1887

Abstract

To prevail in the interaction with eukaryotic hosts, many bacterial pathogens use protein secretion systems to release virulence factors at the host–pathogen interface and/or deliver them directly into host cells. An outstanding example of the complexity and sophistication of secretion systems and the diversity of their protein substrates, effectors, is the Defective in organelle trafficking/Intracellular multiplication (Dot/Icm) Type IVB secretion system (T4BSS) of and related species. species are facultative intracellular pathogens of environmental protozoa and opportunistic human respiratory pathogens. The Dot/Icm T4BSS translocates an exceptionally large number of effectors, more than 300 per strain, and is essential for evasion of phagolysosomal degradation and exploitation of protozoa and human macrophages as replicative niches. Recent technological advancements in the imaging of large protein complexes have provided new insight into the architecture of the T4BSS and allowed us to propose models for the transport mechanism. At the same time, significant progress has been made in assigning functions to about a third of effectors, discovering unprecedented new enzymatic activities and concepts of host subversion. In this review, we describe the current knowledge of the workings of the Dot/Icm T4BSS machinery and provide an overview of the activities and functions of the to-date characterized effectors in the interaction of with host cells.

Funding
This study was supported by the:
  • Medical Research Council (Award MR/R010552/1)
    • Principle Award Recipient: GunnarN. Schroeder
  • Wellcome Trust (Award 215164/Z/18/Z)
    • Principle Award Recipient: TiagoR. D. Costa
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001187
2022-05-31
2022-07-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/168/5/mic001187.html?itemId=/content/journal/micro/10.1099/mic.0.001187&mimeType=html&fmt=ahah

References

  1. Fraser DW, Tsai TR, Orenstein W, Parkin WE, Beecham HJ et al. Legionnaires’ disease: description of an epidemic of pneumonia. N Engl J Med 1977; 297:1189–1197 [View Article] [PubMed]
    [Google Scholar]
  2. McDade JE, Shepard CC, Fraser DW, Tsai TR, Redus MA et al. Legionnaires’ disease: isolation of a bacterium and demonstration of its role in other respiratory disease. N Engl J Med 1977; 297:1197–1203 [View Article] [PubMed]
    [Google Scholar]
  3. Gomez-Valero L, Rusniok C, Carson D, Mondino S, Pérez-Cobas AE et al. More than 18,000 effectors in the Legionella genus genome provide multiple, independent combinations for replication in human cells. Proc Natl Acad Sci USA 2019; 116:2265–2273 [View Article] [PubMed]
    [Google Scholar]
  4. Chambers ST, Slow S, Scott-Thomas A, Murdoch DR. Legionellosis caused by non-Legionella pneumophila species, with a focus on Legionella longbeachae. Microorganisms 2021; 9:291 [View Article]
    [Google Scholar]
  5. Phin N, Parry-Ford F, Harrison T, Stagg HR, Zhang N et al. Epidemiology and clinical management of Legionnaires’ disease. Lancet Infect Dis 2014; 14:1011–1021 [View Article] [PubMed]
    [Google Scholar]
  6. Yu VL, Plouffe JF, Pastoris MC, Stout JE, Schousboe M et al. Distribution of Legionella Species and Serogroups Isolated by Culture in Patients with Sporadic Community‐Acquired Legionellosis: An International Collaborative Survey. J Infect Dis 2002; 186:127–128 [View Article] [PubMed]
    [Google Scholar]
  7. World Health Organisation Legionellosis fact sheet; 2018 https://www.who.int/news-room/fact-sheets/detail/legionellosis
  8. Borges V, Nunes A, Sampaio DA, Vieira L, Machado J et al. Legionella pneumophila strain associated with the first evidence of person-to-person transmission of Legionnaires’ disease: a unique mosaic genetic backbone. Sci Rep 2016; 6:26261 [View Article] [PubMed]
    [Google Scholar]
  9. Correia AM, Ferreira JS, Borges V, Nunes A, Gomes B et al. Probable person-to-person transmission of legionnaires’ disease. N Engl J Med 2016; 374:497–498 [View Article] [PubMed]
    [Google Scholar]
  10. Blatt SP, Parkinson MD, Pace E, Hoffman P, Dolan D et al. Nosocomial Legionnaires’ disease: aspiration as a primary mode of disease acquisition. Am J Med 1993; 95:16–22 [View Article] [PubMed]
    [Google Scholar]
  11. Davis GS, Winn WC, Gump DW, Craighead JE, Beaty HN. Legionnaires’ pneumonia after aerosol exposure in guinea pigs and rats. Am Rev Respir Dis 1982; 126:1050–1057 [View Article]
    [Google Scholar]
  12. Muder RR, Yu VL, Woo AH. Mode of transmission of Legionella pneumophila. a critical review. Arch Intern Med 1986; 146:1607–1612 [View Article] [PubMed]
    [Google Scholar]
  13. Clarholm M. Protozoan grazing of bacteria in soil-impact and importance. Microb Ecol 1981; 7:343–350 [View Article] [PubMed]
    [Google Scholar]
  14. Hahn MW, Höfle MG. Grazing of protozoa and its effect on populations of aquatic bacteria. FEMS Microbiol Ecol 2001; 35:113–121 [View Article] [PubMed]
    [Google Scholar]
  15. Rowbotham TJ. Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae. J Clin Pathol 1980; 33:1179–1183 [View Article] [PubMed]
    [Google Scholar]
  16. Boamah DK, Zhou G, Ensminger AW, O’Connor TJ. From many hosts, one accidental pathogen: the diverse protozoan hosts of Legionella. Front Cell Infect Microbiol 2017; 7:477 [View Article] [PubMed]
    [Google Scholar]
  17. Gao LY, Harb OS, Abu Kwaik Y. Utilization of similar mechanisms by Legionella pneumophila to parasitize two evolutionarily distant host cells, mammalian macrophages and protozoa. Infect Immun 1997; 65:4738–4746 [View Article] [PubMed]
    [Google Scholar]
  18. Berger KH, Isberg RR. Two distinct defects in intracellular growth complemented by a single genetic locus in Legionella pneumophila. Mol Microbiol 1993; 7:7–19 [View Article] [PubMed]
    [Google Scholar]
  19. Brand BC, Sadosky AB, Shuman HA. The Legionella pneumophila icm locus: a set of genes required for intracellular multiplication in human macrophages. Mol Microbiol 1994; 14:797–808 [View Article] [PubMed]
    [Google Scholar]
  20. Marra A, Blander SJ, Horwitz MA, Shuman HA. Identification of a Legionella pneumophila locus required for intracellular multiplication in human macrophages. Proc Natl Acad Sci U S A 1992; 89:9607–9611 [View Article] [PubMed]
    [Google Scholar]
  21. Segal G, Shuman HA. Legionella pneumophila utilizes the same genes to multiply within Acanthamoeba castellanii and human macrophages. Infect Immun 1999; 67:2117–2124 [View Article] [PubMed]
    [Google Scholar]
  22. Vogel JP, Andrews HL, Wong SK, Isberg RR. Conjugative transfer by the virulence system of Legionella pneumophila. Science 1998; 279:873–876 [View Article] [PubMed]
    [Google Scholar]
  23. Jeong KC, Ghosal D, Chang Y-W, Jensen GJ, Vogel JP. Polar delivery of Legionella type IV secretion system substrates is essential for virulence. Proc Natl Acad Sci U S A 2017; 114:8077–8082 [View Article] [PubMed]
    [Google Scholar]
  24. Nagai H, Kubori T. Type IVB secretion systems of Legionella and other gram-negative bacteria. Front Microbiol 2011; 2:136 [View Article] [PubMed]
    [Google Scholar]
  25. Segal G, Purcell M, Shuman HA. Host cell killing and bacterial conjugation require overlapping sets of genes within a 22-kb region of the Legionella pneumophila genome. Proc Natl Acad Sci USA 1998; 95:1669–1674 [View Article] [PubMed]
    [Google Scholar]
