1887

Abstract

The enterohemorrhagic pathotype is responsible for severe and dangerous infections in humans. Establishment of the infection requires colonization of the gastro-intestinal tract, which is dependent on the Type III Secretion System. The Type III Secretion System (T3SS) allows attachment of the pathogen to the mammalian host cell and cytoskeletal rearrangements within the host cell. Blocking the functionality of the T3SS is likely to reduce colonization and therefore limit the disease. This route offers an alternative to antibiotics, and problems with the development of antibiotics resistance. Salicylidene acylhydrazides have been shown to have an inhibitory effect on the T3SS in several pathogens. However, the main target of these compounds is still unclear. Past work has identified a number of putative protein targets of these compounds, one of which being WrbA. Whilst WrbA is considered an off-target interaction, this study presents the effect of the salicylidne acylhydrazide compounds on the activity of WrbA, along with crystal structures of WrbA from and serovar Typhimurium; the latter also containing parts of the compound in the structure. We also present data showing that the original compounds were unstable in acidic conditions, and that later compounds showed improved stability.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001211
2022-07-13
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/168/7/mic001211.html?itemId=/content/journal/micro/10.1099/mic.0.001211&mimeType=html&fmt=ahah

References

  1. Borczyk AA, Karmali MA, Lior H, Duncan LM. Bovine reservoir for verotoxin-producing Escherichia coli o157:H7. Lancet 1987; 1:98 [View Article] [PubMed]
    [Google Scholar]
  2. Orskov F, Orskov I, Villar JA. Cattle as reservoir of verotoxin-producing Escherichia coli o157:H7. Lancet 1987; 2:276 [View Article] [PubMed]
    [Google Scholar]
  3. Naylor SW, Low JC, Besser TE, Mahajan A, Gunn GJ et al. Lymphoid follicle-dense mucosa at the terminal rectum is the principal site of colonization of enterohemorrhagic Escherichia coli O157:H7 in the bovine host. Infect Immun 2003; 71:1505–1512 [View Article] [PubMed]
    [Google Scholar]
  4. Low JC, McKendrick IJ, McKechnie C, Fenlon D, Naylor SW et al. Rectal carriage of enterohemorrhagic Escherichia coli O157 in slaughtered cattle. Appl Environ Microbiol 2005; 71:93–97 [View Article] [PubMed]
    [Google Scholar]
  5. Moon HW, Whipp SC, Argenzio RA, Levine MM, Giannella RA. Attaching and effacing activities of rabbit and human enteropathogenic Escherichia coli in pig and rabbit intestines. Infect Immun 1983; 41:1340–1351 [View Article] [PubMed]
    [Google Scholar]
  6. Rothbaum R, McAdams AJ, Giannella R, Partin JC. A clinicopathologic study of enterocyte-adherent Escherichia coli: a cause of protracted diarrhea in infants. Gastroenterology 1982; 83:441–454 [PubMed]
    [Google Scholar]
  7. Knutton S, Baldini MM, Kaper JB, McNeish AS. Role of plasmid-encoded adherence factors in adhesion of enteropathogenic Escherichia coli to HEp-2 cells. Infect Immun 1987; 55:78–85 [View Article] [PubMed]
    [Google Scholar]
  8. Nataro JP, Kaper JB. Diarrheagenic Escherichia coli. Clin Microbiol Rev 1998; 11:142–201 [View Article] [PubMed]
    [Google Scholar]
  9. Hueck CJ. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 1998; 62:379–433 [View Article] [PubMed]
    [Google Scholar]
  10. Keyser P, Elofsson M, Rosell S, Wolf-Watz H. Virulence blockers as alternatives to antibiotics: type III secretion inhibitors against gram-negative bacteria. J Intern Med 2008; 264:17–29 [View Article] [PubMed]
    [Google Scholar]
