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Abstract

Mobile genetic elements (MGEs) are one of the main vectors for the spread of antimicrobial resistance (AMR) across bacte-
ria, due to their ability to move horizontally between bacterial lineages. Horizontal transmission of AMR can increase AMR 
prevalence at multiple scales, from increasing the prevalence of infections by resistant bacteria to pathogen epidemics and 
worldwide spread of AMR across species. Among MGEs, conjugative plasmids are the main contributors to the spread of AMR. 
This review discusses the selective pressures acting on MGEs and their hosts to promote or limit the horizontal transmission 
of MGEs, the mechanisms by which transmission rates can evolve, and their implications for limiting the spread of AMR, with 
a focus on AMR plasmids.

INTRODUCTION
The spread of antimicrobial resistance (AMR) threatens the use of antibiotics in modern medicine, with antibiotic-resistant 
infections predicted to be the primary cause of death by 2050 [1], and already causing over one million deaths per year [2]. 
This spread of AMR is fuelled by horizontal transmission of AMR genes between bacteria, which increases AMR abundance 
within species and allows cross-species dissemination. Three main mechanisms can transfer genes horizontally [3]. In natural 
transformation, cells competent for transformation uptake naked extracellular DNA directly from the environment. Genes can 
also be transmitted between cells by transduction, in which they are packaged into bacteriophage capsids together with, or instead 
of, phage DNA. Finally, conjugation transfers DNA after cell–cell contact, via conjugative pili encoded by conjugative elements. 
Phages and conjugative elements are mobile genetic elements (MGEs) which use transduction and conjugation to transfer 
themselves horizontally. Conjugative elements include plasmids, extrachromosomal DNA molecules that replicate autonomously, 
and integrative and conjugative elements (ICEs), which are integrated into the host chromosome. Conjugative elements are self-
transmissible as they encode their own conjugation machinery; mobilizable elements are not, but they can be mobilized by the 
transfer machinery of a conjugative element present in the same cell [4]. Phages can also encapsulate full plasmids [5]. At lower 
frequency, phages also package bacterial DNA, which can transduce chromosomal AMR genes [6]. It is not clear how important 
this is for AMR spread, although lateral transduction, a mechanism by which in situ replication of prophages amplifies the amount 
of surrounding host DNA packaged in phage capsids, can lead to very high rates of chromosomal gene mobilization [7]. Still, 
horizontal transmission of AMR will be most efficient when AMR genes are directly carried on MGEs.

MGEs frequently carry AMR genes, which is promoted by association with transposable elements allowing gene movement 
between genomic locations and accumulation of AMR genes on multi-resistant elements [8]. AMR genes can be carried on phages, 
particularly P1-like phage-plasmids [9, 10]. ICEs also carry AMR genes, but their role in AMR spread is still little understood 
[11]. By contrast, plasmids are clearly enriched in AMR genes: they have disseminated AMR genes across species since the start 
of the antibiotic era [12–14], with a crucial role played by a few major AMR plasmid families [15, 16].

Horizontal transmission of MGEs can govern the transmission of AMR within patients [17], and facilitate epidemics [18, 19] and 
worldwide dissemination of AMR genes [20]. Thus, it is crucial to understand which factors promote, or limit, the evolution of 
horizontal transmission in bacterial populations. Horizontal transmission rates are extremely variable, due to both MGE- and 
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host cell-encoded variation [21, 22]. Here, I review the selective pressures and molecular mechanisms shaping the evolution of 
horizontal transmission in MGEs, with a particular focus on plasmids as the major vectors of AMR genes.

Evolution of MGE-controlled transmission
MGEs are subject to natural selection, which favours MGEs which maximize their fitness, defined as the average contribution 
to the population of MGEs in future generations [23]. One key characteristic of the life cycle of MGEs is that they can transmit 
within populations via two routes: vertical transmission together with host cell division, and horizontal transmission from a 
donor to a recipient bacterium. If horizontal transmission conferred no costs, it would evolve towards always increasing rates [24]. 
However, an MGE with high rates of horizontal transmission will impose a higher cost to its bacterial host, leading to reduced host 
growth or competitive ability. In turn, this cost to the host will reduce MGE vertical transmission, creating a trade-off between 
horizontal and vertical transmission [25, 26]. Thus, the horizontal transmission rate that maximizes an MGE’s fitness depends 
on the trade-off between its direct benefits to fitness (through horizontal transmission) and its indirect cost to fitness (through 
reduced vertical transmission).