  26. Bruckert WM, Abu Kwaik Y. Complete and ubiquitinated proteome of the Legionella-containing vacuole within human macrophages. J Proteome Res 2015; 14:236–248 [View Article] [PubMed]
    [Google Scholar]
  27. Dorer MS, Kirton D, Bader JS, Isberg RR. RNA interference analysis of Legionella in Drosophila cells: exploitation of early secretory apparatus dynamics. PLoS Pathog 2006; 2:e34 [View Article] [PubMed]
    [Google Scholar]
  28. Horwitz MA. Formation of a novel phagosome by the Legionnaires’ disease bacterium (Legionella pneumophila) in human monocytes. J Exp Med 1983; 158:1319–1331 [View Article] [PubMed]
    [Google Scholar]
  29. Swanson MS, Isberg RR. Association of Legionella pneumophila with the macrophage endoplasmic reticulum. Infect Immun 1995; 63:3609–3620 [View Article] [PubMed]
    [Google Scholar]
  30. Burstein D, Zusman T, Degtyar E, Viner R, Segal G et al. Genome-scale identification of Legionella pneumophila effectors using a machine learning approach. PLoS Pathog 2009; 5:e1000508 [View Article] [PubMed]
    [Google Scholar]
  31. Cazalet C, Rusniok C, Brüggemann H, Zidane N, Magnier A et al. Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity. Nat Genet 2004; 36:1165–1173 [View Article] [PubMed]
    [Google Scholar]
  32. de Felipe KS, Glover RT, Charpentier X, Anderson OR, Reyes M et al. Legionella eukaryotic-like type IV substrates interfere with organelle trafficking. PLoS Pathogens 2008; 4:e1000117 [View Article] [PubMed]
    [Google Scholar]
  33. Huang L, Boyd D, Amyot WM, Hempstead AD, Luo Z-Q et al. The E Block motif is associated with Legionella pneumophila translocated substrates. Cell Microbiol 2011; 13:227–245 [View Article] [PubMed]
    [Google Scholar]
  34. Kubori T, Hyakutake A, Nagai H. Legionella translocates an E3 ubiquitin ligase that has multiple U-boxes with distinct functions. Mol Microbiol 2008; 67:1307–1319 [View Article] [PubMed]
    [Google Scholar]
  35. Luo ZQ, Isberg RR. Multiple substrates of the Legionella pneumophila Dot/Icm system identified by interbacterial protein transfer. Proc Natl Acad Sci U S A 2004; 101:841–846 [View Article] [PubMed]
    [Google Scholar]
  36. Zhu W, Banga S, Tan Y, Zheng C, Stephenson R et al. Comprehensive identification of protein substrates of the Dot/Icm type IV transporter of Legionella pneumophila. PLoS One 2011; 6:e17638 [View Article] [PubMed]
    [Google Scholar]
  37. Sheedlo MJ, Durie CL, Chung JM, Chang L, Swanson M et al. Cryo-EM reveals new species-specific proteins and symmetry elements in the Legionella pneumophila Dot/Icm T4SS. Microbiology 2021 [View Article]
    [Google Scholar]
  38. Segal G, Feldman M, Zusman T. The Icm/Dot type-IV secretion systems of Legionella pneumophila and Coxiella burnetii. FEMS Microbiol Rev 2005; 29:65–81 [View Article]
    [Google Scholar]
  39. Burstein D, Amaro F, Zusman T, Lifshitz Z, Cohen O et al. Genomic analysis of 38 Legionella species identifies large and diverse effector repertoires. Nat Genet 2016; 48:167–175 [View Article] [PubMed]
    [Google Scholar]
  40. Gomez-Valero L, Chiner-Oms A, Comas I, Buchrieser C, Hershberg R. Evolutionary dissection of the Dot/Icm system based on comparative genomics of 58 Legionella species. Genome Biology and Evolution 2019; 11:2619–2632 [View Article] [PubMed]
    [Google Scholar]
  41. Vincent CD, Friedman JR, Jeong KC, Buford EC, Miller JL et al. Identification of the core transmembrane complex of the Legionella Dot/Icm type IV secretion system. Mol Microbiol 2006; 62:1278–1291 [View Article] [PubMed]
    [Google Scholar]
  42. Kubori T, Koike M, Bui XT, Higaki S, Aizawa S-I et al. Native structure of a type IV secretion system core complex essential for Legionella pathogenesis. Proc Natl Acad Sci U S A 2014; 111:11804–11809 [View Article] [PubMed]
    [Google Scholar]
  43. Yerushalmi G, Zusman T, Segal G. Additive effect on intracellular growth by Legionella pneumophila Icm/Dot proteins containing a lipobox motif. Infect Immun 2005; 73:7578–7587 [View Article] [PubMed]
    [Google Scholar]
  44. Nakano N, Kubori T, Kinoshita M, Imada K, Nagai H. Crystal structure of Legionella DotD: insights into the relationship between type IVB and type II/III secretion systems. PLoS Pathog 2010; 6:e1001129 [View Article] [PubMed]
    [Google Scholar]
  45. Souza DP, Andrade MO, Alvarez-Martinez CE, Arantes GM, Farah CS et al. A Component of the Xanthomonadaceae Type IV Secretion System Combines A VirB7 Motif with A N0 Domain Found in Outer Membrane Transport Proteins. PLoS Pathog 2011; 7:e1002031 [View Article] [PubMed]
    [Google Scholar]
  46. Ghosal D, Jeong KC, Chang YW, Gyore J, Teng L et al. Molecular architecture, polar targeting and biogenesis of the Legionella Dot/Icm T4SS. Nat Microbiol 2019; 4:1173–1182 [View Article] [PubMed]
    [Google Scholar]
  47. Durie CL, Sheedlo MJ, Chung JM, Byrne BG, Su M et al. Structural analysis of the Legionella pneumophila Dot/Icm type IV secretion system core complex. Elife 2020; 9:e59530 [View Article]
    [Google Scholar]
  48. Amin H, Ilangovan A, Costa TRD. Architecture of the outer-membrane core complex from a conjugative type IV secretion system. Nat Commun 2021; 12:6834 [View Article] [PubMed]
    [Google Scholar]
  49. Hu B, Khara P, Christie PJ. Structural bases for F plasmid conjugation and F pilus biogenesis in Escherichia coli. Proc Natl Acad Sci U S A 2019; 116:14222–14227 [View Article] [PubMed]
    [Google Scholar]
  50. Chung JM, Sheedlo MJ, Campbell AM, Sawhney N, Frick-Cheng AE et al. Structure of the Helicobacter pylori Cag type IV secretion system. Elife 2019; 8:e47644 [View Article] [PubMed]
    [Google Scholar]
  51. Chandran V, Fronzes R, Duquerroy S, Cronin N, Navaza J et al. Structure of the outer membrane complex of a type IV secretion system. Nature 2009; 462:1011–1015 [View Article] [PubMed]
    [Google Scholar]
  52. Sgro GG, Costa TRD, Cenens W, Souza DP, Cassago A et al. Cryo-EM structure of the bacteria-killing type IV secretion system core complex from Xanthomonas citri. Nat Microbiol 2018; 3:1429–1440 [View Article] [PubMed]
    [Google Scholar]
  53. Sheedlo MJ, Chung JM, Sawhney N, Durie CL, Cover TL et al. Cryo-EM reveals species-specific components within the Helicobacter pylori Cag type IV secretion system core complex. Elife 2020; 9:e59495 [View Article] [PubMed]
    [Google Scholar]
  54. Chetrit D, Hu B, Christie PJ, Roy CR, Liu J. A unique cytoplasmic ATPase complex defines the Legionella pneumophila type IV secretion channel. Nat Microbiol 2018; 3:678–686 [View Article] [PubMed]
    [Google Scholar]
  55. Sexton JA, Yeo HJ, Vogel JP. Genetic analysis of the Legionella pneumophila DotB ATPase reveals a role in type IV secretion system protein export. Mol Microbiol 2005; 57:70–84 [View Article] [PubMed]
    [Google Scholar]
  56. Prevost MS, Waksman G. X-ray crystal structures of the type IVb secretion system DotB ATPases. Protein Sci 2018; 27:1464–1475 [View Article] [PubMed]
    [Google Scholar]
  57. Durand E, Zoued A, Spinelli S, Watson PJH, Aschtgen M-S et al. Structural Characterization and Oligomerization of the TssL Protein, a Component Shared by Bacterial Type VI and Type IVb Secretion Systems. J Biol Chem 2012; 287:14157–14168 [View Article] [PubMed]
    [Google Scholar]
  58. Kuroda T, Kubori T, Thanh Bui X, Hyakutake A, Uchida Y et al. Molecular and structural analysis of Legionella DotI gives insights into an inner membrane complex essential for type IV secretion. Sci Rep 2015; 5:10912 [View Article] [PubMed]
