1887

Abstract

Protein trafficking across the bacterial envelope is a process that contributes to the organisation and integrity of the cell. It is the foundation for establishing contact and exchange between the environment and the cytosol. It helps cells to communicate with one another, whether they establish symbiotic or competitive behaviours. It is instrumental for pathogenesis and for bacteria to subvert the host immune response. Understanding the formation of envelope conduits and the manifold strategies employed for moving macromolecules across these channels is a fascinating playground. The diversity of the nanomachines involved in this process logically resulted in an attempt to classify them, which is where the protein secretion system types emerged. As our knowledge grew, so did the number of types, and their rightful nomenclature started to be questioned. While this may seem a semantic or philosophical issue, it also reflects scientific rigour when it comes to assimilating findings into textbooks and science history. Here I give an overview on bacterial protein secretion systems, their history, their nomenclature and why it can be misleading for newcomers in the field. Note that I do not try to suggest a new nomenclature. Instead, I explore the reasons why naming could have escaped our control and I try to reiterate basic concepts that underlie protein trafficking cross membranes.

Funding
This study was supported by the:
  • Medical Research Council (Award MR/S02316X/1)
    • Principle Award Recipient: AlainAM FILLOUX
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001193
2022-05-10
2022-05-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/168/5/mic001193.html?itemId=/content/journal/micro/10.1099/mic.0.001193&mimeType=html&fmt=ahah

References

  1. Filloux A, Whitfield C. Editorial: The many wonders of the bacterial cell surface. FEMS Microbiol Rev 2016; 40:161–163 [View Article] [PubMed]
    [Google Scholar]
  2. Gohlke U, Pullan L, McDevitt CA, Porcelli I, de Leeuw E et al. The TatA component of the twin-arginine protein transport system forms channel complexes of variable diameter. Proc Natl Acad Sci U S A 2005; 102:10482–10486 [View Article] [PubMed]
    [Google Scholar]
  3. Koch S, Seinen AB, Kamel M, Kuckla D, Monzel C et al. Single-molecule analysis of dynamics and interactions of the SecYEG translocon. FEBS J 2021; 288:2203–2221 [View Article] [PubMed]
    [Google Scholar]
  4. Guan L, Kaback HR. Lessons from lactose permease. Annu Rev Biophys Biomol Struct 2006; 35:67–91 [View Article] [PubMed]
    [Google Scholar]
  5. Beveridge TJ. Use of the gram stain in microbiology. Biotech Histochem 2001; 76:111–118 [PubMed]
    [Google Scholar]
  6. Silhavy TJ, Kahne D, Walker S. The bacterial cell envelope. Cold Spring Harb Perspect Biol 2010; 2:a000414 [View Article] [PubMed]
    [Google Scholar]
  7. Bos MP, Robert V, Tommassen J. Biogenesis of the gram-negative bacterial outer membrane. Annu Rev Microbiol 2007; 61:191–214 [View Article] [PubMed]
    [Google Scholar]
  8. Death A, Notley L, Ferenci T. Derepression of LamB protein facilitates outer membrane permeation of carbohydrates into Escherichia coli under conditions of nutrient stress. J Bacteriol 1993; 175:1475–1483 [View Article] [PubMed]
    [Google Scholar]
  9. Veenendaal AKJ, van der Does C, Driessen AJM. The protein-conducting channel SecYEG. Biochim Biophys Acta 2004; 1694:81–95 [View Article] [PubMed]
    [Google Scholar]
  10. Chen Y, Shanmugam SK, Dalbey RE. The principles of protein targeting and transport across cell membranes. Protein J 2019; 38:236–248 [View Article] [PubMed]
    [Google Scholar]
  11. Sala A, Bordes P, Genevaux P. Multitasking SecB chaperones in bacteria. Front Microbiol 2014; 5:666 [View Article] [PubMed]
    [Google Scholar]
  12. Palmer T, Berks BC. The twin-arginine translocation (Tat) protein export pathway. Nat Rev Microbiol 2012; 10:483–496 [View Article] [PubMed]
    [Google Scholar]
  13. Desvaux M, Hébraud M, Talon R, Henderson IR. Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue. Trends Microbiol 2009; 17:139–145 [View Article] [PubMed]
    [Google Scholar]
  14. Mackman N, Holland IB. Secretion of a 107 K dalton polypeptide into the medium from a haemolytic E. coli K12 strain. Mol Gen Genet 1984; 193:312–315 [View Article] [PubMed]
    [Google Scholar]
  15. Pohlner J, Halter R, Beyreuther K, Meyer TF. Gene structure and extracellular secretion of Neisseria gonorrhoeae IgA protease. Nature 1987; 325:458–462 [View Article] [PubMed]
    [Google Scholar]
  16. d’Enfert C, Chapon C, Pugsley AP. Export and secretion of the lipoprotein pullulanase by Klebsiella pneumoniae. Mol Microbiol 1987; 1:107–116 [View Article] [PubMed]
    [Google Scholar]
  17. Michiels T, Wattiau P, Brasseur R, Ruysschaert JM, Cornelis G. Secretion of Yop proteins by Yersiniae. Infect Immun 1990; 58:2840–2849 [View Article] [PubMed]
    [Google Scholar]
  18. Filloux A, Bally M, Murgier M, Wretlind B, Lazdunski A. Cloning of xcp genes located at the 55 min region of the chromosome and involved in protein secretion in Pseudomonas aeruginosa. Mol Microbiol 1989; 3:261–265 [View Article] [PubMed]
    [Google Scholar]
  19. Goebel W, Hedgpeth J. Cloning and functional characterization of the plasmid-encoded hemolysin determinant of Escherichia coli. J Bacteriol 1982; 151:1290–1298 [View Article] [PubMed]
    [Google Scholar]
  20. d’Enfert C, Reyss I, Wandersman C, Pugsley AP. Protein secretion by gram-negative bacteria. Characterization of two membrane proteins required for pullulanase secretion by Escherichia coli K-12. J Biol Chem 1989; 264:17462–17468 [View Article] [PubMed]
    [Google Scholar]
