et al. Salmonella enteritidis: AmpC plasmid-mediated inducible beta-lactamase (DHA-1) with an ampR gene from Morganella morganii. Antimicrob Agents Chemother 1998; 42:2352–2358 [View Article]
    [Google Scholar]
  48. Poirel L, Guibert M, Girlich D, Naas T, Nordmann P. Cloning, sequence analyses, expression, and distribution of ampC-ampR from Morganella morganii clinical isolates. Antimicrob Agents Chemother 1999; 43:769–776 [View Article]
    [Google Scholar]
  49. Ingti B, Paul D, Maurya AP, Bora D, Chanda DD et al. Occurrence of bla DHA-1 mediated cephalosporin resistance in Escherichia coli and their transcriptional response against cephalosporin stress: a report from India. Ann Clin Microbiol Antimicrob 2017; 16:1–8 [View Article]
    [Google Scholar]
  50. Akata K, Muratani T, Yatera K, Naito K, Noguchi S et al. Induction of plasmid-mediated AmpC β-lactamase DHA-1 by piperacillin/tazobactam and other β-lactams in Enterobacteriaceae. PLoS One 2019; 14:e0218589 [View Article] [PubMed]
    [Google Scholar]
  51. Lobkovsky E, Moews PC, Liu H, Zhao H, Frere JM et al. Evolution of an enzyme activity: crystallographic structure at 2-A resolution of cephalosporinase from the ampC gene of Enterobacter cloacae P99 and comparison with a class A penicillinase. Proc Natl Acad Sci U S A 1993; 90:11257–11261 [View Article]
    [Google Scholar]
  52. Grace ME, Fu KP, Gregory FJ, Hung PP. Interaction of clavulanic acid, sulbactam and cephamycin antibiotics with β-lactamases. Drugs Exp Clin 1987; 13:145–148
    [Google Scholar]
  53. Beesley T, Gascoyne N, Knott-Hunziker V, Petursson S, Waley SG et al. The inhibition of class C β-lactamases by boronic acids. Biochem J 1983; 209:229–233 [View Article]
    [Google Scholar]
  54. Lahiri SD, Johnstone MR, Ross PL, McLaughlin RE, Olivier NB et al. Avibactam and class C β-lactamases: mechanism of inhibition, conservation of the binding pocket, and implications for resistance. Antimicrob Agents Chemother 2014; 58:5704–5713 [View Article]
    [Google Scholar]
  55. Poirel L, Naas T, Nordmann P. Diversity, epidemiology, and genetics of class D β-lactamases. Antimicrob Agents Chemother 2010; 54:24–38
    [Google Scholar]
  56. Poirel L, Potron A, Nordmann P. OXA-48-like carbapenemases: the phantom menace. J Antimicrob Chemother 2012; 67:1597–1606 [View Article] [PubMed]
    [Google Scholar]
  57. Poirel L, Héritier C, Tolün V, Nordmann P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother 2004; 48:15–22 [View Article]
    [Google Scholar]
  58. Szarecka A, Lesnock KR, Ramirez-Mondragon CA, Nicholas HB, Wymore T. The class D beta-lactamase family: residues governing the maintenance and diversity of function. Protein Eng Des Sel 2011; 24:801–809 [View Article]
    [Google Scholar]
  59. Simakov N, Leonard DA, Smith JC, Wymore T, Szarecka A. A distal disulfide bridge in OXA-1 β-lactamase stabilizes the catalytic center and alters the dynamics of the specificity determining Ω loop. J Phys Chem B 2017; 121:3285–3296 [View Article]
    [Google Scholar]
  60. Golemi D, Maveyraud L, Vakulenko S, Samama J-P, Mobashery S. Critical involvement of a carbamylated lysine in catalytic function of class D beta-lactamases. Proc Natl Acad Sci U S A 2001; 98:14280–14285 [View Article]
    [Google Scholar]
  61. Sun T, Nukaga M, Mayama K, Braswell EH, Knox JR. Comparison of beta-lactamases of classes A and D: 1.5-A crystallographic structure of the class D OXA-1 oxacillinase. Protein Sci 2003; 12:82–91 [View Article]
    [Google Scholar]
  62. Li J, Cross JB, Vreven T, Meroueh SO, Mobashery S et al. Lysine carboxylation in proteins: OXA-10 beta-lactamase. Proteins 2005; 61:246–257 [View Article] [PubMed]
    [Google Scholar]
  63. Baurin S, Vercheval L, Bouillenne F, Falzone C, Brans A et al. Critical role of tryptophan 154 for the activity and stability of class D beta-lactamases. Biochemistry 2009; 48:11252–11263 [View Article] [PubMed]
    [Google Scholar]
  64. Philippon LN, Naas T, Bouthors AT, Barakett V, Nordmann P. OXA-18, a class D clavulanic acid-inhibited extended-spectrum beta-lactamase from Pseudomonas aeruginosa. Antimicrob Agents Chemother 1997; 41:2188–2195 [View Article] [PubMed]
    [Google Scholar]
  65. Toth M, Antunes NT, Stewart NK, Frase H, Bhattacharya M et al. Class D β-lactamases do exist in Gram-positive bacteria. Nat Chem Biol 2016; 12:9–14 [View Article]
    [Google Scholar]
  66. Toth M, Stewart NK, Smith C, Vakulenko SB. Intrinsic class D β-lactamases of Clostridium difficile. mBio 2018; 9:e01803-18 [View Article]
    [Google Scholar]
  67. Boyd SE, Livermore DM, Hooper DC, Hope WW. Metallo-β-lactamases: structure, function, epidemiology, treatment options, and the development pipeline. Antimicrob Agents Chemother 2020; 64:e00397-20 [View Article]
    [Google Scholar]
  68. Yong D, Toleman MA, Giske CG, Cho HS, Sundman K et al. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from india. Antimicrob Agents Chemother 2009; 53:5046–5054 [View Article]
    [Google Scholar]
  69. Zhang H, Hao Q. Crystal structure of NDM-1 reveals a common β-lactam hydrolysis mechanism. FASEB J 2011; 25:2574–2582 [View Article]
    [Google Scholar]
  70. Hussain M, Carlino A, Madonna MJ, Lampen JO. Cloning and sequencing of the metallothioprotein beta-lactamase II gene of Bacillus cereus 569/H in Escherichia coli. J Bacteriol 1985; 164:223–229 [View Article]
    [Google Scholar]
  71. Poirel L, Naas T, Nicolas D, Collet L, Bellais S et al. Characterization of VIM-2, a carbapenem-hydrolyzing metallo-beta-lactamase and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob Agents Chemother 2000; 44:891–897 [View Article] [PubMed]
    [Google Scholar]
  72. Gacar GG, Midilli K, Kolayli F, Ergen K, Gundes S et al. Genetic and enzymatic properties of metallo-beta-lactamase VIM-5 from a clinical isolate of Enterobacter cloacae. Antimicrob Agents Chemother 2005; 49:4400–4403 [View Article] [PubMed]
    [Google Scholar]
  73. Koh TH, Sng LH, Wang GCY, Hsu LY, Zhao Y. IMP-4 and OXA beta-lactamases in Acinetobacter baumannii from Singapore. J Antimicrob Chemother 2007; 59:627–632 [View Article]
    [Google Scholar]
  74. Emeraud C, Escaut L, Boucly A, Fortineau N, Bonnin RA et al. Aztreonam plus clavulanate, tazobactam, or avibactam for treatment of infections caused by metallo-β-lactamase-producing Gram-negative bacteria. Antimicrob Agents Chemother 2019; 63:e00010-19 [View Article]
    [Google Scholar]
  75. Kubota H, Suzuki Y, Okuno R, Uchitani Y, Ariyoshi T et al. IMP-68, a novel IMP-type metallo-β-lactamase in imipenem-susceptible Klebsiella pneumoniae. mSphere 2019; 4:e00736-19 [View Article]
    [Google Scholar]
  76. Massidda O, Rossolini GM, Satta G. The Aeromonas hydrophila cphA gene: molecular heterogeneity among class B metallo-beta-lactamases. J Bacteriol 1991; 173:4611–4617 [View Article]
    [Google Scholar]
  77. Saavedra MJ, Peixe L, Sousa JC, Henriques I, Alves A et al. Sfh-I, a subclass B2 metallo-beta-lactamase from a Serratia fonticola environmental isolate. Antimicrob Agents Chemother 2003; 47:2330–2333 [View Article]
    [Google Scholar]