The cost of horizontal transmission varies with the mechanism of transmission. Horizontal transmission through phage lysis 
of host cells is most costly; conjugation does not require host cell lysis, but still entails metabolic costs linked to pili production 
and DNA translocation. In some cases, cells stop dividing when conjugating [27]. Moreover, the expression of conjugative pili 
can lead to cell envelope damage and induction of stress responses [28]. Overall, plasmid variants with a higher conjugation rate 
tend to have a higher cost [26, 29, 30]. In addition to these intrinsic costs, conjugation also puts donor cells at risk of infection by 
male-specific phages, which specifically infect cells expressing conjugative pili [31]; and conjugation can lead to attack by recipients 
with type 6 secretion systems (T6SS) because membrane perturbations caused by conjugative pili are detected as a threat [32].

The benefits of investing in horizontal transmission mechanisms mainly depend on the availability of susceptible hosts [33]. 
Modelling and experiments show that when few hosts are available, it is beneficial for temperate phages to not lyse their host 
cells [34, 35], and for conjugative plasmids to not conjugate at high rates [26, 30]. Over evolutionary times, MGEs might thus 
evolve towards some optimal transmission rate that depends on the costs of transmission and the opportunities for transfer they 
experience. However, models have shown that evolution does not necessarily converge to a single transfer rate, but low-frequency 
genetic diversity in transfer rates can be stable [24]. Moreover, when host availability varies over time, plasticity mechanisms 
that induce transmission only when a high density of potential hosts is detected can benefit both phages [36] and plasmids [37].

Experimental evolution approaches allow us to test in controlled conditions how MGEs respond to a given selective pressure. Many 
plasmid–host coevolution studies are done in the absence of horizontal transmission, because all hosts initially carry plasmids 
(which block the entry of plasmids from other cells), and plasmid loss is usually negligible. As expected, this leads to a reduction 
of transfer rate and plasmid cost, after a few hundred generations [38–41], or even faster when male-specific phages are present 
[42]. When conjugation is enforced experimentally by selecting for alternating hosts, increased transmission can instead evolve 
[43, 44]. Finally, a few studies have explicitly manipulated the number of new hosts available for horizontal transmission. With 
filamentous bacteriophages, evolving phages with longer periods of selection for horizontal transmission (in which the cells are 
killed and only virions are propagated) led to the evolution of phages with increased horizontal transmission [45]. Similarly, 
plasmid R1 increased its transfer rate only when confronted repeatedly to a large proportion of susceptible hosts [29]. By contrast, 
RP4 plasmid did not evolve, which might be due to a different cost–benefit ratio, but also to genetic constraints. In an earlier 
study [26], pB15 plasmid transfer rate evolved but did not correlate with host availability treatments. This might be due to an 
experimental protocol which favoured vertical transmission overall (selection for plasmid carriage was enforced regularly), or 
complicated by the complex genetic basis of conjugation in pB15, which contains a shufflon [46]. Thus, MGE response to selection 
will depend on the selective pressures encountered, but also on the mechanisms dictating horizontal transmission rates.

Mechanisms for MGE-encoded variation in transfer rates
Horizontal transmission of MGEs depends on the expression of genes required for horizontal transmission: this includes (at 
least) excision, packaging and lysis genes for phages, conjugation and mobilization genes for plasmids. The level of expression of 
these genes can vary constitutively across MGEs, but also vary over time for a given MGE.

Regulatory networks can modulate in which conditions horizontal transmission genes are expressed [47]: this phenotypic variation 
will be adaptive if expression correlates with the probability of successful transmission. When phage λ was evolved in treatments 
varying the cues indicating when new hosts would be available, the induction of horizontal transmission evolved to maximize 
transmission [48]. Regulation of transfer of natural MGEs might have evolved similarly, in order to induce transmission in 
conditions in which horizontal transmission is most likely to be successful. In plasmids, conjugation usually relies on a set of 
genes grouped in transfer operons, expression of which is regulated by multiple factors [47]. For instance, plasmid conjugation 
in Salmonella can be induced by physiological conditions present in the gut [49]. Many MGEs are regulated by quorum sensing-
like systems allowing them to transfer when recipient hosts are available, repressing transfer functions when too many MGE 
carriers are already present [50, 51], or activating transfer in the presence of recipients, as in the case of pheromone plasmids [52]. 
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Quorum sensing communication provides information at a range of a few micrometres only, allowing for relevant estimation 
of the number of surrounding uninfected hosts [53]. Some MGEs even induce transfer only upon physical contact between the 
donor and recipient cells [54]. Other systems induce horizontal transmission in conditions of stress, interpreted as a signal that 
the host, and thus vertical transmission, are endangered. One main example of this is the SOS response, which detects DNA 
damage, and commonly induces phage lysis and ICE conjugation [50, 55]. As antibiotics often cause DNA damage, antibiotic 
treatment itself can induce horizontal transmission of AMR elements [56–58]. However, this phenomenon seems to be rare 
across conjugative plasmid groups, and increased spread of plasmids after antibiotic treatment can often be attributed to selection 
rather than transfer [21, 59]. Overall, conditions which promote induction of transmission mechanisms are not always known, 
but the plasticity of transmission mechanisms seems to commonly promote investment in transmission when it is most likely 
to provide benefits to MGEs.