  11. Kauppi AM, Nordfelth R, Uvell H, Wolf-Watz H, Elofsson M. Targeting bacterial virulence: inhibitors of type III secretion in Yersinia. Chem Biol 2003; 10:241–249 [View Article] [PubMed]
    [Google Scholar]
  12. Nordfelth R, Kauppi AM, Norberg HA, Wolf-Watz H, Elofsson M. Small-molecule inhibitors specifically targeting type III secretion. Infect Immun 2005; 73:3104–3114 [View Article] [PubMed]
    [Google Scholar]
  13. Wolf K, Betts HJ, Chellas-Géry B, Hower S, Linton CN et al. Treatment of Chlamydia trachomatis with a small molecule inhibitor of the Yersinia type III secretion system disrupts progression of the chlamydial developmental cycle. Mol Microbiol 2006; 61:1543–1555 [View Article] [PubMed]
    [Google Scholar]
  14. Negrea A, Bjur E, Ygberg SE, Elofsson M, Wolf-Watz H et al. Salicylidene acylhydrazides that affect type III protein secretion in Salmonella enterica serovar typhimurium. Antimicrob Agents Chemother 2007; 51:2867–2876 [View Article] [PubMed]
    [Google Scholar]
  15. Hudson DL, Layton AN, Field TR, Bowen AJ, Wolf-Watz H et al. Inhibition of type III secretion in Salmonella enterica serovar Typhimurium by small-molecule inhibitors. Antimicrob Agents Chemother 2007; 51:2631–2635 [View Article] [PubMed]
    [Google Scholar]
  16. Veenendaal AKJ, Sundin C, Blocker AJ. Small-molecule type III secretion system inhibitors block assembly of the Shigella type III secreton. J Bacteriol 2009; 191:563–570 [View Article] [PubMed]
    [Google Scholar]
  17. Tree JJ, Wang D, McInally C, Mahajan A, Layton A et al. Characterization of the effects of salicylidene acylhydrazide compounds on type III secretion in Escherichia coli O157:H7. Infect Immun 2009; 77:4209–4220 [View Article] [PubMed]
    [Google Scholar]
  18. Anantharajah A, Buyck JM, Sundin C, Tulkens PM, Mingeot-Leclercq M-P et al. Salicylidene acylhydrazides and hydroxyquinolines act as inhibitors of type three secretion systems in Pseudomonas aeruginosa by distinct mechanisms. Antimicrob Agents Chemother 2017; 61:e02566-16 [View Article] [PubMed]
    [Google Scholar]
  19. Yang F, Korban SS, Pusey PL, Elofsson M, Sundin GW et al. Small-molecule inhibitors suppress the expression of both type III secretion and amylovoran biosynthesis genes in Erwinia amylovora. Mol Plant Pathol 2014; 15:44–57 [View Article] [PubMed]
    [Google Scholar]
  20. Liu Y, Liu J-K, Li G-H, Zhang M-Z, Zhang Y-Y et al. A novel Botrytis cinerea-specific gene BcHBF1 enhances virulence of the grey mould fungus via promoting host penetration and invasive hyphal development. Mol Plant Pathol 2019; 20:731–747 [View Article]
    [Google Scholar]
  21. Chu H, Slepenkin A, Elofsson M, Keyser P, de la Maza LM et al. Candidate vaginal microbicides with activity against chlamydia trachomatis and neisseriagonorrhoeae. Int J Antimicrob Agents 2010; 36:145–150 [View Article] [PubMed]
    [Google Scholar]
  22. Sharma P, Elofsson M, Roy S. Attenuation of Pseudomonas aeruginosa infection by INP0341, a salicylidene acylhydrazide, in a murine model of keratitis. Virulence 2020; 11:795–804 [View Article] [PubMed]
    [Google Scholar]
  23. Uusitalo P, Hägglund U, Rhöös E, Scherman Norberg H, Elofsson M et al. The salicylidene acylhydrazide INP0341 attenuates Pseudomonas aeruginosa virulence in vitro and in vivo. J Antibiot (Tokyo) 2017; 70:937–943 [View Article] [PubMed]
    [Google Scholar]
  24. Ur-Rehman T, Slepenkin A, Chu H, Blomgren A, Dahlgren MK et al. Pre-clinical pharmacokinetics and anti-chlamydial activity of salicylidene acylhydrazide inhibitors of bacterial type III secretion. J Antibiot (Tokyo) 2012; 65:397–404 [View Article] [PubMed]
    [Google Scholar]