  78. Leiros H-K, Borra PS, Brandsdal BO, Edvardsen KSW, Spencer J et al. Crystal structure of the mobile metallo-β-lactamase AIM-1 from Pseudomonas aeruginosa: insights into antibiotic binding and the role of Gln157. Antimicrob Agents Chemother 2012; 56:4341–4353 [View Article]
    [Google Scholar]
  79. Yong D, Toleman MA, Bell J, Ritchie B, Pratt R et al. Genetic and biochemical characterization of an acquired subgroup B3 metallo-β-lactamase gene, blaAIM-1, and its unique genetic context in Pseudomonas aeruginosa from Australia. Antimicrob Agents Chemother 2012; 56:6154–6159 [View Article]
    [Google Scholar]
  80. Morán-Barrio J, González JM, Lisa MN, Costello AL, Peraro MD et al. The metallo-beta-lactamase GOB is a mono-Zn(II) enzyme with a novel active site. J Biol Chem 2007; 282:18286–18293 [View Article] [PubMed]
    [Google Scholar]
  81. Morán-Barrio J, Limansky AS, Viale AM. Secretion of GOB metallo-beta-lactamase in Escherichia coli depends strictly on the cooperation between the cytoplasmic DnaK chaperone system and the Sec machinery: completion of folding and Zn(II) ion acquisition occur in the bacterial periplasm. Antimicrob Agents Chemother 2009; 53:2908–2917 [View Article]
    [Google Scholar]
  82. Bebrone C. Metallo-β-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily. Biochem Pharmacol 2007; 74:1686–1701 [View Article]
    [Google Scholar]
  83. Garau G, Bebrone C, Anne C, Galleni M, Frère J-M et al. A metallo-β-lactamase enzyme in action: crystal structures of the monozinc carbapenemase CphA and its complex with biapenem. J Mol Biol 2005; 345:785–795 [View Article]
    [Google Scholar]
  84. Simona F, Magistrato A, Dal Peraro M, Cavalli A, Vila AJ et al. Common mechanistic features among metallo-β-lactamases: a computational study of Aeromonas hydrophila CphA enzyme. J Biol Chem 2009; 284:28164–28171
    [Google Scholar]
  85. Wu S, Xu D, Guo H. QM/MM studies of monozinc β-lactamase CphA suggest that the crystal structure of an enzyme-intermediate complex represents a minor pathway. J Am Chem Soc 2010; 132:17986–17988 [View Article] [PubMed]
    [Google Scholar]
  86. Palzkill T. Metallo-β-lactamase structure and function. Ann N Y Acad Sci 2013; 1277:91–104 [View Article] [PubMed]
    [Google Scholar]
  87. Ford PJ, Avison MB. Evolutionary mapping of the SHV beta-lactamase and evidence for two separate IS26-dependent blaSHV mobilization events from the Klebsiella pneumoniae chromosome. J Antimicrob Chemother 2004; 54:69–75 [View Article]
    [Google Scholar]
  88. Chang F-Y, Siu LK, Fung C-P, Huang M-H, Ho M. Diversity of SHV and TEM beta-lactamases in Klebsiella pneumoniae: gene evolution in Northern Taiwan and two novel beta-lactamases, SHV-25 and SHV-26. Antimicrob Agents Chemother 2001; 45:2407–2413 [View Article]
    [Google Scholar]
  89. Barthélémy M, Péduzzi J, Ben Yaghlane H, Labia R. Single amino acid substitution between SHV-1 beta-lactamase and cefotaxime-hydrolyzing SHV-2 enzyme. FEBS Lett 1988; 231:217–220 [View Article] [PubMed]
    [Google Scholar]
  90. Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 2009; 22:582–610 [View Article]
    [Google Scholar]
  91. Brown JR, Douady CJ, Italia MJ, Marshall WE, Stanhope MJ. Universal trees based on large combined protein sequence data sets. Nat Genet 2001; 28:281–285 [View Article]
    [Google Scholar]
  92. Philippon A, Slama P, Dény P, Labia R. A structure-based classification of class A β-lactamases, a broadly diverse family of enzymes. Clin Microbiol Rev 2016; 29:29–57 [View Article]
    [Google Scholar]
  93. Ebmeyer S, Kristiansson E, Larsson DGJ. A framework for identifying the recent origins of mobile antibiotic resistance genes. Commun Biol 2021; 4:8 [View Article]
    [Google Scholar]
  94. Shawa M, Furuta Y, Mulenga G, Mubanga M, Mulenga E et al. Novel chromosomal insertions of ISEcp1-blaCTX-M-15 and diverse antimicrobial resistance genes in Zambian clinical isolates of Enterobacter cloacae and Escherichia coli. Antimicrob Resist Infect Control 2021; 10:79 [View Article]
    [Google Scholar]
  95. Hall RM. Mobile gene cassettes and integrons: moving antibiotic resistance genes in Gram-negative bacteria. Ciba Found Symp 1997; 207:192–202
    [Google Scholar]
  96. Gillings MR. Integrons: past, present, and future. Microbiol Mol Biol Rev 2014; 78:257–277 [View Article] [PubMed]
    [Google Scholar]
  97. Esposito EP, Gaiarsa S, Del Franco M, Crivaro V, Bernardo M et al. A novel IncA/C1 group conjugative plasmid, encoding VIM-1 metallo-beta-lactamase, mediates the acquisition of carbapenem resistance in ST104 Klebsiella pneumoniae isolates from neonates in the intensive care unit of V. Monaldi hospital in Naples. Front Microbiol 2017; 8:2135 [View Article]
    [Google Scholar]
  98. Mshana SE, Imirzalioglu C, Hossain H, Hain T, Domann E et al. Conjugative IncFI plasmids carrying CTX-M-15 among Escherichia coli ESBL producing isolates at a University hospital in Germany. BMC Infect Dis 2009; 9:97 [View Article] [PubMed]
    [Google Scholar]
  99. Nicolas-Chanoine MH, Bertrand X, Madec JY. Escherichia coli ST131, an intriguing clonal group. Clin Microbiol Rev 2014; 27:543–574 [View Article] [PubMed]
    [Google Scholar]
  100. Chen L, Chavda KD, Al Laham N, Melano RG, Jacobs MR et al. Complete nucleotide sequence of a blaKPC-harboring IncI2 plasmid and its dissemination in New Jersey and New York hospitals. Antimicrob Agents Chemother 2013; 57:5019–5025 [View Article]
    [Google Scholar]
  101. Lv L, Partridge SR, He L, Zeng Z, He D et al. Genetic characterization of IncI2 plasmids carrying blaCTX-M-55 spreading in both pets and food animals in China. Antimicrob Agents Chemother 2013; 57:2824–2827 [View Article]
    [Google Scholar]
  102. Tijet N, Sheth PM, Lastovetska O, Chung C, Patel SN et al. Molecular characterization of Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae in Ontario, Canada, 2008-2011. PLoS One 2014; 9:2008–2011 [View Article] [PubMed]
    [Google Scholar]
  103. Mnif B, Ktari S, Rhimi FM, Hammami A. Extensive dissemination of CTX-M-1- and CMY-2-producing Escherichia coli in poultry farms in Tunisia. Lett Appl Microbiol 2012; 55:407–413 [View Article] [PubMed]
    [Google Scholar]
  104. Venditti C, Fortini D, Villa L, Vulcano A, Arezzo SD et al. Circulation of blakpc-3-carrying incx3 plasmids among Citrobacter freundii isolates in an italian hospital. Antimicrob Agents Chemother 2017; 61:e00505–17 [View Article]
    [Google Scholar]
  105. Pál T, Ghazawi A, Darwish D, Villa L, Carattoli A et al. Characterization of NDM-7 carbapenemase-producing Escherichia coli isolates in the Arabian Peninsula. Microb Drug Resist 2017; 23:871–878 [View Article] [PubMed]
    [Google Scholar]
  106. Espinal P, Miró E, Segura C, Gómez L, Plasencia V et al. First description of blaNDM-7 carried on an incx4 plasmid in Escherichia coli ST679 isolated in spain. Microb Drug Resist 2018; 24:113–119 [View Article]
    [Google Scholar]
  107. Rozwandowicz M, Brouwer MSM, Fischer J, Wagenaar JA, Gonzalez-Zorn B et al. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J Antimicrob Chemother 2018; 73:1121–1137 [View Article]
    [Google Scholar]
  108. Naas T, Zerbib M, Girlich D, Nordmann P. Integration of a transposon tn1-encoded inhibitor-resistant beta-lactamase gene, bla(TEM-67) from Proteus mirabilis, into the Escherichia coli chromosome. Antimicrob Agents Chemother 2003; 47:19–26 [View Article]