  21. Pugsley AP. The complete general secretory pathway in gram-negative bacteria. Microbiol Rev 1993; 57:50–108 [View Article] [PubMed]
    [Google Scholar]
  22. Pugsley AP, Reyss I. Five genes at the 3’ end of the Klebsiella pneumoniae pulC operon are required for pullulanase secretion. Mol Microbiol 1990; 4:365–379 [View Article] [PubMed]
    [Google Scholar]
  23. Filloux A, Bally M, Ball G, Akrim M, Tommassen J et al. Protein secretion in gram-negative bacteria: transport across the outer membrane involves common mechanisms in different bacteria. EMBO J 1990; 9:4323–4329 [View Article] [PubMed]
    [Google Scholar]
  24. Lazdunski A, Guzzo J, Filloux A, Bally M, Murgier M. Secretion of extracellular proteins by Pseudomonas aeruginosa. Biochimie 1990; 72:147–156 [View Article] [PubMed]
    [Google Scholar]
  25. Filloux A, Voulhoux R. Multiple structures disclose the secretins’ secrets. J Bacteriol 2018; 200:e00702-17 [View Article] [PubMed]
    [Google Scholar]
  26. Guzzo J, Murgier M, Filloux A, Lazdunski A. Cloning of the Pseudomonas aeruginosa alkaline protease gene and secretion of the protease into the medium by Escherichia coli. J Bacteriol 1990; 172:942–948 [View Article] [PubMed]
    [Google Scholar]
  27. Filloux A. Protein secretion systems in Pseudomonas aeruginosa: an essay on diversity, evolution, and function. Front Microbiol 2011; 2:155 [View Article] [PubMed]
    [Google Scholar]
  28. Duong F, Lazdunski A, Cami B, Murgier M. Sequence of a cluster of genes controlling synthesis and secretion of alkaline protease in Pseudomonas aeruginosa: relationships to other secretory pathways. Gene 1992; 121:47–54 [View Article] [PubMed]
    [Google Scholar]
  29. Létoffé S, Redeker V, Wandersman C. Isolation and characterization of an extracellular haem-binding protein from Pseudomonas aeruginosa that shares function and sequence similarities with the Serratia marcescens HasA haemophore. Mol Microbiol 1998; 28:1223–1234 [View Article] [PubMed]
    [Google Scholar]
  30. Filloux A. Secretion signal and protein targeting in bacteria: a biological puzzle. J Bacteriol 2010; 192:3847–3849 [View Article] [PubMed]
    [Google Scholar]
  31. Koronakis V, Hughes C, Koronakis E. Energetically distinct early and late stages of HlyB/HlyD-dependent secretion across both Escherichia coli membranes. EMBO J 1991; 10:3263–3272 [View Article] [PubMed]
    [Google Scholar]
  32. Thanabalu T, Koronakis E, Hughes C, Koronakis V. Substrate-induced assembly of a contiguous channel for protein export from E.coli: reversible bridging of an inner-membrane translocase to an outer membrane exit pore. EMBO J 1998; 17:6487–6496 [View Article] [PubMed]
    [Google Scholar]
  33. Koronakis V, Sharff A, Koronakis E, Luisi B, Hughes C. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 2000; 405:914–919 [View Article] [PubMed]
    [Google Scholar]
  34. Filloux A, Michel G, Bally M. GSP-dependent protein secretion in gram-negative bacteria: the Xcp system of Pseudomonas aeruginosa. FEMS Microbiol Rev 1998; 22:177–198 [View Article] [PubMed]
    [Google Scholar]
  35. Michel G, Bleves S, Ball G, Lazdunski A, Filloux A. Mutual stabilization of the XcpZ and XcpY components of the secretory apparatus in Pseudomonas aeruginosa. Microbiology (Reading) 1998; 144 (Pt 12):3379–3386 [View Article] [PubMed]
    [Google Scholar]
  36. Arts J, de Groot A, Ball G, Durand E, Khattabi ME et al. Interaction domains in the Pseudomonas aeruginosa type II secretory apparatus component XcpS (GspF). Microbiology (Reading) 2007; 153:1582–1592 [View Article] [PubMed]
    [Google Scholar]
  37. Ball G, Chapon-Hervé V, Bleves S, Michel G, Bally M. Assembly of XcpR in the cytoplasmic membrane is required for extracellular protein secretion in Pseudomonas aeruginosa. J Bacteriol 1999; 181:382–388 [View Article] [PubMed]
    [Google Scholar]
  38. Durand E, Bernadac A, Ball G, Lazdunski A, Sturgis JN et al. Type II protein secretion in Pseudomonas aeruginosa: the pseudopilus is a multifibrillar and adhesive structure. J Bacteriol 2003; 185:2749–2758 [View Article] [PubMed]
    [Google Scholar]
  39. Alphonse S, Durand E, Douzi B, Waegele B, Darbon H et al. Structure of the Pseudomonas aeruginosa XcpT pseudopilin, a major component of the type II secretion system. J Struct Biol 2010; 169:75–80 [View Article] [PubMed]
    [Google Scholar]
  40. Douzi B, Durand E, Bernard C, Alphonse S, Cambillau C et al. The XcpV/GspI pseudopilin has a central role in the assembly of a quaternary complex within the T2SS pseudopilus. J Biol Chem 2009; 284:34580–34589 [View Article] [PubMed]
    [Google Scholar]
  41. Durand E, Michel G, Voulhoux R, Kürner J, Bernadac A et al. XcpX controls biogenesis of the Pseudomonas aeruginosa XcpT-containing pseudopilus. J Biol Chem 2005; 280:31378–31389 [View Article] [PubMed]
    [Google Scholar]
  42. Arts J, van Boxtel R, Filloux A, Tommassen J, Koster M. Export of the pseudopilin XcpT of the Pseudomonas aeruginosa type II secretion system via the signal recognition particle-Sec pathway. J Bacteriol 2007; 189:2069–2076 [View Article] [PubMed]
    [Google Scholar]
  43. Bally M, Filloux A, Akrim M, Ball G, Lazdunski A et al. Protein secretion in Pseudomonas aeruginosa: characterization of seven xcp genes and processing of secretory apparatus components by prepilin peptidase. Mol Microbiol 1992; 6:1121–1131 [View Article] [PubMed]
    [Google Scholar]
  44. Bleves S, Gérard-Vincent M, Lazdunski A, Filloux A. Structure-function analysis of XcpP, a component involved in general secretory pathway-dependent protein secretion in Pseudomonas aeruginosa. J Bacteriol 1999; 181:4012–4019 [View Article] [PubMed]
    [Google Scholar]