    [Google Scholar]
  59. Roy CR, Berger KH, Isberg RR. Legionella pneumophila DotA protein is required for early phagosome trafficking decisions that occur within minutes of bacterial uptake. Mol Microbiol 1998; 28:663–674 [View Article] [PubMed]
    [Google Scholar]
  60. Berger KH, Merriam JJ, Isberg RR. Altered intracellular targeting properties associated with mutations in the Legionella pneumophila dotA gene. Mol Microbiol 1994; 14:809–822 [View Article] [PubMed]
    [Google Scholar]
  61. Ghosal D, Chang YW, Jeong KC, Vogel JP, Jensen GJ. In situ structure of the Legionella dot/icm type IV secretion system by electron cryotomography. EMBO Rep 2017; 18:726–732 [View Article]
    [Google Scholar]
  62. Low HH, Gubellini F, Rivera-Calzada A, Braun N, Connery S et al. Structure of a type IV secretion system. Nature 2014; 508:550–553 [View Article] [PubMed]
    [Google Scholar]
  63. Khara P, Song L, Christie PJ, Hu B. In Situ Visualization of the pKM101-Encoded Type IV Secretion System Reveals a Highly Symmetric ATPase Energy Center. mBio 2021; 12:e0246521 [View Article]
    [Google Scholar]
  64. Park D, Chetrit D, Hu B, Roy CR, Liu J. Analysis of Dot/Icm Type IVB Secretion System Subassemblies by Cryoelectron Tomography Reveals Conformational Changes Induced by DotB Binding. mBio 2020; 11:e03328-19 [View Article] [PubMed]
    [Google Scholar]
  65. Nagai H, Cambronne ED, Kagan JC, Amor JC, Kahn RA et al. A C-terminal translocation signal required for Dot/Icm-dependent delivery of the Legionella RalF protein to host cells. Proc Natl Acad Sci U S A 2005; 102:826–831 [View Article] [PubMed]
    [Google Scholar]
  66. Bardill JP, Miller JL, Vogel JP. IcmS-dependent translocation of SdeA into macrophages by the Legionella pneumophila type IV secretion system. Mol Microbiol 2005; 56:90–103 [View Article] [PubMed]
    [Google Scholar]
  67. Cambronne ED, Roy CR. The Legionella pneumophila IcmSW complex interacts with multiple Dot/Icm effectors to facilitate type IV translocation. PLoS Pathog 2007; 3:e188 [View Article] [PubMed]
    [Google Scholar]
  68. Sutherland MC, Nguyen TL, Tseng V, Vogel JP. The Legionella IcmSW complex directly interacts with DotL to mediate translocation of adaptor-dependent substrates. PLoS Pathog 2012; 8:e1002910 [View Article] [PubMed]
    [Google Scholar]
  69. Jeong KC, Sexton JA, Vogel JP. Spatiotemporal regulation of a Legionella pneumophila T4SS substrate by the metaeffector SidJ. PLoS Pathog 2015; 11:e1004695 [View Article] [PubMed]
    [Google Scholar]
  70. Buscher BA, Conover GM, Miller JL, Vogel SA, Meyers SN et al. The DotL Protein, a Member of the TraG-Coupling Protein Family, Is Essential for Viability of Legionella pneumophila Strain Lp02. J Bacteriol 2005; 187:2927–2938 [View Article] [PubMed]
    [Google Scholar]
  71. Llosa M, Alkorta I. Coupling Proteins in Type IV Secretion. Curr Top Microbiol Immunol 2017; 413:143–168 [View Article]
    [Google Scholar]
  72. Vincent CD, Friedman JR, Jeong KC, Sutherland MC, Vogel JP. Identification of the DotL coupling protein subcomplex of the Legionella Dot/Icm type IV secretion system. Mol Microbiol 2012; 85:378–391 [View Article] [PubMed]
    [Google Scholar]
  73. Kim H, Kubori T, Yamazaki K, Kwak MJ, Park SY et al. Structural basis for effector protein recognition by the Dot/Icm Type IVB coupling protein complex. Nat Commun 2020; 11:2623 [View Article] [PubMed]
    [Google Scholar]
  74. Kwak MJ, Kim JD, Kim H, Kim C, Bowman JW et al. Architecture of the type IV coupling protein complex of Legionella pneumophila. Nat Microbiol 2017; 2:17114 [View Article] [PubMed]
    [Google Scholar]
  75. Xu J, Xu D, Wan M, Yin L, Wang X et al. Structural insights into the roles of the IcmS–IcmW complex in the type IVb secretion system of Legionella pneumophila. Proc Natl Acad Sci USA 2017; 114:13543–13548 [View Article] [PubMed]
    [Google Scholar]
  76. Gomis-Rüth FX, Moncalián G, Pérez-Luque R, González A, Cabezón E et al. The bacterial conjugation protein TrwB resembles ring helicases and F1-ATPase. Nature 2001; 409:637–641 [View Article] [PubMed]
    [Google Scholar]
  77. Meir A, Chetrit D, Liu L, Roy CR, Waksman G. Legionella DotM structure reveals a role in effector recruiting to the Type 4B secretion system. Nat Commun 2018; 9:507 [View Article] [PubMed]
    [Google Scholar]
  78. Meir A, Macé K, Lukoyanova N, Chetrit D, Hospenthal MK et al. Mechanism of effector capture and delivery by the type IV secretion system from Legionella pneumophila. Nat Commun 2020; 11:2864 [View Article] [PubMed]
    [Google Scholar]
  79. Macé K, Meir A, Lukoyanova N, Liu L, Chetrit D et al. Proteins DotY and DotZ modulate the dynamics and localization of the type IVB coupling complex of Legionella pneumophila. Mol Microbiol 2022; 117:307–319 [View Article] [PubMed]
    [Google Scholar]
  80. Amyot WM, deJesus D, Isberg RR. Poison domains block transit of translocated substrates via the Legionella pneumophila Icm/Dot system. Infect Immun 2013; 81:3239–3252 [View Article] [PubMed]
    [Google Scholar]
  81. Krampen L, Malmsheimer S, Grin I, Trunk T, Lührmann A et al. Revealing the mechanisms of membrane protein export by virulence-associated bacterial secretion systems. Nat Commun 2018; 9:3467 [View Article] [PubMed]
    [Google Scholar]
  82. Allombert J, Jaboulay C, Michard C, Andréa C, Charpentier X et al. Deciphering Legionella effector delivery by Icm/Dot secretion system reveals a new role for c-di-GMP signaling. J Mol Biol 2021; 433:166985 [View Article] [PubMed]
    [Google Scholar]
  83. Park JM, Ghosh S, O’Connor TJ. Combinatorial selection in amoebal hosts drives the evolution of the human pathogen Legionella pneumophila. Nat Microbiol 2020; 5:599–609 [View Article] [PubMed]
    [Google Scholar]
  84. Charpentier X, Gabay JE, Reyes M, Zhu JW, Weiss A et al. Chemical genetics reveals bacterial and host cell functions critical for type IV effector translocation by Legionella pneumophila. PLoS Pathog 2009; 5:e1000501 [View Article] [PubMed]
    [Google Scholar]
  85. Böck D, Hüsler D, Steiner B, Medeiros JM, Welin A et al. The Polar Legionella Icm/Dot T4SS Establishes Distinct Contact Sites with the Pathogen Vacuole Membrane. mBio 2021; 12:e0218021 [View Article] [PubMed]
    [Google Scholar]
  86. Nagai H, Kagan JC, Zhu X, Kahn RA, Roy CR. A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science 2002; 295:679–682 [View Article] [PubMed]
    [Google Scholar]
  87. Amaro F, Gilbert JA, Owens S, Trimble W, Shuman HA. Whole-genome sequence of the human pathogen Legionella pneumophila serogroup 12 strain 570-CO-H. J Bacteriol 2012; 194:1613–1614 [View Article] [PubMed]
    [Google Scholar]
  88. de Felipe KS, Pampou S, Jovanovic OS, Pericone CD, Ye SF et al. Evidence for acquisition of Legionella type IV secretion substrates via interdomain horizontal gene transfer. J Bacteriol 2005; 187:7716–7726 [View Article] [PubMed]
    [Google Scholar]
  89. Lifshitz Z, Burstein D, Peeri M, Zusman T, Schwartz K et al. Computational modeling and experimental validation of the Legionella and Coxiella virulence-related type-IVB secretion signal. Proc Natl Acad Sci USA 2013; 110:E707–E715 [View Article] [PubMed]
    [Google Scholar]
  90. Schroeder GN, Petty NK, Mousnier A, Harding CR, Vogrin AJ et al. Legionella pneumophila strain 130b possesses a unique combination of type IV secretion systems and novel Dot/Icm secretion system effector proteins. J Bacteriol 2010; 192:6001–6016 [View Article] [PubMed]