    [Google Scholar]
  109. Poirel L, Kämpfer P, Nordmann P. Chromosome-encoded Ambler class A beta-lactamase of Kluyvera georgiana, a probable progenitor of a subgroup of CTX-M extended-spectrum beta-lactamases. Antimicrob Agents Chemother 2002; 46:4038–4040 [View Article]
    [Google Scholar]
  110. Fabre L, Delauné A, Espié E, Nygard K, Pardos de la Gandara M et al. Chromosomal integration of the extended-spectrum beta-lactamase gene blaCTX-M-15 in Salmonella enterica serotype Concord isolates from internationally adopted children. Antimicrob Agents Chemother 2009; 53:1808–1816 [View Article]
    [Google Scholar]
  111. Cantón R, González-Alba JM, Galán JC. CTX-M enzymes: origin and diffusion. Front Microbiol 2012; 3:110 [View Article]
    [Google Scholar]
  112. Yoon E-J, Gwon B, Liu C, Kim D, Won D et al. Beneficial chromosomal integration of the genes for CTX-M extended-spectrum β-lactamase in Klebsiella pneumoniae for stable propagation. mSystems 2020; 5:e00459-20 [View Article]
    [Google Scholar]
  113. Cuzon G, Naas T, Nordmann P. Functional characterization of Tn4401, a Tn3-based transposon involved in blaKPC gene mobilization. Antimicrob Agents Chemother 2011; 55:5370–5373 [View Article]
    [Google Scholar]
  114. Poirel L, Le Thomas I, Naas T, Karim A, Nordmann P. Biochemical sequence analyses of GES-1, a novel class A extended-spectrum beta-lactamase, and the class 1 integron In52 from Klebsiella pneumoniae. Antimicrob Agents Chemother 2000; 44:622–632 [View Article]
    [Google Scholar]
  115. Bennett PM. Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Br J Pharmacol 2008; 153 Suppl 1:S347–57 [View Article] [PubMed]
    [Google Scholar]
  116. Liao W, Jiang J, Xu Y, Yi J, Chen T et al. Survey for β-lactamase among bacterial isolates from Guangzhou, China hospitals between 2005–2006. J Antibiot 2010; 63:225–229 [View Article]
    [Google Scholar]
  117. Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev 2018; 31:1–61 [View Article]
    [Google Scholar]
  118. Singh NS, Singhal N, Virdi JS. Genetic environment of blaTEM-1, blaCTX-M-15, blaCMY-42 and characterization of integrons of Escherichia coli isolated from an Indian urban aquatic environment. Front Microbiol 2018; 9:382 [View Article]
    [Google Scholar]
  119. Rowe-Magnus DA, Mazel D. The role of integrons in antibiotic resistance gene capture. Int J Med Microbiol 2002; 292:115–125 [View Article]
    [Google Scholar]
  120. Ogawara H. Possible drugs for the treatment of bacterial infections in the future: anti-virulence drugs. J Antibiot 2021; 74:24–41 [View Article]
    [Google Scholar]
  121. Marciano DC, Karkouti OY, Palzkill T. A fitness cost associated with the antibiotic resistance enzyme SME-1 beta-lactamase. Genetics 2007; 176:2381–2392 [View Article] [PubMed]
    [Google Scholar]
  122. López C, Ayala JA, Bonomo RA, González LJ, Vila AJ. Protein determinants of dissemination and host specificity of metallo-β-lactamases. Nat Commun 2019; 10:3617 [View Article] [PubMed]
    [Google Scholar]
  123. Zückert WR. Secretion of bacterial lipoproteins: through the cytoplasmic membrane, the periplasm and beyond. Biochim Biophys Acta 2014; 1843:1509–1516 [View Article] [PubMed]
    [Google Scholar]
  124. Collier DN, Bankaitis VA, Weiss JB, Bassford PJ. The antifolding activity of SecB promotes the export of the E. coli maltose-binding protein. Cell 1988; 53:273–283 [View Article]
    [Google Scholar]
  125. Laminet AA, Kumamoto CA, Plückthun A. Folding in vitro and transport in vivo of pre-β-lactamase are SecB independent. Mol Microbiol 1991; 5:117–122 [View Article]
    [Google Scholar]
  126. Josefsson LG, Randall LL. Different exported proteins in E. coli show differences in the temporal mode of processing in vivo. Cell 1981; 25:151–157 [View Article]
    [Google Scholar]
  127. Koshland D, Botstein D. Evidence for posttranslational translocation of beta-lactamase across the bacterial inner membrane. Cell 1982; 30:893–902 [View Article]
    [Google Scholar]
  128. Kumamoto CA, Gannon PM. Effects of Escherichia coli secB mutations on pre-maltose binding protein conformation and export kinetics. J Biol Chem 1988; 263:11554–11558 [View Article]
    [Google Scholar]
  129. Kusukawa N, Yura T, Ueguchi C, Akiyama Y, Ito K. Effects of mutations in heat-shock genes groES and groEL on protein export in Escherichia coli. EMBO J 1989; 8:3517–3521
    [Google Scholar]
  130. Hartl FU, Hayer-Hartl M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 2002; 295:1852–1858 [View Article]
    [Google Scholar]
  131. Randall LL, Hardy SJS. SecB, one small chaperone in the complex milieu of the cell. Cell Mol Life Sci 2002; 59:1617–1623 [View Article] [PubMed]
    [Google Scholar]
  132. Bessette PH, Aslund F, Beckwith J, Georgiou G. Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc Natl Acad Sci U S A 1999; 96:13703–13708 [View Article]
    [Google Scholar]
  133. Ezraty B, Gennaris A, Barras F, Collet J-F. Oxidative stress, protein damage and repair in bacteria. Nat Rev Microbiol 2017; 15:385–396 [View Article] [PubMed]
    [Google Scholar]
  134. Wild J, Rossmeissl P, Walter WA, Gross CA. Involvement of the DnaK-DnaJ-GrpE chaperone team in protein secretion in Escherichia coli. J Bacteriol 1996; 178:3608–3613 [View Article] [PubMed]
    [Google Scholar]
  135. Genevaux P, Keppel F, Schwager F, Langendijk-Genevaux PS, Hartl FU et al. In vivo analysis of the overlapping functions of DnaK and trigger factor. EMBO Rep 2004; 5:195–200 [View Article]
    [Google Scholar]
  136. Vorderwülbecke S, Kramer G, Merz F, Kurz TA, Rauch T et al. Low temperature or GroEL/ES overproduction permits growth of Escherichia coli cells lacking trigger factor and DnaK. FEBS Lett 2004; 559:181–187 [View Article] [PubMed]
    [Google Scholar]
  137. Kerner MJ, Naylor DJ, Ishihama Y, Maier T, Chang H-C et al. Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell 2005; 122:209–220 [View Article] [PubMed]
    [Google Scholar]
  138. Castanié-Cornet MP, Bruel N, Genevaux P. Chaperone networking facilitates protein targeting to the bacterial cytoplasmic membrane. Biochim Biophys Acta 2014; 1843:1442–1456 [View Article] [PubMed]
    [Google Scholar]
  139. Balchin D, Hayer-Hartl M, Hartl FU. In vivo aspects of protein folding and quality control. Science 2016; 353:aac4354 [View Article]
    [Google Scholar]
  140. Santra M, Farrell DW, Dill KA. Bacterial proteostasis balances energy and chaperone utilization efficiently. Proc Natl Acad Sci U S A 2017; 114:E2654–E2661 [View Article] [PubMed]
    [Google Scholar]
  141. Balchin D, Hayer-Hartl M, Hartl FU. Recent advances in understanding catalysis of protein folding by molecular chaperones. FEBS Lett 2020; 594:2770–2781 [View Article] [PubMed]
    [Google Scholar]
  142. Jiang C, Wynne M, Huber D. How quality control systems AID Sec-dependent protein translocation. Front Mol Biosci 2021; 8:669376 [View Article] [PubMed]
    [Google Scholar]
  143. Zahn R, Plückthun A. GroE prevents the accumulation of early folding intermediates of pre-beta-lactamase without changing the folding pathway. Biochemistry 1992; 31:3249–3255 [View Article] [PubMed]