  45. Gérard-Vincent M, Robert V, Ball G, Bleves S, Michel GPF et al. Identification of XcpP domains that confer functionality and specificity to the Pseudomonas aeruginosa type II secretion apparatus. Mol Microbiol 2002; 44:1651–1665 [View Article] [PubMed]
    [Google Scholar]
  46. Hay ID, Belousoff MJ, Dunstan RA, Bamert RS, Lithgow T. Structure and membrane topography of the vibrio-type secretin complex from the type 2 secretion system of enteropathogenic Escherichia coli. J Bacteriol 2018; 200:e00521-17 [View Article] [PubMed]
    [Google Scholar]
  47. Douzi B, Ball G, Cambillau C, Tegoni M, Voulhoux R. Deciphering the Xcp Pseudomonas aeruginosa type II secretion machinery through multiple interactions with substrates. J Biol Chem 2011; 286:40792–40801 [View Article] [PubMed]
    [Google Scholar]
  48. de Groot A, Filloux A, Tommassen J. Conservation of xcp genes, involved in the two-step protein secretion process, in different Pseudomonas species and other gram-negative bacteria. Mol Gen Genet 1991; 229:278–284 [View Article] [PubMed]
    [Google Scholar]
  49. Sory MP, Cornelis GR. Translocation of a hybrid YopE-adenylate cyclase from Yersinia enterocolitica into HeLa cells. Mol Microbiol 1994; 14:583–594 [View Article] [PubMed]
    [Google Scholar]
  50. Cornelis GR. The Yersinia Ysc-Yop virulence apparatus. Int J Med Microbiol 2002; 291:455–462 [View Article] [PubMed]
    [Google Scholar]
  51. Kubori T, Matsushima Y, Nakamura D, Uralil J, Lara-Tejero M et al. Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 1998; 280:602–605 [View Article] [PubMed]
    [Google Scholar]
  52. Schraidt O, Marlovits TC. Three-dimensional model of Salmonella’s needle complex at subnanometer resolution. Science 2011; 331:1192–1195 [View Article] [PubMed]
    [Google Scholar]
  53. Diepold A, Wagner S. Assembly of the bacterial type III secretion machinery. FEMS Microbiol Rev 2014; 38:802–822 [View Article] [PubMed]
    [Google Scholar]
  54. Diepold A, Armitage JP. Type III secretion systems: the bacterial flagellum and the injectisome. Philos Trans R Soc Lond B Biol Sci 2015; 370:20150020 [View Article] [PubMed]
    [Google Scholar]
  55. Burkinshaw BJ, Strynadka NCJ. Assembly and structure of the T3SS. Biochim Biophys Acta 2014; 1843:1649–1663 [View Article] [PubMed]
    [Google Scholar]
  56. Lee PC, Rietsch A. Fueling type III secretion. Trends Microbiol 2015; 23:296–300 [View Article] [PubMed]
    [Google Scholar]
  57. Worrall LJ, Hong C, Vuckovic M, Deng W, Bergeron JRC et al. Near-atomic-resolution cryo-EM analysis of the Salmonella T3S injectisome basal body. Nature 2016; 540:597–601 [View Article] [PubMed]
    [Google Scholar]
  58. Matteï P-J, Faudry E, Job V, Izoré T, Attree I et al. Membrane targeting and pore formation by the type III secretion system translocon. FEBS J 2011; 278:414–426 [View Article] [PubMed]
    [Google Scholar]
  59. Dortet L, Lombardi C, Cretin F, Dessen A, Filloux A. Pore-forming activity of the Pseudomonas aeruginosa type III secretion system translocon alters the host epigenome. Nat Microbiol 2018; 3:378–386 [View Article] [PubMed]
    [Google Scholar]
  60. Journet L, Agrain C, Broz P, Cornelis GR. The needle length of bacterial injectisomes is determined by a molecular ruler. Science 2003; 302:1757–1760 [View Article] [PubMed]
    [Google Scholar]
  61. Wilharm G, Dittmann S, Schmid A, Heesemann J. On the role of specific chaperones, the specific ATPase, and the proton motive force in type III secretion. Int J Med Microbiol 2007; 297:27–36 [View Article] [PubMed]
    [Google Scholar]
  62. Ayers M, Howell PL, Burrows LL. Architecture of the type II secretion and type IV pilus machineries. Future Microbiol 2010; 5:1203–1218 [View Article] [PubMed]
    [Google Scholar]
  63. Nunn DN, Lory S. Components of the protein-excretion apparatus of Pseudomonas aeruginosa are processed by the type IV prepilin peptidase. Proc Natl Acad Sci U S A 1992; 89:47–51 [View Article] [PubMed]
    [Google Scholar]
  64. Nunn D, Bergman S, Lory S. Products of three accessory genes, pilB, pilC, and pilD, are required for biogenesis of Pseudomonas aeruginosa pili. J Bacteriol 1990; 172:2911–2919 [View Article] [PubMed]
    [Google Scholar]
  65. Andersen C. Channel-tunnels: outer membrane components of type I secretion systems and multidrug efflux pumps of Gram-negative bacteria. Rev Physiol Biochem Pharmacol 2003; 147:122–165 [View Article] [PubMed]
    [Google Scholar]
  66. van Ulsen P, Zinner KM, Jong WSP, Luirink J. On display: autotransporter secretion and application. FEMS Microbiol Lett 2018; 365:365 [View Article] [PubMed]
    [Google Scholar]
  67. Hagan CL, Silhavy TJ, Kahne D. β-Barrel membrane protein assembly by the Bam complex. Annu Rev Biochem 2011; 80:189–210 [View Article] [PubMed]
    [Google Scholar]
  68. Guérin J, Bigot S, Schneider R, Buchanan SK, Jacob-Dubuisson F. Two-partner secretion: combining efficiency and simplicity in the secretion of large proteins for bacteria-host and bacteria-bacteria interactions. Front Cell Infect Microbiol 2017; 7:148 [View Article] [PubMed]
    [Google Scholar]
  69. Clantin B, Delattre A-S, Rucktooa P, Saint N, Méli AC et al. Structure of the membrane protein FhaC: a member of the Omp85-TpsB transporter superfamily. Science 2007; 317:957–961 [View Article] [PubMed]
    [Google Scholar]
  70. Beddoe T, Paton AW, Le Nours J, Rossjohn J, Paton JC. Structure, biological functions and applications of the AB5 toxins. Trends Biochem Sci 2010; 35:411–418 [View Article] [PubMed]
    [Google Scholar]
  71. Locht C, Coutte L, Mielcarek N. The ins and outs of pertussis toxin. FEBS J 2011; 278:4668–4682 [View Article] [PubMed]
    [Google Scholar]