    [Google Scholar]
  91. Wexler M, Zusman T, Linsky M, Lifshitz Z, Segal G. The Legionella genus core effectors display functional conservation among orthologs by themselves or combined with an accessory protein. Curr Res Microb Sci 2022; 3:100105 [View Article] [PubMed]
    [Google Scholar]
  92. Martyn JE, Gomez-Valero L, Buchrieser C. The evolution and role of eukaryotic-like domains in environmental intracellular bacteria: the battle with a eukaryotic cell. FEMS Microbiol Rev 2022fuac012 [View Article] [PubMed]
    [Google Scholar]
  93. David S, Sánchez-Busó L, Harris SR, Marttinen P, Rusniok C et al. Dynamics and impact of homologous recombination on the evolution of Legionella pneumophila. PLoS Genet 2017; 13:e1006855 [View Article] [PubMed]
    [Google Scholar]
  94. O’Connor TJ, Adepoju Y, Boyd D, Isberg RR. Minimization of the Legionella pneumophila genome reveals chromosomal regions involved in host range expansion. Proc Natl Acad Sci USA 2011; 108:14733–14740 [View Article] [PubMed]
    [Google Scholar]
  95. Brown NF, Finlay BB. Potential origins and horizontal transfer of type III secretion systems and effectors. Mob Genet Elements 2011; 1:118–121 [View Article] [PubMed]
    [Google Scholar]
  96. Chien M, Morozova I, Shi S, Sheng H, Chen J et al. The genomic sequence of the accidental pathogen Legionella pneumophila. Science 2004; 305:1966–1968 [View Article] [PubMed]
    [Google Scholar]
  97. Ghosh S, O’Connor TJ. Beyond Paralogs: The Multiple Layers of Redundancy in Bacterial Pathogenesis. Front Cell Infect Microbiol 2017; 7:467 [View Article] [PubMed]
    [Google Scholar]
  98. Black MH, Osinski A, Park GJ, Gradowski M, Servage KA et al. A Legionella effector ADP-ribosyltransferase inactivates glutamate dehydrogenase. J Biol Chem 2021; 296:100301 [View Article] [PubMed]
    [Google Scholar]
  99. Homma Y, Hiragi S, Fukuda M. Rab family of small GTPases: an updated view on their regulation and functions. FEBS J 2021; 288:36–55 [View Article] [PubMed]
    [Google Scholar]
  100. Hutagalung AH, Novick PJ. Role of Rab GTPases in Membrane Traffic and Cell Physiology. Physiological Reviews 2011; 91:119–149 [View Article] [PubMed]
    [Google Scholar]
  101. Mondino S, Schmidt S, Buchrieser C, Garsin DA. Molecular Mimicry: a Paradigm of Host-Microbe Coevolution Illustrated by Legionella. mBio 2020; 11:e01201-20 [View Article] [PubMed]
    [Google Scholar]
  102. Machner MP, Isberg RR. Targeting of host Rab GTPase function by the intravacuolar pathogen Legionella pneumophila. Dev Cell 2006; 11:47–56 [View Article] [PubMed]
    [Google Scholar]
  103. Mukherjee S, Liu X, Arasaki K, McDonough J, Galán JE et al. Modulation of Rab GTPase function by a protein phosphocholine transferase. Nature 2011; 477:103–106 [View Article] [PubMed]
    [Google Scholar]
  104. Müller MP, Peters H, Blümer J, Blankenfeldt W, Goody RS et al. The Legionella effector protein DrrA AMPylates the membrane traffic regulator Rab1b. Science 2010; 329:946–949 [View Article] [PubMed]
    [Google Scholar]
  105. Ingmundson A, Delprato A, Lambright DG, Roy CR. Legionella pneumophila proteins that regulate Rab1 membrane cycling. Nature 2007; 450:365–369 [View Article] [PubMed]
    [Google Scholar]
  106. Tan Y, Arnold RJ, Luo ZQ. Legionella pneumophila regulates the small GTPase Rab1 activity by reversible phosphorylcholination. Proc Natl Acad Sci USA 2011; 108:21212–21217 [View Article] [PubMed]
    [Google Scholar]
  107. Tan Y, Luo ZQ. Legionella pneumophila SidD is a deAMPylase that modifies Rab1. Nature 2011; 475:506–509 [View Article] [PubMed]
    [Google Scholar]
  108. Iyer S, Das C. The unity of opposites: Strategic interplay between bacterial effectors to regulate cellular homeostasis. J Biol Chem 2021; 297:101340 [View Article] [PubMed]
    [Google Scholar]
  109. Urbanus ML, Quaile AT, Stogios PJ, Morar M, Rao C et al. Diverse mechanisms of metaeffector activity in an intracellular bacterial pathogen, Legionella pneumophila. Mol Syst Biol 2016; 12:893 [View Article] [PubMed]
    [Google Scholar]
  110. Joseph AM, Shames SR. Affecting the effectors: regulation of Legionella pneumophila effector function by metaeffectors. Pathogens 2021; 10:108 [View Article] [PubMed]
    [Google Scholar]
  111. Kubori T, Shinzawa N, Kanuka H, Nagai H. Legionella metaeffector exploits host proteasome to temporally regulate cognate effector. PLoS Pathog 2010; 6:e1001216 [View Article] [PubMed]
    [Google Scholar]
  112. Gan N, Guan H, Huang Y, Yu T, Fu J et al. Legionella pneumophila regulates the activity of UBE2N by deamidase-mediated deubiquitination. EMBO J 2020; 39:e102806 [View Article] [PubMed]
    [Google Scholar]
  113. Valleau D, Quaile AT, Cui H, Xu X, Evdokimova E et al. Discovery of ubiquitin deamidases in the pathogenic arsenal of Legionella pneumophila. Cell Reports 2018; 23:568–583 [View Article] [PubMed]
    [Google Scholar]
  114. Bhogaraju S, Bonn F, Mukherjee R, Adams M, Pfleiderer MM et al. Inhibition of bacterial ubiquitin ligases by SidJ–calmodulin catalysed glutamylation. Nature 2019; 572:382–386 [View Article] [PubMed]
    [Google Scholar]
  115. Black MH, Osinski A, Gradowski M, Servage KA, Pawłowski K et al. Bacterial pseudokinase catalyzes protein polyglutamylation to inhibit the SidE-family ubiquitin ligases. Science 2019; 364:787–792 [View Article] [PubMed]
    [Google Scholar]
  116. Gan N, Nakayasu ES, Hollenbeck PJ, Luo Z-Q. Legionella pneumophila inhibits immune signalling via MavC-mediated transglutaminase-induced ubiquitination of UBE2N. Nat Microbiol 2019; 4:134–143 [View Article] [PubMed]
    [Google Scholar]
  117. Sulpizio A, Minelli ME, Wan M, Burrowes PD, Wu X et al. Protein polyglutamylation catalyzed by the bacterial calmodulin-dependent pseudokinase SidJ. Elife 2019; 8:e51162 [View Article] [PubMed]
    [Google Scholar]
  118. Osinski A, Black MH, Pawłowski K, Chen Z, Li Y et al. Structural and mechanistic basis for protein glutamylation by the kinase fold. Molecular Cell 2021; 81:4527–4539 [View Article] [PubMed]
    [Google Scholar]
  119. Song L, Xie Y, Li C, Wang L, He C et al. The Legionella effector SdjA Is a bifunctional enzyme that distinctly regulates phosphoribosyl ubiquitination. mBio 2021; 12:e0231621 [View Article] [PubMed]
    [Google Scholar]
  120. Toulabi L, Wu X, Cheng Y, Mao Y. Identification and structural characterization of a Legionella phosphoinositide phosphatase. J Biol Chem 2013; 288:24518–24527 [View Article] [PubMed]
    [Google Scholar]
  121. Liu Y, Luo ZQ. The Legionella pneumophila effector SidJ is required for efficient recruitment of endoplasmic reticulum proteins to the bacterial phagosome. Infect Immun 2007; 75:592–603 [View Article] [PubMed]
    [Google Scholar]
  122. Shames SR, Liu L, Havey JC, Schofield WB, Goodman AL et al. Multiple Legionella pneumophila effector virulence phenotypes revealed through high-throughput analysis of targeted mutant libraries. Proc Natl Acad Sci U S A 2017; 114:E10446–E10454 [View Article] [PubMed]
    [Google Scholar]
  123. Joseph AM, Pohl AE, Ball TJ, Abram TG, Johnson DK et al. The Legionella pneumophila Metaeffector Lpg2505 (MesI) regulates sidI-mediated translation inhibition and novel glycosyl hydrolase activity. Infect Immun 2020; 88:e00853–00819 [View Article]
    [Google Scholar]