    [Google Scholar]
  144. Mitchinson C, Pain RH. Effects of sulphate and urea on the stability and reversible unfolding of beta-lactamase from Staphylococcus aureus. Implications for the folding pathway of beta-lactamase. J Mol Biol 1985; 184:331–342 [View Article] [PubMed]
    [Google Scholar]
  145. Hussain M, Pastor FIJ, Lampen JO. Cloning and sequencing of the blaZ gene encoding beta-lactamase III, a lipoprotein of Bacillus cereus 569/H. J Bacteriol 1987; 169:579–586 [View Article]
    [Google Scholar]
  146. Laminet AA, Ziegelhoffer T, Georgopoulos C, Plückthun A. The Escherichia coli heat shock proteins GroEL and GroES modulate the folding of the beta-lactamase precursor. EMBO J 1990; 9:2315–2319 [View Article]
    [Google Scholar]
  147. Zahn R, Plückthun A. Thermodynamic partitioning model for hydrophobic binding of polypeptides by GroEL. J Mol Biol 1994; 242:165–174 [View Article]
    [Google Scholar]
  148. Teter SA, Houry WA, Ang D, Tradler T, Rockabrand D et al. Polypeptide flux through bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains. Cell 1999; 97:755–765 [View Article]
    [Google Scholar]
  149. Wilson DN, Beckmann R. The ribosomal tunnel as a functional environment for nascent polypeptide folding and translational stalling. Curr Opin Struct Biol 2011; 21:274–282 [View Article]
    [Google Scholar]
  150. Hoffmann A, Becker AH, Zachmann-Brand B, Deuerling E, Bukau B et al. Concerted action of the ribosome and the associated chaperone trigger factor confines nascent polypeptide folding. Mol Cell 2012; 48:63–74 [View Article]
    [Google Scholar]
  151. Kramer G, Rauch T, Rist W, Vorderwülbecke S, Patzelt H et al. L23 protein functions as a chaperone docking site on the ribosome. Nature 2002; 419:171–174 [View Article] [PubMed]
    [Google Scholar]
  152. Oh E, Becker AH, Sandikci A, Huber D, Chaba R et al. Selective ribosome profiling reveals the cotranslational chaperone action of trigger factor in vivo. Cell 2011; 147:1295–1308 [View Article]
    [Google Scholar]
  153. Beha D, Deitermann S, Müller M, Koch HG. Export of beta-lactamase is independent of the signal recognition particle. J Biol Chem 2003; 278:22161–22167 [View Article] [PubMed]
    [Google Scholar]
  154. Bowers CW, Lau F, Silhavy TJ. Secretion of LamB-LacZ by the signal recognition particle pathway of Escherichia coli. J Bacteriol 2003; 185:5697–5705 [View Article] [PubMed]
    [Google Scholar]
  155. Hoffmann A, Bukau B, Kramer G. Structure and function of the molecular chaperone Trigger factor. Biochim Biophys Acta 2010; 1803:650–661 [View Article] [PubMed]
    [Google Scholar]
  156. Zhang G, Ignatova Z. Folding at the birth of the nascent chain: coordinating translation with co-translational folding. Curr Opin Struct Biol 2011; 21:25–31 [View Article]
    [Google Scholar]
  157. Tartaglia GG, Dobson CM, Hartl FU, Vendruscolo M. Physicochemical determinants of chaperone requirements. J Mol Biol 2010; 400:579–588 [View Article]
    [Google Scholar]
  158. Mogk A, Huber D, Bukau B. Integrating protein homeostasis strategies in prokaryotes. Cold Spring Harb Perspect Biol 2011; 3:a004366 [View Article]
    [Google Scholar]
  159. Calloni G, Chen T, Schermann SM, Chang H-C, Genevaux P et al. DnaK functions as a central hub in the E. coli chaperone network. Cell Rep 2012; 1:251–264 [View Article]
    [Google Scholar]
  160. Liberek K, Marszalek J, Ang D, Georgopoulos C, Zylicz M. Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc Natl Acad Sci U S A 1991; 88:2874–2878 [View Article]
    [Google Scholar]
  161. Brehmer D, Rüdiger S, Gässler CS, Klostermeier D, Packschies L et al. Tuning of chaperone activity of Hsp70 proteins by modulation of nucleotide exchange. Nat Struct Biol 2001; 8:427–432 [View Article] [PubMed]
    [Google Scholar]
  162. Bochkareva ES, Lissin NM, Girshovich AS. Transient association of newly synthesized unfolded proteins with the heat-shock GroEL protein. Nature 1988; 336:254–257 [View Article] [PubMed]
    [Google Scholar]
  163. Laminet AA, Plückthun A. The precursor of beta-lactamase: purification, properties and folding kinetics. EMBO J 1989; 8:1469–1477 [View Article] [PubMed]
    [Google Scholar]
  164. Zahn R, Spitzfaden C, Ottiger M, Wüthrich K, Plückthun A. Destabilization of the complete protein secondary structure on binding to the chaperone GroEL. Nature 1994; 368:261–265 [View Article] [PubMed]
    [Google Scholar]
  165. Saibil HR, Fenton WA, Clare DK, Horwich AL. Structure and allostery of the chaperonin GroEL. J Mol Biol 2013; 425:1476–1487 [View Article] [PubMed]
    [Google Scholar]
  166. Bochkareva E, Seluanov A, Bibi E, Girshovich A. Chaperonin-promoted post-translational membrane insertion of a multispanning membrane protein lactose permease. J Biol Chem 1996; 271:22256–22261 [View Article] [PubMed]
    [Google Scholar]
  167. Bochkareva ES, Solovieva ME, Girshovich AS. Targeting of GroEL to SecA on the cytoplasmic membrane of Escherichia coli. Proc Natl Acad Sci U S A 1998; 95:478–483 [View Article]
    [Google Scholar]
  168. Priya S, Sharma SK, Sood V, Mattoo RUH, Finka A et al. GroEL and CCT are catalytic unfoldases mediating out-of-cage polypeptide refolding without ATP. Proc Natl Acad Sci U S A 2013; 110:7199–7204 [View Article] [PubMed]
    [Google Scholar]
  169. Graubner W, Schierhorn A, Brüser T. DnaK plays a pivotal role in Tat targeting of CueO and functions beside SlyD as a general Tat signal binding chaperone. J Biol Chem 2007; 282:7116–7124 [View Article] [PubMed]
    [Google Scholar]
  170. Pérez-Rodríguez R, Fisher AC, Perlmutter JD, Hicks MG, Chanal A et al. An essential role for the DnaK molecular chaperone in stabilizing over-expressed substrate proteins of the bacterial twin-arginine translocation pathway. J Mol Biol 2007; 367:715–730 [View Article] [PubMed]
    [Google Scholar]
  171. Li H, Chang L, Howell JM, Turner RJ. DmsD, a Tat system specific chaperone, interacts with other general chaperones and proteins involved in the molybdenum cofactor biosynthesis. Biochim Biophys Acta 2010; 1804:1301–1309 [View Article] [PubMed]
    [Google Scholar]
  172. Rodrigue A, Batia N, Müller M, Fayet O, Böhm R et al. Involvement of the GroE chaperonins in the nickel-dependent anaerobic biosynthesis of NiFe-hydrogenases of Escherichia coli. J Bacteriol 1996; 178:4453–4460 [View Article] [PubMed]
    [Google Scholar]
  173. Tsirigotaki A, De Geyter J, Šoštaric N, Economou A, Karamanou S. Protein export through the bacterial Sec pathway. Nat Rev Microbiol 2017; 15:21–36 [View Article] [PubMed]
    [Google Scholar]
  174. Palmer T, Berks BC. The twin-arginine translocation (Tat) protein export pathway. Nat Rev Microbiol 2012; 10:483–496 [View Article] [PubMed]
    [Google Scholar]
  175. von Heijne G. The signal peptide. J Membr Biol 1990; 115:195–201 [View Article] [PubMed]
    [Google Scholar]
  176. González LJ, Bahr G, Nakashige TG, Nolan EM, Bonomo RA et al. Membrane anchoring stabilizes and favors secretion of New Delhi metallo-β-lactamase. Nat Chem Biol 2016; 12:516–522 [View Article]
    [Google Scholar]