  72. Johnson FD, Burns DL. Detection and subcellular localization of three Ptl proteins involved in the secretion of pertussis toxin from Bordetella pertussis. J Bacteriol 1994; 176:5350–5356 [View Article] [PubMed]
    [Google Scholar]
  73. Kuldau GA, De Vos G, Owen J, McCaffrey G, Zambryski P. The virB operon of Agrobacterium tumefaciens pTiC58 encodes 11 open reading frames. Mol Gen Genet 1990; 221:256–266 [View Article] [PubMed]
    [Google Scholar]
  74. Low HH, Gubellini F, Rivera-Calzada A, Braun N, Connery S et al. Structure of a type IV secretion system. Nature 2014; 508:550–553 [View Article] [PubMed]
    [Google Scholar]
  75. Chandran V, Fronzes R, Duquerroy S, Cronin N, Navaza J et al. Structure of the outer membrane complex of a type IV secretion system. Nature 2009; 462:1011–1015 [View Article] [PubMed]
    [Google Scholar]
  76. Walther DM, Rapaport D, Tommassen J. Biogenesis of beta-barrel membrane proteins in bacteria and eukaryotes: evolutionary conservation and divergence. Cell Mol Life Sci 2009; 66:2789–2804 [View Article] [PubMed]
    [Google Scholar]
  77. Sagulenko E, Sagulenko V, Chen J, Christie PJ. Role of Agrobacterium VirB11 ATPase in T-pilus assembly and substrate selection. J Bacteriol 2001; 183:5813–5825 [View Article] [PubMed]
    [Google Scholar]
  78. Mary C, Fouillen A, Bessette B, Nanci A, Baron C. Interaction via the N terminus of the type IV secretion system (T4SS) protein VirB6 with VirB10 is required for VirB2 and VirB5 incorporation into T-pili and for T4SS function. J Biol Chem 2018; 293:13415–13426 [View Article] [PubMed]
    [Google Scholar]
  79. Li YG, Christie PJ. The agrobacterium VirB/VirD4 T4SS: mechanism and architecture defined through in vivo mutagenesis and chimeric systems. Curr Top Microbiol Immunol 2018; 418:233–260 [View Article] [PubMed]
    [Google Scholar]
  80. Wang Y, Zhang S, Huang F, Zhou X, Chen Z et al. VirD5 is required for efficient Agrobacterium infection and interacts with Arabidopsis VIP2. New Phytol 2018; 217:726–738 [View Article] [PubMed]
    [Google Scholar]
  81. Cover TL, Lacy DB, Ohi MD. The Helicobacter pylori Cag Type IV Secretion System. Trends Microbiol 2020; 28:682–695 [View Article] [PubMed]
    [Google Scholar]
  82. Schroeder GN. The toolbox for uncovering the functions of Legionella Dot/Icm Type IVb secretion system effectors: current state and future directions. Front Cell Infect Microbiol 2017; 7:528 [View Article] [PubMed]
    [Google Scholar]
  83. Vergunst AC, van Lier MCM, den Dulk-Ras A, Stüve TAG, Ouwehand A et al. Positive charge is an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium. Proc Natl Acad Sci U S A 2005; 102:832–837 [View Article] [PubMed]
    [Google Scholar]
  84. Llosa M, Alkorta I. Coupling proteins in type IV secretion. Curr Top Microbiol Immunol 2017; 413:143–168 [View Article] [PubMed]
    [Google Scholar]
  85. Grohmann E, Christie PJ, Waksman G, Backert S. Type IV secretion in Gram-negative and Gram-positive bacteria. Mol Microbiol 2018; 107:455–471 [View Article] [PubMed]
    [Google Scholar]
  86. Planet PJ, Kachlany SC, DeSalle R, Figurski DH. Phylogeny of genes for secretion NTPases: identification of the widespread tadA subfamily and development of a diagnostic key for gene classification. Proc Natl Acad Sci U S A 2001; 98:2503–2508 [View Article] [PubMed]
    [Google Scholar]
  87. Bladergroen MR, Badelt K, Spaink HP. Infection-blocking genes of a symbiotic Rhizobium leguminosarum strain that are involved in temperature-dependent protein secretion. Mol Plant Microbe Interact 2003; 16:53–64 [View Article] [PubMed]
    [Google Scholar]
  88. Mougous JD, Cuff ME, Raunser S, Shen A, Zhou M et al. A virulence locus of Pseudomonas aeruginosa encodes A protein secretion apparatus. Science 2006; 312:1526–1530 [View Article] [PubMed]
    [Google Scholar]
  89. Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D et al. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci U S A 2006; 103:1528–1533 [View Article] [PubMed]
    [Google Scholar]
  90. Leiman PG, Basler M, Ramagopal UA, Bonanno JB, Sauder JM et al. Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci U S A 2009; 106:4154–4159 [View Article] [PubMed]
    [Google Scholar]
  91. Pukatzki S, Ma AT, Revel AT, Sturtevant D, Mekalanos JJ. Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci U S A 2007; 104:15508–15513 [View Article] [PubMed]
    [Google Scholar]
  92. Rapisarda C, Cherrak Y, Kooger R, Schmidt V, Pellarin R et al. In situ and high-resolution cryo-EM structure of a bacterial type VI secretion system membrane complex. EMBO J 2019; 38:e100886 [View Article] [PubMed]
    [Google Scholar]
  93. Bernal P, Furniss RCD, Fecht S, Leung RCY, Spiga L et al. A novel stabilization mechanism for the type VI secretion system sheath. Proc Natl Acad Sci U S A 2021; 118:e2008500118 [View Article] [PubMed]
    [Google Scholar]
  94. Cherrak Y, Rapisarda C, Pellarin R, Bouvier G, Bardiaux B et al. Biogenesis and structure of a type VI secretion baseplate. Nat Microbiol 2018; 3:1404–1416 [View Article] [PubMed]
    [Google Scholar]
  95. Dix SR, Owen HJ, Sun R, Ahmad A, Shastri S et al. Structural insights into the function of type VI secretion system TssA subunits. Nat Commun 2018; 9:4765 [View Article] [PubMed]
    [Google Scholar]
  96. Santin YG, Doan T, Lebrun R, Espinosa L, Journet L et al. In vivo TssA proximity labelling during type VI secretion biogenesis reveals TagA as a protein that stops and holds the sheath. Nat Microbiol 2018; 3:1304–1313 [View Article] [PubMed]
    [Google Scholar]
  97. Nazarov S, Schneider JP, Brackmann M, Goldie KN, Stahlberg H et al. Cryo-EM reconstruction of Type VI secretion system baseplate and sheath distal end. EMBO J 2018; 37:e97103 [View Article]