  124. Hilbi H, Segal G, Shuman HA. Icm/dot-dependent upregulation of phagocytosis by Legionella pneumophila. Mol Microbiol 2001; 42:603–617 [View Article] [PubMed]
    [Google Scholar]
  125. Watarai M, Derre I, Kirby J, Growney JD, Dietrich WF et al. Legionella pneumophila Is Internalized by a macropinocytotic uptake pathway controlled by the Dot/Icm system and the mouse Lgn1 locus. J Exp Med 2001; 194:1081–1096 [View Article] [PubMed]
    [Google Scholar]
  126. Prashar A, Ortiz ME, Lucarelli S, Barker E, Tabatabeiyazdi Z et al. Small Rho GTPases and the effector VipA mediate the invasion of epithelial cells by filamentous Legionella pneumophila. Front Cell Infect Microbiol 2018; 8:133 [View Article] [PubMed]
    [Google Scholar]
  127. Chang B, Kura F, Amemura-Maekawa J, Koizumi N, Watanabe H. Identification of a novel adhesion molecule involved in the virulence of Legionella pneumophila. Infect Immun 2005; 73:4272–4280 [View Article] [PubMed]
    [Google Scholar]
  128. Franco IS, Shohdy N, Shuman HA. The Legionella pneumophila effector VipA is an actin nucleator that alters host cell organelle trafficking. PLoS Pathog 2012; 8:e1002546 [View Article] [PubMed]
    [Google Scholar]
  129. Fontana MF, Banga S, Barry KC, Shen X, Tan Y et al. Secreted bacterial effectors that inhibit host protein synthesis are critical for induction of the innate immune response to virulent Legionella pneumophila. PLoS Pathog 2011; 7:e1001289 [View Article] [PubMed]
    [Google Scholar]
  130. Guo Z, Stephenson R, Qiu J, Zheng S, Luo ZQ. A Legionella effector modulates host cytoskeletal structure by inhibiting actin polymerization. Microbes and Infection 2014; 16:225–236 [View Article] [PubMed]
    [Google Scholar]
  131. Liu Y, Zhu W, Tan Y, Nakayasu ES, Staiger CJ et al. A Legionella effector disrupts host cytoskeletal structure by cleaving actin. PLoS Pathog 2017; 13:e1006186 [View Article] [PubMed]
    [Google Scholar]
  132. Michard C, Sperandio D, Baïlo N, Pizarro-Cerdá J, LeClaire L et al. The Legionella Kinase LegK2 targets the ARP2/3 complex to inhibit actin nucleation on phagosomes and allow bacterial evasion of the late endocytic pathway. mBio 2015; 6:e00354–15 [View Article] [PubMed]
    [Google Scholar]
  133. He L, Lin Y, Ge Z-H, He S-Y, Zhao B-B et al. The Legionella pneumophila effector WipA disrupts host F-actin polymerisation by hijacking phosphotyrosine signalling. Cell Microbiol 2019; 21:e13014 [View Article] [PubMed]
    [Google Scholar]
  134. Jia Q, Lin Y, Gou X, He L, Shen D et al. Legionella pneumophila effector WipA, a bacterial PPP protein phosphatase with PTP activity. Acta Biochim Biophys Sin (Shanghai) 2018; 50:547–554 [View Article] [PubMed]
    [Google Scholar]
  135. Pinotsis N, Waksman G. Structure of the WipA protein reveals a novel tyrosine protein phosphatase effector from Legionella pneumophila. J Biol Chem 2017; 292:9240–9251 [View Article] [PubMed]
    [Google Scholar]
  136. Schink KO, Tan K-W, Stenmark H. Phosphoinositides in control of membrane dynamics. Annu Rev Cell Dev Biol 2016; 32:143–171 [View Article] [PubMed]
    [Google Scholar]
  137. Dickson EJ, Hille B. Understanding phosphoinositides: rare, dynamic, and essential membrane phospholipids. Biochemical Journal 2019; 476:1–23 [View Article] [PubMed]
    [Google Scholar]
  138. Pike RR, Neunuebel MR. Exploitation of phosphoinositides by the intracellular pathogen, Legionella pneumophila. In Pathogenic Bacteria IntechOpen; 2019
    [Google Scholar]
  139. Swart AL, Hilbi H. Phosphoinositides and the fate of Legionella in phagocytes. Front Immunol 2020; 11:25 [View Article] [PubMed]
    [Google Scholar]
  140. Luo X, Wasilko DJ, Liu Y, Sun J, Wu X et al. Structure of the Legionella virulence factor, SidC reveals a Unique PI(4)P-specific binding domain essential for its targeting to the bacterial phagosome. PLoS Pathog 2015; 11:e1004965 [View Article] [PubMed]
    [Google Scholar]
  141. Nachmias N, Zusman T, Segal G. Study of Legionella effector domains revealed novel and prevalent phosphatidylinositol 3-phosphate binding domains. Infect Immun 2019; 87:e00153-19 [View Article] [PubMed]
    [Google Scholar]
  142. Ragaz C, Pietsch H, Urwyler S, Tiaden A, Weber SS et al. The Legionella pneumophila phosphatidylinositol-4 phosphate-binding type IV substrate SidC recruits endoplasmic reticulum vesicles to a replication-permissive vacuole. Cell Microbiol 2008; 10:2416–2433 [View Article] [PubMed]
    [Google Scholar]
  143. Weber S, Wagner M, Hilbi H, Swanson J, Swanson M. Live-cell imaging of phosphoinositide dynamics and membrane architecture during Legionella infection. mBio 2014; 5:e00839–00813 [View Article] [PubMed]
    [Google Scholar]
  144. Walpole GFW, Grinstein S. Endocytosis and the internalization of pathogenic organisms: focus on phosphoinositides. F1000Res 2020; 9:9 [View Article] [PubMed]
    [Google Scholar]
  145. Wallroth A, Haucke V. Phosphoinositide conversion in endocytosis and the endolysosomal system. J Biol Chem 2018; 293:1526–1535 [View Article] [PubMed]
    [Google Scholar]
  146. Pike CM, Boyer-Andersen R, Kinch LN, Caplan JL, Neunuebel MR. The Legionella effector RavD binds phosphatidylinositol-3-phosphate and helps suppress endolysosomal maturation of the Legionella-containing vacuole. J Biol Chem 2019; 294:6405–6415 [View Article] [PubMed]
    [Google Scholar]
  147. De Matteis MA, Wilson C, D’Angelo G. Phosphatidylinositol-4-phosphate: the Golgi and beyond. BioEssays 2013; 35:612–622 [View Article] [PubMed]
    [Google Scholar]
  148. Dong N, Niu M, Hu L, Yao Q, Zhou R et al. Modulation of membrane phosphoinositide dynamics by the phosphatidylinositide 4-kinase activity of the Legionella LepB effector. Nat Microbiol 2016; 2:16236 [View Article] [PubMed]
    [Google Scholar]
  149. Hsu F, Zhu W, Brennan L, Tao L, Luo Z-Q et al. Structural basis for substrate recognition by a unique Legionella phosphoinositide phosphatase. Proc Natl Acad Sci U S A 2012; 109:13567–13572 [View Article] [PubMed]
    [Google Scholar]
  150. Ledvina HE, Kelly KA, Eshraghi A, Plemel RL, Peterson SB et al. A Phosphatidylinositol 3-Kinase Effector Alters Phagosomal Maturation to Promote Intracellular Growth of Francisella. Cell Host Microbe 2018; 24:285–295 [View Article] [PubMed]
    [Google Scholar]
  151. Li G, Liu H, Luo ZQ, Qiu J. Modulation of phagosome phosphoinositide dynamics by a Legionella phosphoinositide 3‐kinase. EMBO Rep 2021; 22:e51163 [View Article] [PubMed]
    [Google Scholar]
  152. Blunsom NJ, Cockcroft S. Phosphatidylinositol synthesis at the endoplasmic reticulum. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2020; 1865:158471 [View Article]
    [Google Scholar]
  153. Schroeder GN, Aurass P, Oates CV, Tate EW, Hartland EL et al. Legionella pneumophila Effector LpdA Is a Palmitoylated Phospholipase D Virulence Factor. Infect Immun 2015; 83:3989–4002 [View Article] [PubMed]
    [Google Scholar]
  154. Viner R, Chetrit D, Ehrlich M, Segal G. Identification of two Legionella pneumophila effectors that manipulate host phospholipids biosynthesis. PLoS Pathog 2012; 8:e1002988 [View Article] [PubMed]
    [Google Scholar]
  155. Harding CR, Mattheis C, Mousnier A, Oates CV, Hartland EL et al. LtpD is a novel Legionella pneumophila effector that binds phosphatidylinositol 3-phosphate and inositol monophosphatase IMPA1. Infect Immun 2013; 81:4261–4270 [View Article] [PubMed]
    [Google Scholar]