  177. Pradel N, Delmas J, Wu LF, Santini CL, Bonnet R. Sec- and Tat-dependent translocation of beta-lactamases across the Escherichia coli inner membrane. Antimicrob Agents Chemother 2009; 53:242–248 [View Article]
    [Google Scholar]
  178. Bharathwaj M, Webb CT, Vadlamani G, Stubenrauch CJ, Palmer T et al. The carbapenemase BKC-1 from Klebsiella pneumoniae is adapted for translocation by both the Tat and Sec translocons. mBio 2021; 12:e01302–21 [View Article]
    [Google Scholar]
  179. McDonough JA, Hacker KE, Flores AR, Pavelka MS, Braunstein M. The twin-arginine translocation pathway of Mycobacterium smegmatis is functional and required for the export of mycobacterial beta-lactamases. J Bacteriol 2005; 187:7667–7679 [View Article]
    [Google Scholar]
  180. Rholl DA, Papp-Wallace KM, Tomaras AP, Vasil ML, Bonomo RA et al. Molecular Investigations of PenA-mediated β-lactam resistance in Burkholderia pseudomallei. Front Microbiol 2011; 2:139 [View Article]
    [Google Scholar]
  181. Yahr TL, Wickner WT. Functional reconstitution of bacterial tat translocation in vitro. EMBO J 2001; 20:2472–2479 [View Article]
    [Google Scholar]
  182. Palmer T, Stansfeld PJ. Targeting of proteins to the twin-arginine translocation pathway. Mol Microbiol 2020; 113:861–871 [View Article]
    [Google Scholar]
  183. Stanley NR, Palmer T, Berks BC. The twin arginine consensus motif of Tat signal peptides is involved in Sec-independent protein targeting in Escherichia coli. J Biol Chem 2000; 275:11591–11596 [View Article]
    [Google Scholar]
  184. Huang Q, Palmer T. Signal peptide hydrophobicity modulates interaction with the twin-arginine translocase. mBio 2017; 8:e00909–17 [View Article]
    [Google Scholar]
  185. Cristóbal S, de Gier JW, Nielsen H, von Heijne G. Competition between Sec- and TAT-dependent protein translocation in Escherichia coli. EMBO J 1999; 18:2982–2990 [View Article]
    [Google Scholar]
  186. Dwyer RS, Malinverni JC, Boyd D, Beckwith J, Silhavy TJ. Folding LacZ in the periplasm of Escherichia coli. J Bacteriol 2014; 196:3343–3350 [View Article] [PubMed]
    [Google Scholar]
  187. Tullman-Ercek D, DeLisa MP, Kawarasaki Y, Iranpour P, Ribnicky B et al. Export pathway selectivity of Escherichia coli twin arginine translocation signal peptides. J Biol Chem 2007; 282:8309–8316 [View Article]
    [Google Scholar]
  188. Van den Berg B, Clemons WM Jr, Collinson I, Modis Y, Hartmann E et al. X-ray structure of a protein-conducting channel. Nature 2004; 427:36–44 [View Article] [PubMed]
    [Google Scholar]
  189. Tsukazaki T, Mori H, Echizen Y, Ishitani R, Fukai S et al. Structure and function of a membrane component SecDF that enhances protein export. Nature 2011; 474:235–238 [View Article] [PubMed]
    [Google Scholar]
  190. Lee HC, Bernstein HD. The targeting pathway of Escherichia coli presecretory and integral membrane proteins is specified by the hydrophobicity of the targeting signal. Proc Natl Acad Sci U S A 2001; 98:3471–3476 [View Article] [PubMed]
    [Google Scholar]
  191. Huber D, Rajagopalan N, Preissler S, Rocco MA, Merz F et al. SecA interacts with ribosomes in order to facilitate posttranslational translocation in bacteria. Mol Cell 2011; 41:343–353 [View Article]
    [Google Scholar]
  192. Schiebel E, Driessen AJ, Hartl FU, Wickner W. ΔμH+ and ATP function at different steps of the catalytic cycle of preprotein translocase. Cell 1991; 64:927–939 [View Article]
    [Google Scholar]
  193. Paetzel M. Structure and mechanism of Escherichia coli type I signal peptidase. Biochim Biophys Acta 2014; 1843:1497–1508 [View Article]
    [Google Scholar]
  194. Dekker C, de Kruijff B, Gros P. Crystal structure of SecB from Escherichia coli. J Struct Biol 2003; 144:313–319 [View Article]
    [Google Scholar]
  195. Bornemann T, Jöckel J, Rodnina MV, Wintermeyer W. Signal sequence-independent membrane targeting of ribosomes containing short nascent peptides within the exit tunnel. Nat Struct Mol Biol 2008; 15:494–499 [View Article]
    [Google Scholar]
  196. Broome-Smith JK, Tadayyon M, Zhang Y. Beta-lactamase as a probe of membrane protein assembly and protein export. Mol Microbiol 1990; 4:1637–1644 [View Article] [PubMed]
    [Google Scholar]
  197. Dilks K, Rose RW, Hartmann E, Pohlschröder M. Prokaryotic utilization of the twin-arginine translocation pathway: a genomic survey. J Bacteriol 2003; 185:1478–1483 [View Article] [PubMed]
    [Google Scholar]
  198. Sargent F, Bogsch EG, Stanley NR, Wexler M, Robinson C et al. Overlapping functions of components of a bacterial Sec-independent protein export pathway. EMBO J 1998; 17:3640–3650 [View Article] [PubMed]
    [Google Scholar]
  199. Bernhardt TG, de Boer PAJ. The Escherichia coli amidase AmiC is a periplasmic septal ring component exported via the twin-arginine transport pathway. Mol Microbiol 2003; 48:1171–1182 [View Article] [PubMed]
    [Google Scholar]
  200. Urrutia ÍM, Sabag A, Valenzuela C, Labra B, Álvarez SA et al. Contribution of the twin-arginine translocation system to the intracellular survival of Salmonella Typhimurium in Dictyostelium discoideum. Front Microbiol 2018; 9:3001 [View Article]
    [Google Scholar]
  201. Matos C, Robinson C, Di Cola A. The Tat system proofreads FeS protein substrates and directly initiates the disposal of rejected molecules. EMBO J 2008; 27:2055–2063 [View Article] [PubMed]
    [Google Scholar]
  202. Craig M, Sadik AY, Golubeva YA, Tidhar A, Slauch JM. Twin-arginine translocation system (tat) mutants of Salmonella are attenuated due to envelope defects, not respiratory defects. Mol Microbiol 2013; 89:887–902 [View Article]
    [Google Scholar]
  203. Rollauer SE, Tarry MJ, Graham JE, Jääskeläinen M, Jäger F et al. Structure of the TatC core of the twin-arginine protein transport system. Nature 2012; 492:210–214 [View Article] [PubMed]
    [Google Scholar]
  204. Alami M, Lüke I, Deitermann S, Eisner G, Koch H-G et al. Differential interactions between a twin-arginine signal peptide and its translocase in Escherichia coli. Mol Cell 2003; 12:937–946 [View Article] [PubMed]
    [Google Scholar]
  205. Chimalapati S, Sankaran K, Brown JS. Signal peptidase II. Handb Proteolytic Enzym 2013; 1:258–261
    [Google Scholar]
  206. Balder R, Shaffer TL, Lafontaine ER. Moraxella catarrhalis uses a twin-arginine translocation system to secrete the β-lactamase BRO-2. BMC Microbiol 2013; 13:140 [View Article]
    [Google Scholar]
  207. Schriefer EM, Hoffmann-Thoms S, Schmid FX, Schmid A, Heesemann J. Yersinia enterocolitica and Photorhabdus asymbiotica β-lactamases BlaA are exported by the twin-arginine translocation pathway. Int J Med Microbiol 2013; 303:16–24 [View Article]
    [Google Scholar]
  208. McCann JR, McDonough JA, Pavelka MS, Braunstein M. Beta-lactamase can function as a reporter of bacterial protein export during Mycobacterium tuberculosis infection of host cells. Microbiology 2007; 153:3350–3359 [View Article] [PubMed]
    [Google Scholar]
  209. Nicoletti AG, Marcondes MFM, Martins WMBS, Almeida LGP, Nicolás MF et al. Characterization of BKC-1 class A carbapenemase from Klebsiella pneumoniae clinical isolates in Brazil. Antimicrob Agents Chemother 2015; 59:5159–5164 [View Article] [PubMed]
    [Google Scholar]
