Microbial Musings – Spring 2022 Open Access

Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001205
2022-06-13
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/168/3/mic001205.html?itemId=/content/journal/micro/10.1099/mic.0.001205&mimeType=html&fmt=ahah

References

  1. Collins P. How Microbiology started. Microbiology 2022; 168:001139 [View Article]
    [Google Scholar]
  2. Finneran KT, Anderson RT, Nevin KP, Lovley DR. Potential for bioremediation of uranium-contaminated aquifers with microbial U(VI) reduction. Soil Sediment Contam 2010; 11:339–357 [View Article]
    [Google Scholar]
  3. Lovley DR, Giovannoni SJ, White DC, Champine JE, Phillips EJ et al. Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 1993; 159:336–344 [View Article]
    [Google Scholar]
  4. Lovley DR. Microbe profile: Geobacter metallireducens: a model for novel physiologies of biogeochemical and technological significance. Microbiology 2022; 168: [View Article] [PubMed]
    [Google Scholar]
  5. White GF, Edwards MJ, Gomez-Perez L, Richardson DJ, Butt JN et al. Mechanisms of bacterial extracellular electron exchange. Adv Microb Physiol 2016; 68:87–138 [View Article] [PubMed]
    [Google Scholar]
  6. Hilbi H, Buchrieser C. Microbe profile: Legionella pneumophila - a copycat eukaryote. Microbiology 2022; 168: [View Article] [PubMed]
    [Google Scholar]
  7. Nasher F, Wren BW. Transient internalization of Campylobacter jejuni in Amoebae enhances subsequent invasion of human cells. Microbiology 2022; 168: [View Article] [PubMed]
    [Google Scholar]
  8. Vieira A, Seddon AM, Karlyshev AV. Campylobacter-Acanthamoeba interactions. Microbiology 2015; 161:933–947 [View Article] [PubMed]
    [Google Scholar]
  9. Murphy C, Carroll C, Jordan KN. Induction of an adaptive tolerance response in the foodborne pathogen, Campylobacter jejuni. FEMS Microbiol Lett 2003; 223:89–93 [View Article] [PubMed]
    [Google Scholar]
  10. Sabnis A, Hagart KL, Klöckner A, Becce M, Evans LE et al. Colistin kills bacteria by targeting lipopolysaccharide in the cytoplasmic membrane. Elife 2021; 10:e65836 [View Article] [PubMed]
    [Google Scholar]
  11. Humphrey M, Larrouy-Maumus GJ, Furniss RCD, Mavridou DAI, Sabnis A et al. Colistin resistance in Escherichia coli confers protection of the cytoplasmic but not outer membrane from the polymyxin antibiotic. Microbiology 2021; 167: [View Article] [PubMed]
    [Google Scholar]
  12. Ledger EVK, Sabnis A, Edwards AM. Polymyxin and lipopeptide antibiotics: membrane-targeting drugs of last resort. Microbiology 2022; 168: [View Article] [PubMed]
    [Google Scholar]
  13. Pearson CR, Tindall SN, Herman R, Jenkins HT, Bateman A et al. Acetylation of surface carbohydrates in bacterial pathogens requires coordinated action of a two-domain membrane-bound acyltransferase. mBio 2020; 11:1–19 [View Article] [PubMed]
    [Google Scholar]
  14. Pearson C, Tindall S, Potts JR, Thomas GH, van der Woude MW. Diverse functions for acyltransferase-3 proteins in the modification of bacterial cell surfaces. Microbiology 2022; 168: [View Article] [PubMed]
    [Google Scholar]
  15. Atkin KE, MacDonald SJ, Brentnall AS, Potts JR, Thomas GH. A different path: revealing the function of staphylococcal proteins in biofilm formation. FEBS Lett 2014; 588:1869–1872 [View Article] [PubMed]
    [Google Scholar]
  16. Beste DJV. New perspectives on an ancient pathogen: thoughts for World Tuberculosis Day 2022. Microbiology 2022; 168:2019–2021 [View Article] [PubMed]
    [Google Scholar]
  17. Wingfield T, Karmadwala F, MacPherson P, Millington KA, Walker NF et al. Challenges and opportunities to end tuberculosis in the COVID-19 era. Lancet Respir Med 2021; 9:556–558 [View Article] [PubMed]
    [Google Scholar]
  18. Garcia BA, McDaniel MS, Loughran AJ, Johns JD, Narayanaswamy V et al. Poly (acetyl, arginyl) glucosamine disrupts Pseudomonas aeruginosa biofilms and enhances bacterial clearance in a rat lung infection model. Microbiology 2022; 168: [View Article] [PubMed]
    [Google Scholar]
  19. Fernandez-Petty CM, Hughes GW, Bowers HL, Watson JD, Rosen BH et al. A glycopolymer improves vascoelasticity and mucociliary transport of abnormal cystic fibrosis mucus. JCI Insight 2019; 4:125954 [View Article] [PubMed]
    [Google Scholar]
  20. Margalit A, Sheehan D, Carolan JC, Kavanagh K. Exposure to the Pseudomonas aeruginosa secretome alters the proteome and secondary metabolite production of Aspergillus fumigatus. Microbiology 2022; 168:1–14 [View Article] [PubMed]
    [Google Scholar]
  21. Traynor AM, Owens RA, Coughlin CM, Holton MC, Jones GW et al. At the metal-metabolite interface in Aspergillus fumigatus: towards untangling the intersecting roles of zinc and gliotoxin. Microbiology 2021; 167: [View Article] [PubMed]
    [Google Scholar]
  22. Kammel M, Trebbin O, Pinske C, Sawers RG. A single amino acid exchange converts FocA into A unidirectional efflux channel for formate. Microbiology 2022; 168: [View Article] [PubMed]
    [Google Scholar]
  23. Wang Y, Huang Y, Wang J, Cheng C, Huang W et al. Structure of the formate transporter FocA reveals a pentameric aquaporin-like channel. Nature 2009; 462:467–472 [View Article] [PubMed]
    [Google Scholar]
  24. Kammel M, Hunger D, Sawers RG. The soluble cytoplasmic N-terminal domain of the FocA channel gates bidirectional formate translocation. Mol Microbiol 2021; 115:758–773 [View Article] [PubMed]
    [Google Scholar]
  25. Kammel M, Sawers RG. The FocA channel functions to maintain intracellular formate homeostasis during Escherichia coli fermentation. Microbiology 2022; 168:1–6 [View Article] [PubMed]
    [Google Scholar]
  26. Sargent F, Sawers RG. A paean to the ineffable marjory Stephenson. Microbiology 2022; 168:1–8 [View Article] [PubMed]
    [Google Scholar]
  27. Lloyd JR, Thomas GH, Finlay JA, Cole JA, Macaskie LE. Microbial reduction of technetium by Escherichia coli and Desulfovibrio desulfuricans: enhancement via the use of high-activity strains and effect of process parameters. Biotechnol Bioeng 1999; 66:122–130 [View Article]
    [Google Scholar]
  28. Stephenson M, Stickland LH. Hydrogenlyases: bacterial enzymes liberating molecular hydrogen. Biochem J 1932; 26:712–724 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001205
Loading

Most cited Most Cited RSS feed