  156. Aurass P, Schlegel M, Metwally O, Harding CR, Schroeder GN et al. The Legionella pneumophila Dot/Icm-secreted effector PlcC/CegC1 together with PlcA and PlcB promotes virulence and belongs to a novel zinc metallophospholipase C family present in bacteria and fungi. J Biol Chem 2013; 288:11080–11092 [View Article] [PubMed]
    [Google Scholar]
  157. Brombacher E, Urwyler S, Ragaz C, Weber SS, Kami K et al. Rab1 guanine nucleotide exchange factor SidM is a major phosphatidylinositol 4-phosphate-binding effector protein of Legionella pneumophila. J Biol Chem 2009; 284:4846–4856 [View Article] [PubMed]
    [Google Scholar]
  158. Weber S, Steiner B, Welin A, Hilbi H. Legionella-containing vacuoles capture PtdIns(4)P-Rich vesicles derived from the Golgi apparatus. mBio 2018; 9:e02420-18 [View Article]
    [Google Scholar]
  159. Newton HJ, Sansom FM, Dao J, McAlister AD, Sloan J et al. Sel1 Repeat protein LpnE Is a Legionella pneumophila virulence determinant that influences vacuolar trafficking. Infect Immun 2007; 75:5575–5585 [View Article] [PubMed]
    [Google Scholar]
  160. Weber SS, Ragaz C, Hilbi H. The inositol polyphosphate 5-phosphatase OCRL1 restricts intracellular growth of Legionella, localizes to the replicative vacuole and binds to the bacterial effector LpnE. Cell Microbiol 2009; 11:442–460 [View Article] [PubMed]
    [Google Scholar]
  161. Choi WY, Kim S, Aurass P, Huo W, Creasey EA et al. SdhA blocks disruption of the Legionella-containing vacuole by hijacking the OCRL phosphatase. Cell Reports 2021; 37:109894 [View Article] [PubMed]
    [Google Scholar]
  162. Anand IS, Choi W, Isberg RR. Components of the endocytic and recycling trafficking pathways interfere with the integrity of the Legionella-containing vacuole. Cell Microbiol 2020; 22:e13151 [View Article] [PubMed]
    [Google Scholar]
  163. Creasey EA, Isberg RR. The protein SdhA maintains the integrity of the Legionella -containing vacuole. Proc Natl Acad Sci USA 2012; 109:3481–3486 [View Article] [PubMed]
    [Google Scholar]
  164. Ge J, Gong Y-N, Xu Y, Shao F. Preventing bacterial DNA release and absent in melanoma 2 inflammasome activation by a Legionella effector functioning in membrane trafficking. Proc Natl Acad Sci USA 2012; 109:6193–6198 [View Article] [PubMed]
    [Google Scholar]
  165. Laguna RK, Creasey EA, Li Z, Valtz N, Isberg RR. A Legionella pneumophila-translocated substrate that is required for growth within macrophages and protection from host cell death. Proc Natl Acad Sci U S A 2006; 103:18745–18750 [View Article] [PubMed]
    [Google Scholar]
  166. Harding CR, Stoneham CA, Schuelein R, Newton H, Oates CV et al. The Dot/Icm effector SdhA is necessary for virulence of Legionella pneumophila in Galleria mellonella and A/J mice. Infect Immun 2013; 81:2598–2605 [View Article] [PubMed]
    [Google Scholar]
  167. Flieger A, Gong S, Faigle M, Stevanovic S, Cianciotto NP et al. Novel lysophospholipase A secreted by Legionella pneumophila. J Bacteriol 2001; 183:2121–2124 [View Article] [PubMed]
    [Google Scholar]
  168. Hoffmann C, Finsel I, Otto A, Pfaffinger G, Rothmeier E et al. Functional analysis of novel Rab GTPases identified in the proteome of purified Legionella-containing vacuoles from macrophages. Cell Microbiol 2014; 16:1034–1052 [View Article] [PubMed]
    [Google Scholar]
  169. Clemens DL, Lee BY, Horwitz MA. Mycobacterium tuberculosis and Legionella pneumophila phagosomes exhibit arrested maturation despite acquisition of Rab7. Infect Immun 2000; 68:5154–5166 [View Article] [PubMed]
    [Google Scholar]
  170. Mousnier A, Schroeder GN, Stoneham CA, So EC, Garnett JA et al. A New Method To Determine In Vivo Interactomes Reveals Binding of the Legionella pneumophila Effector PieE to Multiple Rab GTPases. mBio 2014; 5: [View Article] [PubMed]
    [Google Scholar]
  171. Gaspar AH, Machner MP. VipD is a Rab5-activated phospholipase A1 that protects Legionella pneumophila from endosomal fusion. Proc Natl Acad Sci U S A 2014; 111:4560–4565 [View Article]
    [Google Scholar]
  172. Ku B, Lee K-H, Park WS, Yang C-S, Ge J et al. VipD of Legionella pneumophila targets activated Rab5 and Rab22 to interfere with endosomal trafficking in macrophages. PLoS Pathog 2012; 8:e1003082 [View Article] [PubMed]
    [Google Scholar]
  173. Lucas M, Gaspar AH, Pallara C, Rojas AL, Fernández-Recio J et al. Structural basis for the recruitment and activation of the Legionella phospholipase VipD by the host GTPase Rab5. Proc Natl Acad Sci U S A 2014; 111:E3514–23 [View Article] [PubMed]
    [Google Scholar]
  174. Sohn Y-S, Shin H-C, Park WS, Ge J, Kim C-H et al. Lpg0393 of Legionella pneumophila Is a guanine-nucleotide exchange Factor for Rab5, Rab21 and Rab22. PLoS ONE 2015; 10:e0118683 [View Article] [PubMed]
    [Google Scholar]
  175. Finsel I, Ragaz C, Hoffmann C, Harrison CF, Weber S et al. The Legionella effector RidL inhibits retrograde trafficking to promote intracellular replication. Cell Host Microbe 2013; 14:38–50 [View Article] [PubMed]
    [Google Scholar]
  176. Bärlocher K, Hutter CAJ, Swart AL, Steiner B, Welin A et al. Structural insights into Legionella RidL-Vps29 retromer subunit interaction reveal displacement of the regulator TBC1D5. Nat Commun 2017; 8:1543 [View Article] [PubMed]
    [Google Scholar]
  177. Yao J, Yang F, Sun X, Wang S, Gan N et al. Mechanism of inhibition of retromer transport by the bacterial effector RidL. Proc Natl Acad Sci U S A 2018; 115:E1446–E1454 [View Article] [PubMed]
    [Google Scholar]
  178. Allgood SC, Romero Dueñas BP, Noll RR, Pike C, Lein S et al. Legionella effector AnkX disrupts host cell endocytic recycling in a phosphocholination-dependent manner. Front Cell Infect Microbiol 2017; 7:397 [View Article] [PubMed]
    [Google Scholar]
  179. Pan X, Lührmann A, Satoh A, Laskowski-Arce MA, Roy CR. Ankyrin repeat proteins comprise a diverse family of bacterial type IV effectors. Science 2008; 320:1651–1654 [View Article] [PubMed]
    [Google Scholar]
  180. Yu X, Noll RR, Romero Dueñas BP, Allgood SC, Barker K et al. Legionella effector AnkX interacts with host nuclear protein PLEKHN1. BMC Microbiol 2018; 18:5 [View Article] [PubMed]
    [Google Scholar]
  181. Xu L, Shen X, Bryan A, Banga S, Swanson MS et al. Inhibition of host vacuolar H+-ATPase activity by a Legionella pneumophila effector. PLoS Pathog 2010; 6:e1000822 [View Article] [PubMed]
    [Google Scholar]
  182. Zhao J, Beyrakhova K, Liu Y, Alvarez CP, Bueler SA et al. Molecular basis for the binding and modulation of V-ATPase by a bacterial effector protein. PLoS Pathog 2017; 13:e1006394 [View Article] [PubMed]
    [Google Scholar]
  183. Levanova N, Mattheis C, Carson D, To KN, Jank T et al. The Legionella effector LtpM is a new type of phosphoinositide-activated glucosyltransferase. Journal of Biological Chemistry 2019; 294:2862–5740 [View Article] [PubMed]
    [Google Scholar]
  184. Vaughn B, Voth K, Price CT, Jones S, Ozanic M et al. An indispensable role for the MavE effector of Legionella pneumophila in Lysosomal Evasion. mBio 2021; 12:e03458–03420 [View Article] [PubMed]
    [Google Scholar]
  185. Abu Kwaik Y. The phagosome containing Legionella pneumophila within the protozoan Hartmannella vermiformis is surrounded by the rough endoplasmic reticulum. Appl Environ Microbiol 1996; 62:2022–2028 [View Article] [PubMed]
    [Google Scholar]
  186. Katz SM, Hashemi S. Electron microscopic examination of the inflammatory response to Legionella pneumophila in guinea pigs. Lab Invest 1982; 46:24–32 [PubMed]