Transmission rates also vary constitutively, due to genetically encoded mechanisms. In many plasmid groups, transfer gene 
expression is repressed by default [47, 60], and derepressed only in specific conditions. This creates the opportunity for mutations 
inactivating the repressor genes, leading to constitutively derepressed mutants with up to 1000-fold increased transfer rate. Dere-
pressed plasmids include the well-known F plasmid [61], early laboratory mutants of AMR plasmids [62], but also clinical AMR 
plasmids, characterized by high rates of transfer [63]. Repression can also be transiently lifted due to transcriptional overshooting 
of conjugation genes in new plasmid recipients before the repressor is synthesized [64]. This transitory derepression leads to high 
rates of transfer from newly formed transconjugants and effectively ensures epidemic spread of plasmids in naïve populations [65].

Mutations not directly related to transfer gene expression also influence transfer. For the R1 plasmid, the prevalent mechanism 
increasing transfer rates was a change in plasmid copy number [29]. Increased copy number causes both increased transfer gene 
expression, due to gene dosage effects, and increased mobilization, because more plasmid copies are present in the cell. This 
might be a common mechanism for increasing transfer rates across plasmid types: point mutations increasing copy number are 
known for conjugative as well as mobilizable plasmids [66–68]. In R1, copy number mutants were less infectious but also less 
costly than fully derepressed mutants, possibly explaining their prevalence. However, high copy number appears to be too costly 
for some conjugative plasmids. For instance, IncP plasmids with high copy number cause death in some host species [69], and 
the cost of colistin resistance can become extremely high when amplified by high copy number [70]. In the case of mobilizable 
plasmids, copy number might instead be one of the few mechanisms plasmids can control, as they rely on conjugative functions 
encoded on other MGEs. Mobilizable plasmids commonly have high copy number [47], which in turn leads to higher expression 
of mobilization genes, contributing to increased transmission [71]. A high copy number should also enhance transmission through 
other routes, including transduction [5] or extracellular vesicles [72], because it increases the amount of DNA available to package.

Other plasmid-encoded traits can act indirectly on plasmid transfer. For instance, biofilm formation can favour horizontal 
transfer [73] and can be promoted by conjugative pili [74, 75], or by plasmid-encoded fimbriae [76] or clumping proteins [77]. 
Plasmids can also repress T6SS secretion, preventing their host from killing potential recipients [78]. Finally, transfer regulatory 
networks are connected with the host cell regulatory networks [47], which can induce transfer in response to environmental 
changes detected by the host. This probably represents an adaptation of plasmids to transfer when most beneficial. Yet, it also 
provides the potential for host genes to control transfer.

Effects of the host and other MGEs on transmission
For a given plasmid, large variation in transfer rates can be observed across host strains, in vitro [22, 79, 80], as well as in vivo 
[81]. Both the donor host and the recipient can affect transfer rates, due to different mechanisms. On the recipient side, resistance 
to plasmid entry is not commonly due to the loss of surface receptors (in contrast to phages), either because such receptors are 
not strictly required for conjugative transfer, or because they are essential to the host [82, 83]. Conjugation is instead sensitive 
to targeting by bacterial immune systems [84], and exclusion systems [85]. Restriction-modification (RM) systems distinguish 
self from non-self through chemical modifications of DNA bases, and cleave DNA recognized as foreign. They are active against 
plasmid transfer [86, 87], although they might act less efficiently than against phage infection because DNA enters the cell 
single-stranded during conjugation. CRISPR-Cas systems are adaptive immune systems which record memory of past encounters 
with MGEs by inserting MGE-derived sequences (spacers) into CRISPR loci. Upon reinfection, sequence-specific recognition 
triggers cleavage by Cas enzymes. When CRISPR arrays contain spacers targeting plasmids, CRISPR-Cas immunity is effective 
against plasmid conjugation [86, 88, 89]. Other MGEs present in the recipient cell also impact transfer of a focal MGE by diverse 
mechanisms [90]. Type IV CRISPR-Cas systems, themselves located on plasmids, appear to be involved in plasmid competition 
and target mostly other plasmids [91]. Finally, most plasmids carry entry exclusion systems, which prevent physical DNA transfer 
from isogenic or closely related plasmids by inhibiting mating pair formation or DNA injection [85].