    [Google Scholar]
  98. Salih O, He S, Planamente S, Stach L, MacDonald JT et al. Atomic Structure of Type VI Contractile Sheath from Pseudomonas aeruginosa. Structure 2018; 26:329–336 [View Article] [PubMed]
    [Google Scholar]
  99. Shneider MM, Buth SA, Ho BT, Basler M, Mekalanos JJ et al. PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature 2013; 500:350–353 [View Article]
    [Google Scholar]
  100. Schneider JP, Nazarov S, Adaixo R, Liuzzo M, Ringel PD et al. Diverse roles of TssA‐like proteins in the assembly of bacterial type VI secretion systems. EMBO J 2019; 38:e100825 [View Article] [PubMed]
    [Google Scholar]
  101. Taylor NMI, Prokhorov NS, Guerrero-Ferreira RC, Shneider MM, Browning C et al. Structure of the T4 baseplate and its function in triggering sheath contraction. Nature 2016; 533:346–352 [View Article] [PubMed]
    [Google Scholar]
  102. Durand E, Nguyen VS, Zoued A, Logger L, Péhau-Arnaudet G et al. Biogenesis and structure of a type VI secretion membrane core complex. Nature 2015; 523:555–560 [View Article] [PubMed]
    [Google Scholar]
  103. Ahmad S, Tsang KK, Sachar K, Quentin D, Tashin TM et al. Structural basis for effector transmembrane domain recognition by type VI secretion system chaperones. Elife 2020; 9:e62816 [View Article]
    [Google Scholar]
  104. Cianfanelli FR, Alcoforado Diniz J, Guo M, De Cesare V, Trost M et al. VgrG and PAAR Proteins Define Distinct Versions of a Functional Type VI Secretion System. PLoS Pathog 2016; 12:e1005735 [View Article] [PubMed]
    [Google Scholar]
  105. Hachani A, Allsopp LP, Oduko Y, Filloux A. The VgrG proteins are “à la carte” delivery systems for bacterial type VI effectors. J Biol Chem 2014; 289:17872–17884 [View Article] [PubMed]
    [Google Scholar]
  106. Whitney JC, Beck CM, Goo YA, Russell AB, Harding BN et al. Genetically distinct pathways guide effector export through the type VI secretion system. Mol Microbiol 2014; 92:529–542 [View Article] [PubMed]
    [Google Scholar]
  107. Howard SA, Furniss RCD, Bonini D, Amin H, Paracuellos P et al. The Breadth and Molecular Basis of Hcp-Driven Type VI Secretion System Effector Delivery. mBio 2021; 12:e0026221 [View Article] [PubMed]
    [Google Scholar]
  108. Silverman JM, Agnello DM, Zheng H, Andrews BT, Li M et al. Haemolysin coregulated protein is an exported receptor and chaperone of type VI secretion substrates. Mol Cell 2013; 51:584–593 [View Article] [PubMed]
    [Google Scholar]
  109. Russell AB, Hood RD, Bui NK, LeRoux M, Vollmer W et al. Type VI secretion delivers bacteriolytic effectors to target cells. Nature 2011; 475:343–347 [View Article] [PubMed]
    [Google Scholar]
  110. Cianfanelli FR, Monlezun L, Coulthurst SJ. Aim, Load, Fire: The Type VI Secretion System, a Bacterial Nanoweapon. Trends Microbiol 2016; 24:51–62 [View Article] [PubMed]
    [Google Scholar]
  111. Russell AB, Peterson SB, Mougous JD. Type VI secretion system effectors: poisons with a purpose. Nat Rev Microbiol 2014; 12:137–148 [View Article] [PubMed]
    [Google Scholar]
  112. Aoki SK, Pamma R, Hernday AD, Bickham JE, Braaten BA et al. Contact-dependent inhibition of growth in Escherichia coli. Science 2005; 309:1245–1248 [View Article] [PubMed]
    [Google Scholar]
  113. Willett JLE, Ruhe ZC, Goulding CW, Low DA, Hayes CS. Contact-Dependent Growth Inhibition (CDI) and CdiB/CdiA Two-Partner Secretion Proteins. J Mol Biol 2015; 427:3754–3765 [View Article] [PubMed]
    [Google Scholar]
  114. Aoki SK, Malinverni JC, Jacoby K, Thomas B, Pamma R et al. Contact-dependent growth inhibition requires the essential outer membrane protein BamA (YaeT) as the receptor and the inner membrane transport protein AcrB. Mol Microbiol 2008; 70:323–340 [View Article] [PubMed]
    [Google Scholar]
  115. Gallegos-Monterrosa R, Coulthurst SJ. The ecological impact of a bacterial weapon: microbial interactions and the Type VI secretion system. FEMS Microbiol Rev 2021; 45:fuab033 [View Article] [PubMed]
    [Google Scholar]
  116. Trunk K, Peltier J, Liu YC, Dill BD, Walker L et al. The type VI secretion system deploys antifungal effectors against microbial competitors. Nat Microbiol 2018; 3:920–931 [View Article] [PubMed]
    [Google Scholar]
  117. Niederweis M. Mycobacterial porins--new channel proteins in unique outer membranes. Mol Microbiol 2003; 49:1167–1177 [View Article] [PubMed]
    [Google Scholar]
  118. Daffé M, Marrakchi H. Unraveling the structure of the mycobacterial envelope. Microbiol Spectr 2019; 7: [View Article] [PubMed]
    [Google Scholar]
  119. Niederweis M, Ehrt S, Heinz C, Klöcker U, Karosi S et al. Cloning of the mspA gene encoding a porin from Mycobacterium smegmatis. Mol Microbiol 1999; 33:933–945 [View Article] [PubMed]
    [Google Scholar]
  120. Harboe M, Oettinger T, Wiker HG, Rosenkrands I, Andersen P. Evidence for occurrence of the ESAT-6 protein in Mycobacterium tuberculosis and virulent Mycobacterium bovis and for its absence in Mycobacterium bovis BCG. Infect Immun 1996; 64:16–22 [View Article] [PubMed]
    [Google Scholar]
  121. Abdallah AM, Gey van Pittius NC, Champion PAD, Cox J, Luirink J et al. Type VII secretion--mycobacteria show the way. Nat Rev Microbiol 2007; 5:883–891 [View Article] [PubMed]
    [Google Scholar]
  122. Stanley SA, Raghavan S, Hwang WW, Cox JS. Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. Proc Natl Acad Sci U S A 2003; 100:13001–13006 [View Article] [PubMed]
    [Google Scholar]
  123. Unnikrishnan M, Constantinidou C, Palmer T, Pallen MJ. The Enigmatic Esx Proteins: Looking Beyond Mycobacteria. Trends Microbiol 2017; 25:192–204 [View Article] [PubMed]
    [Google Scholar]