  25. Slepenkin A, Enquist P-A, Hägglund U, de la Maza LM, Elofsson M et al. Reversal of the antichlamydial activity of putative type III secretion inhibitors by iron. Infect Immun 2007; 75:3478–3489 [View Article] [PubMed]
    [Google Scholar]
  26. Wang D, Zetterström CE, Gabrielsen M, Beckham KSH, Tree JJ et al. Identification of bacterial target proteins for the salicylidene acylhydrazide class of virulence-blocking compounds. J Biol Chem 2011; 286:29922–29931 [View Article]
    [Google Scholar]
  27. Gabrielsen M, Beckham KSH, Feher VA, Zetterström CE, Wang D et al. Structural characterisation of Tpx from Yersinia pseudotuberculosis reveals insights into the binding of salicylidene acylhydrazide compounds. PLoS One 2012; 7:e32217 [View Article]
    [Google Scholar]
  28. Wolfova J, Smatanova IK, Brynda J, Mesters JR, Lapkouski M et al. Structural organization of WrbA in apo- and holoprotein crystals. Biochim Biophys Acta 2009; 1794:1288–1298 [View Article]
    [Google Scholar]
  29. Gabrielsen M, Zetterström CE, Wang D, Beckham KSH, Elofsson M et al. Expression, purification, crystallization and initial X-ray diffraction analysis of thiol peroxidase from Yersinia pseudotuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:1606–1609 [View Article]
    [Google Scholar]
  30. Kabsch W. XDS. Acta Crystallogr D Biol Crystallogr 2010; 66:125–132 [View Article] [PubMed]
    [Google Scholar]
  31. Evans P. Scaling and assessment of data quality. Acta Crystallogr D Biol Crystallogr 2006; 62:72–82 [View Article] [PubMed]
    [Google Scholar]
  32. Battye TGG, Kontogiannis L, Johnson O, Powell HR, Leslie AGW. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr D Biol Crystallogr 2011; 67:271–281 [View Article] [PubMed]
    [Google Scholar]
  33. Stein N. CHAINSAW: a program for mutating pdb files used as templates in molecular replacement. J Appl Crystallogr 2008; 41:641–643 [View Article]
    [Google Scholar]
  34. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC et al. Phaser crystallographic software. J Appl Crystallogr 2007; 40:658–674 [View Article] [PubMed]
    [Google Scholar]
  35. Murshudov GN, Vagin AA, Dodson EJ. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 1997; 53:240–255 [View Article] [PubMed]
    [Google Scholar]
  36. Liebschner D, Afonine PV, Baker ML, Bunkóczi G, Chen VB et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr D Struct Biol 2019; 75:861–877 [View Article]
    [Google Scholar]
  37. Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of coot. Acta Crystallogr Sect D Biol Crystallogr 2010; 66:486–501 [View Article]
    [Google Scholar]
  38. Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 2010; 66:12–21 [View Article] [PubMed]
    [Google Scholar]
  39. Schüttelkopf AW, van Aalten DMF. PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D Biol Crystallogr 2004; 60:1355–1363 [View Article] [PubMed]
    [Google Scholar]
  40. DeLano WL. The PyMOL molecular graphics system, version 1.1. Schrödinger LLC: 2002 http://www.pymol.org
  41. Bond CS, Schüttelkopf AW. ALINE: A WYSIWYG protein-sequence alignment editor for publication-quality alignments. Acta Crystallogr D Biol Crystallogr 2009; 65:510–512 [View Article] [PubMed]
    [Google Scholar]
  42. Zambelloni R, Connolly JPR, Huerta Uribe A, Burgess K, Marquez R et al. Novel compounds targeting the enterohemorrhagic Escherichia coli type three secretion system reveal insights into mechanisms of secretion inhibition. Mol Microbiol 2017; 105:606–619 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001211
Loading
/content/journal/micro/10.1099/mic.0.001211
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error