    [Google Scholar]
  187. Tilney LG, Harb OS, Connelly PS, Robinson CG, Roy CR. How the parasitic bacterium Legionella pneumophila modifies its phagosome and transforms it into rough ER: implications for conversion of plasma membrane to the ER membrane. J Cell Sci 2001; 114:4637–4650 [View Article]
    [Google Scholar]
  188. Kotewicz KM, Ramabhadran V, Sjoblom N, Vogel JP, Haenssler E et al. A single Legionella effector catalyzes a multistep ubiquitination pathway to rearrange tubular endoplasmic reticulum for replication. Cell Host & Microbe 2017; 21:169–181 [View Article] [PubMed]
    [Google Scholar]
  189. Dikic I, Elazar Z. Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol 2018; 19:349–364 [View Article] [PubMed]
    [Google Scholar]
  190. Varshavsky A. The Ubiquitin System, Autophagy, and Regulated Protein Degradation. Annu Rev Biochem 2017; 86:123–128 [View Article] [PubMed]
    [Google Scholar]
  191. Luo J, Wang L, Song L, Luo Z-Q. Exploitation of the host ubiquitin system: means by Legionella pneumophila. Front Microbiol 2021; 12:790442 [View Article] [PubMed]
    [Google Scholar]
  192. Kitao T, Nagai H, Kubori T. Divergence of Legionella effectors reversing conventional and unconventional ubiquitination. Front Cell Infect Microbiol 2020; 10:448 [View Article] [PubMed]
    [Google Scholar]
  193. Al-Khodor S, Price CT, Habyarimana F, Kalia A, Abu Kwaik Y. A Dot/Icm-translocated ankyrin protein of Legionella pneumophila is required for intracellular proliferation within human macrophages and protozoa. Mol Microbiol 2008; 70:908–923 [View Article] [PubMed]
    [Google Scholar]
  194. Price CT, Al-Khodor S, Al-Quadan T, Santic M, Habyarimana F et al. Molecular mimicry by an F-box effector of Legionella pneumophila hijacks a conserved polyubiquitination machinery within macrophages and protozoa. PLoS Pathog 2009; 5:e1000704 [View Article] [PubMed]
    [Google Scholar]
  195. Buetow L, Huang DT. Structural insights into the catalysis and regulation of E3 ubiquitin ligases. Nat Rev Mol Cell Biol 2016; 17:626–642 [View Article] [PubMed]
    [Google Scholar]
  196. Jackson PK, Eldridge AG. The SCF ubiquitin ligase: an extended look. Mol Cell 2002; 9:923–925 [View Article] [PubMed]
    [Google Scholar]
  197. Price CTD, Kwaik YA. Exploitation of Host Polyubiquitination Machinery through Molecular Mimicry by Eukaryotic-Like Bacterial F-Box Effectors. Front Microbiol 2010; 1:122 [View Article] [PubMed]
    [Google Scholar]
  198. Lomma M, Dervins-Ravault D, Rolando M, Nora T, Newton HJ et al. The Legionella pneumophila F-box protein Lpp2082 (AnkB) modulates ubiquitination of the host protein parvin B and promotes intracellular replication. Cell Microbiol 2010; 12:1272–1291 [View Article] [PubMed]
    [Google Scholar]
  199. Price CTD, Al-Quadan T, Santic M, Rosenshine I, Abu Kwaik Y. Host proteasomal degradation generates amino acids essential for intracellular bacterial growth. Science 2011; 334:1553–1557 [View Article] [PubMed]
    [Google Scholar]
  200. Eisenreich W, Heuner K. The life stage-specific pathometabolism of Legionella pneumophila. FEBS Lett 2016; 590:3868–3886 [View Article] [PubMed]
    [Google Scholar]
  201. Bruckert WM, Abu Kwaik Y. Lysine11-linked polyubiquitination of the AnkB F-Box effector of Legionella pneumophila. Infect Immun 2016; 84:99–107 [View Article] [PubMed]
    [Google Scholar]
  202. Ivanov SS, Charron G, Hang HC, Roy CR. Lipidation by the host prenyltransferase machinery facilitates membrane localization of Legionella pneumophila effector proteins. Journal of Biological Chemistry 2010; 285:34686–34698 [View Article] [PubMed]
    [Google Scholar]
  203. Price C, Merchant M, Jones S, Best A, Von Dwingelo J et al. Host FIH-mediated asparaginyl hydroxylation of translocated Legionella pneumophila effectors. Front Cell Infect Microbiol 2017; 7:54 [View Article] [PubMed]
    [Google Scholar]
  204. Hsu F, Luo X, Qiu J, Teng Y-B, Jin J et al. The Legionella effector SidC defines a unique family of ubiquitin ligases important for bacterial phagosomal remodeling. Proc Natl Acad Sci U S A 2014; 111:10538–10543 [View Article] [PubMed]
    [Google Scholar]
  205. Horenkamp FA, Mukherjee S, Alix E, Schauder CM, Hubber AM et al. Legionella pneumophila subversion of host vesicular transport by SidC effector proteins. Traffic 2014; 15:488–499 [View Article] [PubMed]
    [Google Scholar]
  206. Jeng EE, Bhadkamkar V, Ibe NU, Gause H, Jiang L et al. Systematic identification of host cell regulators of Legionella pneumophila pathogenesis using a genome-wide CRISPR screen. Cell Host Microbe 2019; 26:551–563 [View Article] [PubMed]
    [Google Scholar]
  207. Liu S, Luo J, Zhen X, Qiu J, Ouyang S et al. Interplay between bacterial deubiquitinase and ubiquitin E3 ligase regulates ubiquitin dynamics on Legionella phagosomes. Elife 2020; 9:e58114 [View Article]
    [Google Scholar]
  208. Schubert AF, Nguyen JV, Franklin TG, Geurink PP, Roberts CG et al. Identification and characterization of diverse OTU deubiquitinases in bacteria. EMBO J 2020; 39:e105127 [View Article] [PubMed]
    [Google Scholar]
  209. Shin D, Bhattacharya A, Cheng Y-L, Alonso MC, Mehdipour AR et al. Bacterial OTU deubiquitinases regulate substrate ubiquitination upon Legionella infection. Elife 2020; 9:e58277 [View Article] [PubMed]
    [Google Scholar]
  210. Kagan JC, Roy CR. Legionella phagosomes intercept vesicular traffic from endoplasmic reticulum exit sites. Nat Cell Biol 2002; 4:945–954 [View Article] [PubMed]
    [Google Scholar]
  211. Godi A, Pertile P, Meyers R, Marra P, Di Tullio G et al. ARF mediates recruitment of PtdIns-4-OH kinase-β and stimulates synthesis of PtdIns(4,5)P2 on the Golgi complex. Nat Cell Biol 1999; 1:280–287 [View Article] [PubMed]
    [Google Scholar]
  212. Qiu J, Sheedlo MJ, Yu K, Tan Y, Nakayasu ES et al. Ubiquitination independent of E1 and E2 enzymes by bacterial effectors. Nature 2016; 533:120–124 [View Article] [PubMed]
    [Google Scholar]
  213. Bhogaraju S, Kalayil S, Liu Y, Bonn F, Colby T et al. Phosphoribosylation of Ubiquitin Promotes Serine Ubiquitination and Impairs Conventional Ubiquitination. Cell 2016; 167:1636–1649 [View Article] [PubMed]
    [Google Scholar]
  214. Zhang M, McEwen JM, Sjoblom NM, Kotewicz KM, Isberg RR et al. Members of the Legionella pneumophila Sde family target tyrosine residues for phosphoribosyl-linked ubiquitination. RSC Chem Biol 2021; 2:1509–1519 [View Article] [PubMed]
    [Google Scholar]
  215. Sheedlo MJ, Qiu J, Tan Y, Paul LN, Luo Z-Q et al. Structural basis of substrate recognition by a bacterial deubiquitinase important for dynamics of phagosome ubiquitination. Proc Natl Acad Sci U S A 2015; 112:15090–15095 [View Article] [PubMed]
    [Google Scholar]
  216. Gan N, Zhen X, Liu Y, Xu X, He C et al. Regulation of phosphoribosyl ubiquitination by a calmodulin-dependent glutamylase. Nature 2019; 572:387–391 [View Article] [PubMed]
    [Google Scholar]
  217. Jeong KC, Sutherland MC, Vogel JP. Novel export control of a Legionella Dot/Icm substrate is mediated by dual, independent signal sequences. Mol Microbiol 2015; 96:175–188 [View Article] [PubMed]
    [Google Scholar]
  218. Shin D, Mukherjee R, Liu Y, Gonzalez A, Bonn F et al. Regulation of phosphoribosyl-linked serine ubiquitination by deubiquitinases DupA and DupB. Mol Cell 2020; 77:164–179 [View Article] [PubMed]
    [Google Scholar]