Selective pressures acting on recipient ability to receive MGEs depend on the direct effect of the incoming MGEs on host cell 
fitness. In cases where plasmid carriage is costly (but see, for instance, [92]), defence against plasmids can benefit the host [93]. 
However, in the presence of antibiotics to which AMR plasmids provide resistance, immunity against AMR plasmids is counter-
selected [94]. Some defence systems might also limit AMR elements without any direct benefit but as a side effect of their role 
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against lytic phages. RM systems, in particular, have little sequence specificity, and thus selection for their action against phages 
[95] will maintain their effect against plasmids. By contrast, CRISPR-Cas systems only target MGEs against which they carry 
spacers. Identified spacer targets are primarily located in phage genomes but the next most abundant targets belong to plasmid 
genes involved in mobility [96], suggesting a selective advantage to excluding conjugative plasmids. In addition, MGEs present 
in the recipient cell are at risk of displacement by incoming, incompatible MGEs, which will favour the targeting of plasmids by 
type IV CRISPR-Cas systems [91] and carriage of entry exclusion systems against related plasmids [85].

Donor cells act on horizontal transmission through the regulation of transfer gene expression [47]. In particular, global regula-
tors including nucleoid-associated proteins and two-component systems play a crucial role in transfer gene expression [97, 98]. 
However, most of this knowledge comes from gene knock-out experiments, and it is not yet clear if more subtle variation in 
global regulator sequence or expression can explain transfer rate variability across natural isolates. Other plasmids present in the 
donor cell can also modify a focal plasmid’s transfer rate by various mechanisms [99, 100]. Because the donor cell pays the cost 
of higher transmission, direct selection acts on genes present in donors (on the chromosome as well as on any other MGE that is 
not transmitted together with the focal plasmid) to decrease transmission rates [24]. Yet, plasmid transmission to recipient cells 
then affects the fitness of these new hosts, which indirectly affects donor fitness: if donors are related to recipients, transferring 
beneficial plasmids – for instance AMR plasmids in the context of antibiotic treatment – increases the inclusive fitness of donor 
alleles [101]. At the population level, if transfer is sufficiently biased towards recipients sharing the donor’s alleles for transfer, 
this can in turn select for increased transfer rates [101]. Within populations, transfer might be higher between bacteria from 
the same genotype, because of spatially structured growth, but also because cells from the same genotype will have identical 
RM systems and recognize MGEs as self [79]. When MGE gene expression also benefits neighbouring cells, as can be the case 
for many AMR mechanisms including secreted β-lactamases but also cytoplasmic antibiotic-modifying enzymes [102], plasmid 
transfer even to non-related recipients will enhance antibiotic degradation and align host and plasmid fitness interests towards 
higher transfer rates [103].

Overall, it is unclear how much of the variation in transfer ability among bacterial hosts evolved in response to selective pressures 
linked to MGE carriage and transmission. Regardless, this variation will influence MGE spread and distribution in bacterial 

Fig. 1. Graphical summary of the forces acting on AMR plasmid transfer, through the plasmid itself, the donor cell and the recipient cell. Placed 
centrally, mechanisms modulating transfer are surrounded by illustrations of the selective pressures shaping them.
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populations. A recent model showed that effects of several orders of magnitude are required for host cells to significantly alter 
plasmid prevalence [24]. Thus, small effects might have little consequences, but large variations in transfer ability will impact 
AMR plasmid prevalence. Host immune systems, in particular, appear to exert significant selective pressures on MGEs, as these 
commonly encode genes to defend themselves against host defences [104–106]. In several pathogenic species, lineages with 
CRISPR-Cas systems carry fewer MGEs, and carrying spacers targeting MGEs vectors of AMR is associated with reduced AMR 
carriage [107], although this pattern can be disrupted by anti-CRISPR genes [108]. RM system presence was also shown to limit 
horizontal gene transfer and AMR elements [109, 110]. Overall, barriers to MGEs will impact not only the total amount of MGE 
transmission, but also which bacterial lineages carry MGEs [107, 111].