  210. Kieffer N, Ebmeyer S, Larsson DGJ. The class A carbapenemases BKC-1 and GPC-1 both originate from the bacterial genus Shinella. Antimicrob Agents Chemother 2020; 64:1–5 [View Article]
    [Google Scholar]
  211. Kouwen TRHM, van der Ploeg R, Antelmann H, Hecker M, Homuth G et al. Overflow of a hyper-produced secretory protein from the Bacillus Sec pathway into the Tat pathway for protein secretion as revealed by proteogenomics. Proteomics 2009; 9:1018–1032 [View Article]
    [Google Scholar]
  212. von Heijne G. Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem 1983; 133:17–21 [View Article]
    [Google Scholar]
  213. Auclair SM, Bhanu MK, Kendall DA. Signal peptidase I: cleaving the way to mature proteins. Protein Sci 2012; 21:13–25 [View Article]
    [Google Scholar]
  214. Nguyen MT, Matsuo M, Niemann S, Herrmann M, Götz F. Lipoproteins in Gram-positive bacteria: abundance, function, fitness. Front Microbiol 2020; 11:582582 [View Article]
    [Google Scholar]
  215. Herzberg O, Moult J. Bacterial resistance to beta-lactam antibiotics: crystal structure of beta-lactamase from Staphylococcus aureus PC1 at 2.5 A resolution. Science 1987; 236:694–701 [View Article]
    [Google Scholar]
  216. East AK, Dyke KG. Cloning and sequence determination of six Staphylococcus aureus beta-lactamases and their expression in Escherichia coli and Staphylococcus aureus. J Gen Microbiol 1989; 135:1001–1015 [View Article] [PubMed]
    [Google Scholar]
  217. Nielsen JB, Caulfield MP, Lampen JO. Lipoprotein nature of Bacillus licheniformis membrane penicillinase. Proc Natl Acad Sci U S A 1981; 78:3511–3515 [View Article] [PubMed]
    [Google Scholar]
  218. Nielsen JB, Lampen JO. Beta-lactamase III of Bacillus cereus 569: membrane lipoprotein and secreted protein. Biochemistry 1983; 22:4652–4656 [View Article]
    [Google Scholar]
  219. Deák E, SzabóA I, Kálmáczhelyi A, Gál Z, Barabás G et al. Membrane-bound and extracellular beta-lactamase production with developmental regulation in Streptomyces griseus NRRL B-2682. Microbiology 1998; 144(Pt 8):2169–2177 [View Article] [PubMed]
    [Google Scholar]
  220. Fuda CCS, Fisher JF, Mobashery S. Beta-lactam resistance in Staphylococcus aureus: the adaptive resistance of a plastic genome. Cell Mol Life Sci 2005; 62:2617–2633 [View Article] [PubMed]
    [Google Scholar]
  221. King D, Strynadka N. Crystal structure of New Delhi metallo-β-lactamase reveals molecular basis for antibiotic resistance. Protein Sci 2011; 20:1484–1491 [View Article] [PubMed]
    [Google Scholar]
  222. Tokuriki N, Stricher F, Serrano L, Tawfik DS, Eisenberg D. How protein stability and new functions trade off. PLoS Comput Biol 2008; 4:e1000002 [View Article]
    [Google Scholar]
  223. Daniels R, Mellroth P, Bernsel A, Neiers F, Normark S et al. Disulfide bond formation and cysteine exclusion in Gram-positive bacteria. J Biol Chem 2010; 285:3300–3309 [View Article]
    [Google Scholar]
  224. Koshland D, Botstein D. Secretion of beta-lactamase requires the carboxy end of the protein. Cell 1980; 20:749–760 [View Article] [PubMed]
    [Google Scholar]
  225. Koshland D, Sauer RT, Botstein D. Diverse effects of mutations in the signal sequence on the secretion of beta-lactamase in Salmonella Typhimurium. Cell 1982; 30:903–914 [View Article]
    [Google Scholar]
  226. Bowden GA, Georgiou G. Folding and aggregation of beta-lactamase in the periplasmic space of Escherichia coli. J Biol Chem 1990; 265:16760–16766 [View Article]
    [Google Scholar]
  227. Minsky A, Summers RG, Knowles JR. Secretion of beta-lactamase into the periplasm of Escherichia coli: evidence for a distinct release step associated with a conformational change. Proc Natl Acad Sci U S A 1986; 83:4180–4184 [View Article]
    [Google Scholar]
  228. Fitts R, Reuveny Z, van Amsterdam J, Mulholland J, Botstein D. Substitution of tyrosine for either cysteine in beta-lactamase prevents release from the membrane during secretion. Proc Natl Acad Sci U S A 1987; 84:8540–8543 [View Article]
    [Google Scholar]
  229. Plückthun A, Pfitzinger I. Membrane-bound beta-lactamase forms in Escherichia coli. J Biol Chem 1988; 263:14315–14322 [View Article]
    [Google Scholar]
  230. Chikunova A, Manley MP, Ud Din Ahmad M, Bilman T, Perrakis A et al. Conserved residues Glu37 and Trp229 play an essential role in protein folding of β-lactamase. FEBS J 2021; 288:5708–5722 [View Article]
    [Google Scholar]
  231. Lim D, Sanschagrin F, Passmore L, De Castro L, Levesque RC et al. Insights into the molecular basis for the carbenicillinase activity of PSE-4 beta-lactamase from crystallographic and kinetic studies. Biochemistry 2001; 40:395–402 [View Article]
    [Google Scholar]
  232. Lim HM, Pène JJ. Mutations affecting the catalytic activity of Bacillus cereus 5/B/6 beta-lactamase II. J Biol Chem 1989; 264:11682–11687 [View Article]
    [Google Scholar]
  233. Avci FG, Altinisik FE, Vardar Ulu D, Ozkirimli Olmez E, Sariyar Akbulut B. An evolutionarily conserved allosteric site modulates beta-lactamase activity. J Enzyme Inhib Med Chem 2016; 31:33–40 [View Article]
    [Google Scholar]
  234. Wang F, Cassidy C, Sacchettini JC. Crystal structure and activity studies of the Mycobacterium tuberculosis beta-lactamase reveal its critical role in resistance to beta-lactam antibiotics. Antimicrob Agents Chemother 2006; 50:2762–2771 [View Article] [PubMed]
    [Google Scholar]
  235. Little C, Emanuel EL, Gagnon J, Waley SG. Identification of an essential glutamic acid residue in β-lactamase II from Bacillus cereus. Biochem J 1986; 233:465–469
    [Google Scholar]
  236. He Y, Lei J, Pan X, Huang X, Zhao Y. The hydrolytic water molecule of Class A β-lactamase relies on the acyl-enzyme intermediate ES* for proper coordination and catalysis. Sci Rep 2020; 10:10205 [View Article]
    [Google Scholar]
  237. Smith CA, Nossoni Z, Toth M, Stewart NK, Frase H et al. Role of the conserved disulfide bridge in class A carbapenemases. J Biol Chem 2016; 291:22196–22206 [View Article]
    [Google Scholar]
  238. Shimizu-Ibuka A, Matsuzawa H, Sakai H. An engineered disulfide bond between residues 69 and 238 in extended-spectrum beta-lactamase Toho-1 reduces its activity toward third-generation cephalosporins. Biochemistry 2004; 43:15737–15745 [View Article]
    [Google Scholar]
  239. Shimizu-Ibuka A, Matsuzawa H, Sakai H. Effect of disulfide-bond introduction on the activity and stability of the extended-spectrum class A beta-lactamase Toho-1. Biochim Biophys Acta 2006; 1764:1349–1355 [View Article]
    [Google Scholar]
  240. Majiduddin FK, Palzkill T. Amino acid sequence requirements at residues 69 and 238 for the SME-1 beta-lactamase to confer resistance to beta-lactam antibiotics. Antimicrob Agents Chemother 2003; 47:1062–1067 [View Article]
    [Google Scholar]
  241. Schultz SC, Dalbadie-McFarland G, Neitzel JJ, Richards JH. Stability of wild-type and mutant RTEM-1 beta-lactamases: effect of the disulfide bond. Proteins 1987; 2:290–297 [View Article]
    [Google Scholar]
  242. Heras B, Shouldice SR, Totsika M, Scanlon MJ, Schembri MA et al. DSB proteins and bacterial pathogenicity. Nat Rev Microbiol 2009; 7:215–225 [View Article]
    [Google Scholar]