  124. Beckham KSH, Ritter C, Chojnowski G, Ziemianowicz DS, Mullapudi E et al. Structure of the mycobacterial ESX-5 type VII secretion system pore complex. Sci Adv 2021; 7:eabg9923 [View Article] [PubMed]
    [Google Scholar]
  125. Famelis N, Rivera-Calzada A, Degliesposti G, Wingender M, Mietrach N et al. Architecture of the mycobacterial type VII secretion system. Nature 2019; 576:321–325 [View Article] [PubMed]
    [Google Scholar]
  126. Rivera-Calzada A, Famelis N, Llorca O, Geibel S. Type VII secretion systems: structure, functions and transport models. Nat Rev Microbiol 2021; 19:567–584 [View Article] [PubMed]
    [Google Scholar]
  127. Bunduc CM, Fahrenkamp D, Wald J, Ummels R, Bitter W et al. Structure and dynamics of a mycobacterial type VII secretion system. Nature 2021; 593:445–448 [View Article] [PubMed]
    [Google Scholar]
  128. Wang S, Zhou K, Yang X, Zhang B, Zhao Y et al. Structural insights into substrate recognition by the type VII secretion system. Protein Cell 2020; 11:124–137 [View Article] [PubMed]
    [Google Scholar]
  129. Crosskey TD, Beckham KSH, Wilmanns M. The ATPases of the mycobacterial type VII secretion system: Structural and mechanistic insights into secretion. Prog Biophys Mol Biol 2020; 152:25–34 [View Article] [PubMed]
    [Google Scholar]
  130. Bowman L, Palmer T. The type VII secretion system of Staphylococcus. Annu Rev Microbiol 2021; 75:471–494 [View Article]
    [Google Scholar]
  131. Burts ML, Williams WA, DeBord K, Missiakas DM. EsxA and EsxB are secreted by an ESAT-6-like system that is required for the pathogenesis of Staphylococcus aureus infections. Proc Natl Acad Sci U S A 2005; 102:1169–1174 [View Article] [PubMed]
    [Google Scholar]
  132. Voulhoux R, Ball G, Ize B, Vasil ML, Lazdunski A et al. Involvement of the twin-arginine translocation system in protein secretion via the type II pathway. EMBO J 2001; 20:6735–6741 [View Article] [PubMed]
    [Google Scholar]
  133. Nash ZM, Cotter PA. Bordetella Filamentous Hemagglutinin, a Model for the Two-Partner Secretion Pathway. Microbiol Spectr 2019; 7: [View Article] [PubMed]
    [Google Scholar]
  134. Filloux A. The underlying mechanisms of type II protein secretion. Biochim Biophys Acta 2004; 1694:163–179 [View Article] [PubMed]
    [Google Scholar]
  135. Terashima H, Imada K. Novel insight into an energy transduction mechanism of the bacterial flagellar type III protein export. Biophys Physicobiol 2018; 15:173–178 [View Article] [PubMed]
    [Google Scholar]
  136. Ruer S, Stender S, Filloux A, de Bentzmann S. Assembly of fimbrial structures in Pseudomonas aeruginosa: functionality and specificity of chaperone-usher machineries. J Bacteriol 2007; 189:3547–3555 [View Article]
    [Google Scholar]
  137. Waksman G, Hultgren SJ. Structural biology of the chaperone-usher pathway of pilus biogenesis. Nat Rev Microbiol 2009; 7:765–774 [View Article]
    [Google Scholar]
  138. Van Gerven N, Klein RD, Hultgren SJ, Remaut H. Bacterial amyloid formation: structural insights into curli biogensis. Trends Microbiol 2015; 23:693–706 [View Article]
    [Google Scholar]
  139. Goyal P, Krasteva PV, Van Gerven N, Gubellini F, Van den Broeck I et al. Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG. Nature 2014; 516:250–253 [View Article]
    [Google Scholar]
  140. Gorasia DG, Veith PD, Reynolds EC. The type IX secretion system: advances in structure, function and organisation. Microorganisms 2020; 8:1173 [View Article]
    [Google Scholar]
  141. Rhodes RG, Nelson SS, Pochiraju S, McBride MJ. Flavobacterium johnsoniae sprB is part of an operon spanning the additional gliding motility genes sprC, sprD, and sprF. J Bacteriol 2011; 193:599–610 [View Article] [PubMed]
    [Google Scholar]
  142. Hooda Y, Lai CC-L, Judd A, Buckwalter CM, Shin HE et al. Slam is an outer membrane protein that is required for the surface display of lipidated virulence factors in Neisseria. Nat Microbiol 2016; 1:16009 [View Article] [PubMed]
    [Google Scholar]
  143. Tokuda H, Matsuyama S-I. Sorting of lipoproteins to the outer membrane in E. coli. Biochim Biophys Acta 2004; 1693:5–13 [View Article] [PubMed]
    [Google Scholar]
  144. Hooda Y, Moraes TF. Translocation of lipoproteins to the surface of gram negative bacteria. Curr Opin Struct Biol 2018; 51:73–79 [View Article] [PubMed]
    [Google Scholar]
  145. Baud C, Guérin J, Petit E, Lesne E, Dupré E et al. Translocation path of a substrate protein through its Omp85 transporter. Nat Commun 2014; 5:5271 [View Article] [PubMed]
    [Google Scholar]
  146. Konovalova A, Kahne DE, Silhavy TJ. Outer membrane biogenesis. Annu Rev Microbiol 2017; 71:539–556 [View Article] [PubMed]
    [Google Scholar]
  147. Noinaj N, Gumbart JC, Buchanan SK. The β-barrel assembly machinery in motion. Nat Rev Microbiol 2017; 15:197–204 [View Article] [PubMed]
    [Google Scholar]
  148. Grossman AS, Mauer TJ, Forest KT, Goodrich-Blair H. A widespread bacterial secretion system with diverse substrates. mBio 2021; 12:e0195621 [View Article] [PubMed]
    [Google Scholar]
  149. Latham RD, Torrado M, Atto B, Walshe JL, Wilson R et al. A heme-binding protein produced by Haemophilus haemolyticus inhibits non-typeable Haemophilus influenzae. Mol Microbiol 2020; 113:381–398 [View Article] [PubMed]
    [Google Scholar]
  150. Pugsley AP, Chapon C, Schwartz M. Extracellular pullulanase of Klebsiella pneumoniae is a lipoprotein. J Bacteriol 1986; 166:1083–1088 [View Article] [PubMed]
    [Google Scholar]
  151. Ferrandez Y, Condemine G. Novel mechanism of outer membrane targeting of proteins in Gram-negative bacteria. Mol Microbiol 2008; 69:1349–1357 [View Article] [PubMed]
    [Google Scholar]