Consequences for the spread of AMR
Horizontal transmission is crucial to the ecology and persistence of MGE and MGE-carried genes. A high enough rate of 
horizontal transmission can allow persistence of an MGE conferring AMR if it compensates for MGE cost and loss [112]. Rates 
of transfer of most natural plasmids have long been thought to be too low for plasmid maintenance [113]. Yet, it has since been 
shown that measured transfer rates could be sufficient to maintain plasmids in the absence of selection [114]. Experimentally, 
conjugation promotes persistence of many conjugative plasmids of different incompatibility groups, at least in vitro [115]; and 
an effect of horizontal transmission on maintenance has been demonstrated in vivo as well [116], although correlating in vivo 
and in vitro dynamics can be difficult [117]. In natural and clinical environments, most of the evidence for horizontal transfer 
is on transmission between genetically different isolates, which can be detected much more easily (whereas within an otherwise 
homogeneous population, vertical and horizontal transmission cannot be distinguished). AMR plasmid transmission between 
species has been detected within patients after antibiotic treatment [118, 119], or in the absence of antibiotics [120]. Transmission 
of a derepressed AMR plasmid was also shown in the detailed study of a hospital ward [121], with plasmid transfer between 
Klebsiella pneumoniae and Escherichia coli detected within virtually every patient. Thus, horizontal transmission can directly 
increase AMR prevalence within patients as well as at a larger scale. At a community level, variability in transfer rates across 
hosts translates into increased overall rates of transmission, because of efficient amplification of transfer by rare efficient donors 
[80]. High transfer rates from one strain to another can also contribute to plasmid maintenance in a ‘sink’ host strain or species 
[122]. In addition, transfer to various hosts in which a plasmid imposes variable fitness costs could indirectly favour plasmid 
maintenance [123]

The contribution of horizontal transmission to AMR prevalence led to the suggestion that interventions that limit or stop 
horizontal transmission would help in the fight against AMR [124]. First, some chemical agents, including unsaturated fatty 
acids, act as specific inhibitors of plasmid conjugation [125]. Unsaturated fatty acids were shown to stop the conjugative spread 
of AMR plasmids first in vitro [115], then in conditions closer to natural environments, both water microcosms and a mouse gut 
model [126]. An alternative strategy to limit horizontal transmission is to promote plasmid evolution towards reduced horizontal 
transmission. Male-specific phages, which infect cells through conjugative pili, cause an extremely high cost of pili expression. 
Thus, not only are most target cells killed by phages, but the evolution of resistance to male-specific phages leads to plasmids 
which do not conjugate and strains which lose AMR plasmids, even in the presence of antibiotics [127].

Antibiotic treatment itself might impact the evolution of transfer rates. First, some antibiotics increase transfer gene expression, 
either directly [128, 129] or through induction of the SOS response [55, 130, 131]. Second, antibiotic treatment can select for 
plasmid variants with modified transfer rate. Exposure to high concentrations of antibiotics selects for increased copy number of 
plasmids that carry resistance genes to this antibiotic, because this increases the level of resistance, which in turn increases plasmid 
transfer rate [29]. Antibiotic treatment can also increase the expression of transfer genes more specifically: in the conjugative 
transposon Tn916, antibiotic treatment leads to increased transfer due to increased expression of AMR genes and of excision genes 
located nearby [132]. On the opposite, selection for plasmid carriage due to antibiotic treatment decreases effective transfer by 
suppressing recipients, which might favour variants that do not transfer, and promotes AMR gene movement to the chromosome 
[133]. In the long term, it has been argued that the widespread use of antimicrobials selects for higher rates of innovation and 
horizontal gene transfer, and against defences [134].

In conclusion, the evolution of MGE transmission rate will be shaped by opportunities for transmission, selective pressures acting 
on host bacteria, and molecular effects of transmission and defence mechanisms (Fig. 1). All these factors will be influenced by 
antibiotic treatment itself. However, most experimental evolution studies have been done in vitro, focusing on a few well-known 
plasmids and laboratory host strains. There is thus a need to understand better the evolution of transmission rates for relevant 
AMR plasmids and clinical strains [135], and in conditions closer to those experienced by bacteria in vivo, which will influ-
ence MGE transmission and its evolution, by modifying for instance population structure and antibiotic exposure. Ultimately, 
understanding how to influence and limit MGE spread will be crucial to fight AMR.
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