  243. Buddelmeijer N. The molecular mechanism of bacterial lipoprotein modification - how, when and why?. FEMS Microbiol Rev 2015; 39:246–261 [View Article]
    [Google Scholar]
  244. Tokunaga M, Tokunaga H, Wu HC. Post-translational modification and processing of Escherichia coli prolipoprotein in vitro. Proc Natl Acad Sci U S A 1982; 79:2255–2259 [View Article]
    [Google Scholar]
  245. Yamagata H, Taguchi N, Daishima K, Mizushima S. Genetic characterization of a gene for prolipoprotein signal peptidase in Escherichia coli. Mol Gen Genet 1983; 192:10–14
    [Google Scholar]
  246. Dev IK, Ray PH. Rapid assay and purification of a unique signal peptidase that processes the prolipoprotein from Escherichia coli B. J Biol Chem 1984; 259:11114–11120 [PubMed]
    [Google Scholar]
  247. Konovalova A, Silhavy TJ. Outer membrane lipoprotein biogenesis: Lol is not the end. Philos Trans R Soc Lond B Biol Sci 2015; 370:1679 [View Article] [PubMed]
    [Google Scholar]
  248. Gupta SD, Wu HC. Identification and subcellular localization of apolipoprotein N-acyltransferase in Escherichia coli. FEMS Microbiol Lett 1991; 62:37–41 [View Article]
    [Google Scholar]
  249. Gupta SD, Gan K, Schmid MB, Wu HC. Characterization of a temperature-sensitive mutant of Salmonella Typhimurium defective in apolipoprotein N-acyltransferase. J Biol Chem 1993; 268:16551–16556
    [Google Scholar]
  250. Fukuda A, Matsuyama S-I, Hara T, Nakayama J, Nagasawa H et al. Aminoacylation of the N-terminal cysteine is essential for Lol-dependent release of lipoproteins from membranes but does not depend on lipoprotein sorting signals. J Biol Chem 2002; 277:43512–43518 [View Article] [PubMed]
    [Google Scholar]
  251. Okuda S, Tokuda H. Model of mouth-to-mouth transfer of bacterial lipoproteins through inner membrane LolC, periplasmic LolA, and outer membrane LolB. Proc Natl Acad Sci U S A 2009; 106:5877–5882 [View Article] [PubMed]
    [Google Scholar]
  252. Hu Z, Gunasekera TS, Spadafora L, Bennett B, Crowder MW. Metal content of metallo-beta-lactamase L1 is determined by the bioavailability of metal ions. Biochemistry 2008; 47:7947–7953 [View Article] [PubMed]
    [Google Scholar]
  253. Clausen T, Southan C, Ehrmann M. The HtrA family of proteases: implications for protein composition and cell fate. Mol Cell 2002; 10:443–455 [View Article] [PubMed]
    [Google Scholar]
  254. Schaar V, Nordström T, Mörgelin M, Riesbeck K. Moraxella catarrhalis outer membrane vesicles carry β-lactamase and promote survival of Streptococcus pneumoniae and Haemophilus influenzae by inactivating amoxicillin. Antimicrob Agents Chemother 2011; 55:3845–3853 [View Article]
    [Google Scholar]
  255. Kim SW, Park SB, Im SP, Lee JS, Jung JW et al. Outer membrane vesicles from β-lactam-resistant Escherichia coli enable the survival of β-lactam-susceptible E. coli in the presence of β-lactam antibiotics. Sci Rep 2018; 8:5402 [View Article] [PubMed]
    [Google Scholar]
  256. Bielaszewska M, Daniel O, Nyč O, Mellmann A. In vivo secretion of β-lactamase-carrying outer membrane vesicles as a mechanism of β-lactam therapy failure. Membranes 2021; 11:806 [View Article]
    [Google Scholar]
  257. González LJ, Bahr G, Vila AJ. Lipidated β-lactamases: from bench to bedside. Future Microbiol 2016; 11:1495–1498 [View Article]
    [Google Scholar]
  258. Narita S-I, Tokuda H. Biogenesis and membrane targeting of lipoproteins. EcoSal Plus 2010; 4: [View Article]
    [Google Scholar]
  259. Narita S-I, Tokuda H. Bacterial lipoproteins; biogenesis, sorting and quality control. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1414–1423 [View Article]
    [Google Scholar]
  260. Mizutani M, Mukaiyama K, Xiao J, Mori M, Satou R et al. Functional differentiation of structurally similar membrane subunits of the ABC transporter LolCDE complex. FEBS Lett 2013; 587:23–29 [View Article]
    [Google Scholar]
  261. Matsuyama S, Tajima T, Tokuda H. A novel periplasmic carrier protein involved in the sorting and transport of Escherichia coli lipoproteins destined for the outer membrane. EMBO J 1995; 14:3365–3372 [View Article] [PubMed]
    [Google Scholar]
  262. Yakushi T, Masuda K, Narita S, Matsuyama S, Tokuda H. A new ABC transporter mediating the detachment of lipid-modified proteins from membranes. Nat Cell Biol 2000; 2:212–218 [View Article] [PubMed]
    [Google Scholar]
  263. Matsuyama S i, Yokota N, Tokuda H. A novel outer membrane lipoprotein, LolB (HemM), involved in the LolA (p20)-dependent localization of lipoproteins to the outer membrane of Escherichia coli. EMBO J 1997; 16:6947–6955 [View Article] [PubMed]
    [Google Scholar]
  264. Taniguchi N, Matsuyama S-I, Tokuda H. Mechanisms underlying energy-independent transfer of lipoproteins from LolA to LolB, which have similar unclosed β-barrel structures. J Biol Chem 2005; 280:34481–34488 [View Article]
    [Google Scholar]
  265. Randall LB, Dobos K, Papp-Wallace KM, Bonomo RA, Schweizer HP. Membrane-bound PenA β-lactamase of Burkholderia pseudomallei. Antimicrob Agents Chemother 2015; 60:1509–1514 [View Article]
    [Google Scholar]
  266. Bootsma HJ, van Dijk H, Verhoef J, Fleer A, Mooi FR. Molecular characterization of the BRO beta-lactamase of Moraxella (Branhamella) catarrhalis. Antimicrob Agents Chemother 1996; 40:966–972 [View Article]
    [Google Scholar]
  267. Bootsma HJ, Aerts PC, Posthuma G, Harmsen T, Verhoef J et al. Moraxella (Branhamella) catarrhalis BRO beta-lactamase: a lipoprotein of Gram-positive origin?. J Bacteriol 1999; 181:5090–5093 [View Article]
    [Google Scholar]
  268. Feller G, Zekhnini Z, Lamotte-Brasseur J, Gerday C. Enzymes from cold-adapted microorganisms. The class C beta-lactamase from the antarctic psychrophile Psychrobacter immobilis A5. Eur J Biochem 1997; 244:186–191 [View Article]
    [Google Scholar]
  269. Nielsen JB, Lampen JO. Membrane-bound penicillinases in Gram-positive bacteria. J Biol Chem 1982; 257:4490–4495
    [Google Scholar]
  270. Collins SM, Brown AC. Bacterial outer membrane vesicles as antibiotic delivery vehicles. Front Immunol 2021; 12:733064 [View Article]
    [Google Scholar]
  271. Ciofu O, Beveridge TJ, Kadurugamuwa J, Walther-Rasmussen J, Høiby N. Chromosomal beta-lactamase is packaged into membrane vesicles and secreted from Pseudomonas aeruginosa. J Antimicrob Chemother 2000; 45:9–13 [View Article] [PubMed]
    [Google Scholar]
  272. Gurung M, Moon DC, Choi CW, Lee JH, Bae YC et al. Staphylococcus aureus produces membrane-derived vesicles that induce host cell death. PLoS ONE 2011; 6:e27958 [View Article]
    [Google Scholar]
  273. Manning AJ, Kuehn MJ. Contribution of bacterial outer membrane vesicles to innate bacterial defense. BMC Microbiol 2011; 11:258 [View Article] [PubMed]
    [Google Scholar]
  274. Lee J, Lee E-Y, Kim S-H, Kim D-K, Park K-S et al. Staphylococcus aureus extracellular vesicles carry biologically active β-lactamase. Antimicrob Agents Chemother 2013; 57:2589–2595 [View Article] [PubMed]
    [Google Scholar]
  275. Chattopadhyay MK, Jaganandham MV. Vesicles-mediated resistance to antibiotics in bacteria. Front Microbiol 2015; 6:758 [View Article] [PubMed]
    [Google Scholar]