  152. Cascales E, Buchanan SK, Duché D, Kleanthous C, Lloubès R et al. Colicin biology. Microbiol Mol Biol Rev 2007; 71:158–229 [View Article] [PubMed]
    [Google Scholar]
  153. Snijder HJ, Ubarretxena-Belandia I, Blaauw M, Kalk KH, Verheij HM et al. Structural evidence for dimerization-regulated activation of an integral membrane phospholipase. Nature 1999; 401:717–721 [View Article] [PubMed]
    [Google Scholar]
  154. Hamilton JJ, Marlow VL, Owen RA, Costa M de AA, Guo M et al. A holin and an endopeptidase are essential for chitinolytic protein secretion in Serratia marcescens. J Cell Biol 2014; 207:615–626 [View Article] [PubMed]
    [Google Scholar]
  155. Owen RA, Fyfe PK, Lodge A, Biboy J, Vollmer W et al. Structure and activity of ChiX: a peptidoglycan hydrolase required for chitinase secretion by Serratia marcescens. Biochem J 2018; 475:415–428 [View Article] [PubMed]
    [Google Scholar]
  156. Hynen AL, Lazenby JJ, Savva GM, McCaughey LC, Turnbull L et al. Multiple holins contribute to extracellular DNA release in Pseudomonas aeruginosa biofilms. Microbiology (Reading) 2021; 167:167 [View Article]
    [Google Scholar]
  157. Ellis TN, Leiman SA, Kuehn MJ. Naturally produced outer membrane vesicles from Pseudomonas aeruginosa elicit a potent innate immune response via combined sensing of both lipopolysaccharide and protein components. Infect Immun 2010; 78:3822–3831 [View Article]
    [Google Scholar]
  158. Mashburn-Warren LM, Whiteley M. Special delivery: vesicle trafficking in prokaryotes. Mol Microbiol 2006; 61:839–846 [View Article]
    [Google Scholar]
  159. Guerrero-Mandujano A, Hernández-Cortez C, Ibarra JA, Castro-Escarpulli G. The outer membrane vesicles: Secretion system type zero. Traffic 2017; 18:425–432 [View Article]
    [Google Scholar]
  160. Lunar Silva I, Cascales E. Molecular strategies underlying Porphyromonas gingivalis virulence. J Mol Biol 2021; 433:166836 [View Article]
    [Google Scholar]
  161. Schertzer JW, Whiteley M. Bacterial outer membrane vesicles in trafficking, communication and the host-pathogen interaction. J Mol Microbiol Biotechnol 2013; 23:118–130 [View Article]
    [Google Scholar]
  162. Volgers C, Benedikter BJ, Grauls GE, Savelkoul PHM, Stassen FRM. Immunomodulatory role for membrane vesicles released by THP-1 macrophages and respiratory pathogens during macrophage infection. BMC Microbiol 2017; 17:216 [View Article]
    [Google Scholar]
  163. Bernadac A, Gavioli M, Lazzaroni JC, Raina S, Lloubès R. Escherichia coli tol-pal mutants form outer membrane vesicles. J Bacteriol 1998; 180:4872–4878 [View Article]
    [Google Scholar]
  164. Dubey GP, Ben-Yehuda S. Intercellular nanotubes mediate bacterial communication. Cell 2011; 144:590–600 [View Article]
    [Google Scholar]
  165. Bhattacharya S, Baidya AK, Pal RR, Mamou G, Gatt YE et al. A ubiquitous platform for bacterial nanotube biogenesis. Cell Rep 2019; 27:334–342 [View Article]
    [Google Scholar]
  166. Pospíšil J, Vítovská D, Kofroňová O, Muchová K, Šanderová H et al. Bacterial nanotubes as a manifestation of cell death. Nat Commun 2020; 11:4963 [View Article] [PubMed]
    [Google Scholar]
  167. Costa TRD, Harb L, Khara P, Zeng L, Hu B et al. Type IV secretion systems: Advances in structure, function, and activation. Mol Microbiol 2021; 115:436–452 [View Article] [PubMed]
    [Google Scholar]
  168. van Kregten M, Lindhout BI, Hooykaas PJJ, van der Zaal BJ. Agrobacterium-mediated T-DNA transfer and integration by minimal VirD2 consisting of the relaxase domain and a type IV secretion system translocation signal. Mol Plant Microbe Interact 2009; 22:1356–1365 [View Article] [PubMed]
    [Google Scholar]
  169. Krasteva PV, Bernal-Bayard J, Travier L, Martin FA, Kaminski PA et al. Insights into the structure and assembly of a bacterial cellulose secretion system. Nat Commun 2017; 8:2065 [View Article] [PubMed]
    [Google Scholar]
  170. Dautin N. Folding control in the path of Type 5 secretion. Toxins (Basel) 2021; 13:341 [View Article]
    [Google Scholar]
  171. Salacha R, Kovacić F, Brochier-Armanet C, Wilhelm S, Tommassen J et al. The Pseudomonas aeruginosa patatin-like protein PlpD is the archetype of a novel Type V secretion system. Environ Microbiol 2010; 12:1498–1512 [View Article] [PubMed]
    [Google Scholar]
  172. ur Rahman S, Arenas J, Öztürk H, Dekker N, van Ulsen P. The polypeptide transport-associated (POTRA) domains of TpsB transporters determine the system specificity of two-partner secretion systems. J Biol Chem 2014; 289:19799–19809 [View Article] [PubMed]
    [Google Scholar]
  173. Viarre V, Cascales E, Ball G, Michel GPF, Filloux A et al. HxcQ liposecretin is self-piloted to the outer membrane by its N-terminal lipid anchor. J Biol Chem 2009; 284:33815–33823 [View Article] [PubMed]
    [Google Scholar]
  174. Zheng W, Peña A, Ilangovan A, Clark JN-B, Frankel G et al. Cryoelectron-microscopy structure of the enteropathogenic Escherichia coli type III secretion system EspA filament. Proc Natl Acad Sci U S A 2021; 118:e2022826118 [View Article] [PubMed]
    [Google Scholar]
  175. Wandersman C, Delepelaire P. TolC, an Escherichia coli outer membrane protein required for hemolysin secretion. Proc Natl Acad Sci U S A 1990; 87:4776–4780 [View Article] [PubMed]
    [Google Scholar]
  176. Skvirsky RC, Reginald S, Shen X. Topology analysis of the colicin V export protein CvaA in Escherichia coli. J Bacteriol 1995; 177:6153–6159 [View Article] [PubMed]
    [Google Scholar]
  177. Filloux A, Hachani A, Bleves S. The bacterial type VI secretion machine: yet another player for protein transport across membranes. Microbiology (Reading) 2008; 154:1570–1583 [View Article] [PubMed]
    [Google Scholar]