  276. Devos S, Van Oudenhove L, Stremersch S, Van Putte W, De Rycke R et al. The effect of imipenem and diffusible signaling factors on the secretion of outer membrane vesicles and associated Ax21 proteins in Stenotrophomonas maltophilia. Front Microbiol 2015; 6:298 [View Article]
    [Google Scholar]
  277. Kulkarni HM, Nagaraj R, Jagannadham MV. Protective role of E. coli outer membrane vesicles against antibiotics. Microbiol Res 2015; 181:1–7 [View Article]
    [Google Scholar]
  278. Bonnington KE, Kuehn MJ. Protein selection and export via outer membrane vesicles. Biochim Biophys Acta 2014; 1843:1612–1619 [View Article]
    [Google Scholar]
  279. Lee E-Y, Choi D-Y, Kim D-K, Kim J-W, Park JO et al. Gram-positive bacteria produce membrane vesicles: proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles. Proteomics 2009; 9:5425–5436 [View Article]
    [Google Scholar]
  280. Lee JC. Staphylococcus aureus membrane vesicles and its potential role in bacterial pathogenesis. J Bacteriol Virol 2012; 42:181–188
    [Google Scholar]
  281. López C, Prunotto A, Bahr G, Bonomo RA, González LJ et al. Specific protein-membrane interactions promote packaging of metallo-β-lactamases into outer membrane vesicles. Antimicrob Agents Chemother 2021; 65:10 [View Article]
    [Google Scholar]
  282. Rangama S, Lidbury IDEA, Holden JM, Borsetto C, Murphy ARJ et al. Mechanisms involved in the active secretion of CTX-M-15 β-lactamase by pathogenic Escherichia coli ST131. Antimicrob Agents Chemother 2021; 65:10 [View Article]
    [Google Scholar]
  283. Hall BG, Barlow M. Structure-based phylogenies of the serine beta-lactamases. J Mol Evol 2003; 57:255–260 [View Article]
    [Google Scholar]
  284. Berglund F, Johnning A, Larsson DGJ, Kristiansson E. An updated phylogeny of the metallo-β-lactamases. J Antimicrob Chemother 2021; 76:117–123 [View Article]
    [Google Scholar]
  285. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article]
    [Google Scholar]
  286. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article]
    [Google Scholar]
  287. Vandavasi VG, Langan PS, Weiss KL, Parks JM, Cooper JB et al. Active-site protonation states in an acyl-enzyme intermediate of a class A β-lactamase with a monobactam substrate. Antimicrob Agents Chemother 2017; 61:e01636-16 [View Article]
    [Google Scholar]
  288. Pemberton OA, Noor RE, Kumar M V V, Sanishvili R, Kemp MT et al. Mechanism of proton transfer in class A β-lactamase catalysis and inhibition by avibactam. Proc Natl Acad Sci U S A 2020; 117:5818–5825 [View Article]
    [Google Scholar]
  289. Park H, Brothers EN, Merz KM. Hybrid QM/MM and DFT investigations of the catalytic mechanism and inhibition of the dinuclear zinc metallo-beta-lactamase CcrA from Bacteroides fragilis. J Am Chem Soc 2005; 127:4232–4241 [View Article]
    [Google Scholar]
  290. Crowder MW, Spencer J, Vila AJ. Metallo-beta-lactamases: novel weaponry for antibiotic resistance in bacteria. Acc Chem Res 2006; 39:721–728 [View Article]
    [Google Scholar]
  291. Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the age of multidrug resistance:from structure and mechanism to evolution, dissemination, and inhibitor Design. Chem Rev 2021; 121:7957–8094 [View Article]
    [Google Scholar]
  292. Sankaran K, Wu HC. Lipid modification of bacterial prolipoprotein. Transfer of diacylglyceryl moiety from phosphatidylglycerol. J Biol Chem 1994; 269:19701–19706 [View Article]
    [Google Scholar]
  293. Cheung TKM, Ho PL, Woo PCY, Yuen KY, Chau PY. Cloning and expression of class A beta-lactamase gene blaA(BPS) in Burkholderia pseudomallei. Antimicrob Agents Chemother 2002; 46:1132–1135 [View Article]
    [Google Scholar]
  294. Humphries RM, Yang S, Hemarajata P, Ward KW, Hindler JA et al. First report of ceftazidime-avibactam resistance in a KPC-3-expressing Klebsiella pneumoniae isolate. Antimicrob Agents Chemother 2015; 59:6605–6607 [View Article]
    [Google Scholar]
  295. Lomovskaya O, Sun D, Rubio-Aparicio D, Nelson K, Tsivkovski R et al. Vaborbactam: spectrum of beta-lactamase inhibition and impact of resistance mechanisms on activity in Enterobacteriaceae. Antimicrob Agents Chemother 2017; 61:e01443-17 [View Article]
    [Google Scholar]
  296. Heritage J, Hawkey PM, Todd N, Lewis IJ. Transposition of the gene encoding a TEM-12 extended-spectrum beta-lactamase. Antimicrob Agents Chemother 1992; 36:1981–1986 [View Article]
    [Google Scholar]
  297. Bradford PA. Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 2001; 14:933–951 [View Article]
    [Google Scholar]
  298. Rasheed JK, Jay C, Metchock B, Berkowitz F, Weigel L et al. Evolution of extended-spectrum beta-lactam resistance (SHV-8) in a strain of Escherichia coli during multiple episodes of bacteremia. Antimicrob Agents Chemother 1997; 41:647–653 [View Article]
    [Google Scholar]
  299. Heritage J, M’Zali FH, Gascoyne-Binzi D, Hawkey PM. Evolution and spread of SHV extended-spectrum beta-lactamases in Gram-negative bacteria. J Antimicrob Chemother 1999; 44:309–318 [View Article]
    [Google Scholar]
  300. Naas T, Aubert D, Fortineau N, Nordmann P. Cloning and sequencing of the beta-lactamase gene and surrounding DNA sequences of Citrobacter braakii, Citrobacter murliniae, Citrobacter werkmanii, Escherichia fergusonii and Enterobacter cancerogenus. FEMS Microbiol Lett 2002; 215:81–87 [View Article] [PubMed]
    [Google Scholar]
  301. Philippon A, Arlet G, Jacoby GA. Plasmid-determined AmpC-type beta-lactamases. Antimicrob Agents Chemother 2002; 46:1–11 [View Article] [PubMed]
    [Google Scholar]
  302. Doi Y, Wachino J, Ishiguro M, Kurokawa H, Yamane K et al. Inhibitor-sensitive AmpC beta-lactamase variant produced by an Escherichia coli clinical isolate resistant to oxyiminocephalosporins and cephamycins. Antimicrob Agents Chemother 2004; 48:2652–2658 [View Article]
    [Google Scholar]
  303. Le Turnier S, Nordmann P, Eb F, Mammeri H. Potential evolution of hydrolysis spectrum for AmpC beta-lactamase of Escherichia coli. J Antimicrob Chemother 2009; 63:216–218 [View Article] [PubMed]
    [Google Scholar]
  304. Aubert D, Poirel L, Chevalier J, Leotard S, Pages JM et al. Oxacillinase-mediated resistance to cefepime and susceptibility to ceftazidime in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2001; 45:1615–1620 [View Article] [PubMed]
    [Google Scholar]
  305. Aubert D, Naas T, Héritier C, Poirel L, Nordmann P. Functional characterization of IS1999, an IS4 family element involved in mobilization and expression of beta-lactam resistance genes. J Bacteriol 2006; 188:6506–6514 [View Article]
    [Google Scholar]
  306. El Garch F, Bogaerts P, Bebrone C, Galleni M, Glupczynski Y. OXA-198, an acquired carbapenem-hydrolyzing class D beta-lactamase from Pseudomonas aeruginosa. Antimicrob Agents Chemother 2011; 55:4828–4833 [View Article]
    [Google Scholar]
  307. Urbanus ML, Scotti PA, Froderberg L, Saaf A, de Gier JW et al. Sec-dependent membrane protein insertion: sequential interaction of nascent FtsQ with SecY and YidC. EMBO Rep 2001; 2:524–529 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001217
Loading
/content/journal/micro/10.1099/mic.0.001217
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error