  178. De Luca G, Barakat M, Ortet P, Fochesato S, Jourlin-Castelli C et al. The cyst-dividing bacterium Ramlibacter tataouinensis TTB310 genome reveals a well-stocked toolbox for adaptation to a desert environment. PLoS One 2011; 6:e23784 [View Article] [PubMed]
    [Google Scholar]
  179. An Y, Wang J, Li C, Revote J, Zhang Y et al. SecretEPDB: a comprehensive web-based resource for secreted effector proteins of the bacterial types III, IV and VI secretion systems. Sci Rep 2017; 7:41031 [View Article] [PubMed]
    [Google Scholar]
  180. Hachani A, Wood TE, Filloux A. Type VI secretion and anti-host effectors. Curr Opin Microbiol 2016; 29:81–93 [View Article] [PubMed]
    [Google Scholar]
  181. Lencer WI, Hirst TR, Holmes RK. Membrane traffic and the cellular uptake of cholera toxin. Biochim Biophys Acta 1999; 1450:177–190 [View Article]
    [Google Scholar]
  182. Zdanovsky AG, Chiron M, Pastan I, FitzGerald DJ. Mechanism of action of Pseudomonas exotoxin. Identification of a rate-limiting step. J Biol Chem 1993; 268:21791–21799 [View Article]
    [Google Scholar]
  183. Filloux A, Davies JC. Chronic infection by controlling inflammation. Nat Microbiol 2019; 4:378–379 [View Article]
    [Google Scholar]
  184. Zhao K, Li W, Li J, Ma T, Wang K et al. TesG is a type I secretion effector of Pseudomonas aeruginosa that suppresses the host immune response during chronic infection. Nat Microbiol 2019; 4:459–469 [View Article]
    [Google Scholar]
  185. Elsen S, Huber P, Bouillot S, Couté Y, Fournier P et al. A type III secretion negative clinical strain of Pseudomonas aeruginosa employs a two-partner secreted exolysin to induce hemorrhagic pneumonia. Cell Host Microbe 2014; 15:164–176 [View Article]
    [Google Scholar]
  186. Klein TA, Ahmad S, Whitney JC. Contact-dependent interbacterial antagonism mediated by protein secretion machines. Trends Microbiol 2020; 28:387–400 [View Article] [PubMed]
    [Google Scholar]
  187. Idei A, Kawai E, Akatsuka H, Omori K. Cloning and characterization of the Pseudomonas fluorescens ATP-binding cassette exporter, HasDEF, for the heme acquisition protein HasA. J Bacteriol 1999; 181:7545–7551 [View Article] [PubMed]
    [Google Scholar]
  188. Chen WJ, Kuo TY, Hsieh FC, Chen PY, Wang CS et al. Involvement of type VI secretion system in secretion of iron chelator pyoverdine in Pseudomonas taiwanensis. Sci Rep 2016; 6:32950 [View Article] [PubMed]
    [Google Scholar]
  189. DeShazer D. A novel contact-independent T6SS that maintains redox homeostasis via Zn2+ and Mn2+ acquisition is conserved in the Burkholderia pseudomallei complex. Microbiol Res 2019; 226:48–54 [View Article] [PubMed]
    [Google Scholar]
  190. Lin J, Zhang W, Cheng J, Yang X, Zhu K et al. A Pseudomonas T6SS effector recruits PQS-containing outer membrane vesicles for iron acquisition. Nat Commun 2017; 8:14888 [View Article] [PubMed]
    [Google Scholar]
  191. Si M, Wang Y, Zhang B, Zhao C, Kang Y et al. The Type VI secretion system engages a redox-regulated dual-functional heme transporter for zinc acquisition. Cell Rep 2017; 20:949–959 [View Article] [PubMed]
    [Google Scholar]
  192. Si M, Zhao C, Burkinshaw B, Zhang B, Wei D et al. Manganese scavenging and oxidative stress response mediated by type VI secretion system in Burkholderia thailandensis. Proc Natl Acad Sci U S A 2017; 114:E2233–E2242 [View Article] [PubMed]
    [Google Scholar]
  193. Nguyen Y, Sugiman-Marangos S, Harvey H, Bell SD, Charlton CL et al. Pseudomonas aeruginosa minor pilins prime type IVa pilus assembly and promote surface display of the PilY1 adhesin. J Biol Chem 2015; 290:601–611 [View Article] [PubMed]
    [Google Scholar]
  194. Kirn TJ, Bose N, Taylor RK. Secretion of a soluble colonization factor by the TCP type 4 pilus biogenesis pathway in Vibrio cholerae. Mol Microbiol 2003; 49:81–92 [View Article] [PubMed]
    [Google Scholar]
  195. Song YC, Jin S, Louie H, Ng D, Lau R et al. FlaC, a protein of Campylobacter jejuni TGH9011 (ATCC43431) secreted through the flagellar apparatus, binds epithelial cells and influences cell invasion. Mol Microbiol 2004; 53:541–553 [View Article] [PubMed]
    [Google Scholar]
  196. Reichow SL, Korotkov KV, Gonen M, Sun J, Delarosa JR et al. The binding of cholera toxin to the periplasmic vestibule of the type II secretion channel. Channels (Austin) 2011; 5:215–218 [View Article] [PubMed]
    [Google Scholar]
  197. Li J, Wolf SG, Elbaum M, Tzfira T. Exploring cargo transport mechanics in the type IV secretion systems. Trends Microbiol 2005; 13:295–298 [View Article] [PubMed]
    [Google Scholar]
  198. Jeffery C. Intracellular proteins moonlighting as bacterial adhesion factors. AIMS Microbiol 2018; 4:362–376 [View Article] [PubMed]
    [Google Scholar]
  199. Lovley DR, Holmes DE. Electromicrobiology: the ecophysiology of phylogenetically diverse electroactive microorganisms. Nat Rev Microbiol 2022; 20:5–19 [View Article] [PubMed]
    [Google Scholar]
  200. Wang F, Gu Y, O’Brien JP, Yi SM, Yalcin SE et al. Structure of microbial nanowires reveals stacked hemes that transport electrons over micrometers. Cell 2019; 177:361–369 [View Article]
    [Google Scholar]
  201. Antunes LC, Poppleton D, Klingl A, Criscuolo A, Dupuy B et al. Phylogenomic analysis supports the ancestral presence of LPS-outer membranes in the Firmicutes. Elife 2016; 5: [View Article]
    [Google Scholar]
  202. Béchon N, Jiménez-Fernández A, Witwinowski J, Bierque E, Taib N et al. Autotransporters drive biofilm formation and autoaggregation in the diderm firmicute Veillonella parvula. J Bacteriol 2020; 202:e00461-20 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001193
Loading
/content/journal/micro/10.1099/mic.0.001193
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error