  219. Wan M, Sulpizio AG, Akturk A, Beck WHJ, Lanz M et al. Deubiquitination of phosphoribosyl-ubiquitin conjugates by phosphodiesterase-domain-containing Legionella effectors. Proc Natl Acad Sci U S A 2019; 116:23518–23526 [View Article] [PubMed]
    [Google Scholar]
  220. Akturk A, Wasilko DJ, Wu X, Liu Y, Zhang Y et al. Mechanism of phosphoribosyl-ubiquitination mediated by a single Legionella effector. Nature 2018; 557:729–733 [View Article] [PubMed]
    [Google Scholar]
  221. Liu Y, Mukherjee R, Bonn F, Colby T, Matic I et al. Serine-ubiquitination regulates Golgi morphology and the secretory pathway upon Legionella infection. Cell Death Differ 2021; 28:2957–2969 [View Article] [PubMed]
    [Google Scholar]
  222. Risselada HJ, Mayer A. SNAREs, tethers and SM proteins: how to overcome the final barriers to membrane fusion?. Biochemical Journal 2020; 477:243–258 [View Article] [PubMed]
    [Google Scholar]
  223. Cai H, Reinisch K, Ferro-Novick S. Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Developmental Cell 2007; 12:671–682 [View Article] [PubMed]
    [Google Scholar]
  224. Kawabata M, Matsuo H, Koito T, Murata M, Kubori T et al. Legionella hijacks the host Golgi-to-ER retrograde pathway for the association of Legionella-containing vacuole with the ER. PLoS Pathog 2021; 17:e1009437 [View Article] [PubMed]
    [Google Scholar]
  225. Chen Y, Machner MP, Camilli A. Targeting of the small GTPase Rab6A′ by the Legionella pneumophila effector LidA. Infect Immun 2013; 81:2226–2235 [View Article] [PubMed]
    [Google Scholar]
  226. Cheng W, Yin K, Lu D, Li B, Zhu D et al. Structural insights into a unique Legionella pneumophila effector LidA recognizing both GDP and GTP bound Rab1 in their active state. PLoS Pathog 2012; 8:e1002528 [View Article] [PubMed]
    [Google Scholar]
  227. Derré I, Isberg RR. LidA, a translocated substrate of the Legionella pneumophila type IV secretion system, interferes with the early secretory pathway. Infect Immun 2005; 73:4370–4380 [View Article] [PubMed]
    [Google Scholar]
  228. Meng G, An X, Ye S, Liu Y, Zhu W et al. The crystal structure of LidA, a translocated substrate of the Legionella pneumophila type IV secretion system. Protein Cell 2013; 4:897–900 [View Article] [PubMed]
    [Google Scholar]
  229. Neunuebel MR, Mohammadi S, Jarnik M, Machner MP. Legionella pneumophila LidA affects nucleotide binding and activity of the host GTPase Rab1. J Bacteriol 2012; 194:1389–1400 [View Article] [PubMed]
    [Google Scholar]
  230. Schoebel S, Cichy AL, Goody RS, Itzen A. Protein LidA from Legionella is a Rab GTPase supereffector. Proc Natl Acad Sci U S A 2011; 108:17945–17950 [View Article] [PubMed]
    [Google Scholar]
  231. Kagan JC, Stein M-P, Pypaert M, Roy CR. Legionella subvert the functions of Rab1 and Sec22b to create a replicative organelle. J Exp Med 2004; 199:1201–1211 [View Article] [PubMed]
    [Google Scholar]
  232. Murata T, Delprato A, Ingmundson A, Toomre DK, Lambright DG et al. The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor. Nat Cell Biol 2006; 8:971–977 [View Article] [PubMed]
    [Google Scholar]
  233. Arasaki K, Toomre DK, Roy CR. The Legionella pneumophila effector DrrA is sufficient to stimulate SNARE-dependent membrane fusion. Cell Host Microbe 2012; 11:46–57 [View Article] [PubMed]
    [Google Scholar]
  234. Kitao T, Taguchi K, Seto S, Arasaki K, Ando H et al. Legionella manipulates non-canonical SNARE pairing using a bacterial deubiquitinase. Cell Rep 2020; 32:108107 [View Article] [PubMed]
    [Google Scholar]
  235. Ensminger AW, Isberg RR. E3 ubiquitin ligase activity and targeting of BAT3 by Multiple Legionella pneumophila translocated substrates. Infect Immun 2010; 78:3905–3919 [View Article] [PubMed]
    [Google Scholar]
  236. Lin YH, Doms AG, Cheng E, Kim B, Evans TR et al. Host cell-catalyzed S-palmitoylation mediates golgi targeting of the Legionella ubiquitin ligase GobX. J Biol Chem 2015; 290:25766–25781 [View Article] [PubMed]
    [Google Scholar]
  237. Shi X, Halder P, Yavuz H, Jahn R, Shuman HA. Direct targeting of membrane fusion by SNARE mimicry: convergent evolution of Legionella effectors. Proc Natl Acad Sci U S A 2016; 113:8807–8812 [View Article] [PubMed]
    [Google Scholar]
  238. King NP, Newton P, Schuelein R, Brown DL, Petru M et al. Soluble NSF attachment protein receptor molecular mimicry by a Legionella pneumophila Dot/Icm effector. Cell Microbiol 2015; 17:767–784 [View Article] [PubMed]
    [Google Scholar]
  239. Shin D, Bhattacharya A, Cheng Y-L, Alonso MC, Mehdipour AR et al. Novel class of OTU deubiquitinases regulate substrate ubiquitination upon Legionella infection. Mol Biol (NY) 2020 [View Article]
    [Google Scholar]
  240. Hermanns T, Woiwode I, Guerreiro RF, Vogt R, Lammers M et al. An evolutionary approach to systematic discovery of novel deubiquitinases, applied to Legionella. Life Sci Alliance 2020; 3:e202000838 [View Article] [PubMed]
    [Google Scholar]
  241. Kubori T, Kitao T, Ando H, Nagai H. LotA, a Legionella deubiquitinase, has dual catalytic activity and contributes to intracellular growth. Cell Microbiol 2018; 20:e12840 [View Article] [PubMed]
    [Google Scholar]
  242. Neunuebel MR, Chen Y, Gaspar AH, Backlund PS, Yergey A et al. De-AMPylation of the small GTPase Rab1 by the pathogen Legionella pneumophila. Science 2011; 333:453–456 [View Article] [PubMed]
    [Google Scholar]
  243. Goody PR, Heller K, Oesterlin LK, Müller MP, Itzen A et al. Reversible phosphocholination of Rab proteins by Legionella pneumophila effector proteins. EMBO J 2012; 31:1774–1784 [View Article] [PubMed]
    [Google Scholar]
  244. Ernst S, Ecker F, Kaspers MS, Ochtrop P, Hedberg C et al. Legionella effector AnkX displaces the switch II region for Rab1b phosphocholination. Sci Adv 2020; 6:eaaz8041 [View Article] [PubMed]
    [Google Scholar]
  245. Gao L, Song Q, Liang H, Zhu Y, Wei T et al. Legionella effector SetA as a general O-glucosyltransferase for eukaryotic proteins. Nat Chem Biol 2019; 15:213–216 [View Article]
    [Google Scholar]
  246. Jank T, Böhmer KE, Tzivelekidis T, Schwan C, Belyi Y et al. Domain organization of Legionella effector SetA. Cell Microbiol 2012; 14:852–868 [View Article] [PubMed]
    [Google Scholar]
  247. Steinemann M, Schlosser A, Jank T, Aktories K. The chaperonin TRiC/CCT is essential for the action of bacterial glycosylating protein toxins like Clostridium difficile toxins A and B. Proc Natl Acad Sci USA 2018; 115:9580–9585 [View Article] [PubMed]
    [Google Scholar]
  248. Levanova N, Steinemann M, Böhmer KE, Schneider S, Belyi Y et al. Characterization of the glucosyltransferase activity of Legionella pneumophila effector SetA. Naunyn-Schmiedeberg’s Arch Pharmacol 2018; 392:69–79 [View Article] [PubMed]
    [Google Scholar]
  249. Wang Z, McCloskey A, Cheng S, Wu M, Xue C et al. Regulation of the small GTPase Rab1 function by a bacterial glucosyltransferase. Cell Discov 2018; 4:53 [View Article] [PubMed]
    [Google Scholar]
  250. Liu L, Roy CR, Brodsky IE. The Legionella pneumophila effector RavY contributes to a replication-permissive vacuolar environment during infection. Infect Immun 2021; 89:e00261–00221 [View Article] [PubMed]
    [Google Scholar]
  251. Osellame LD, Blacker TS, Duchen MR. Cellular and molecular mechanisms of mitochondrial function. Best Pract Res Clin Endocrinol Metab 2012; 26:711–723 [View Article] [PubMed]
    [Google Scholar]
  252. Shevchuk O, Batzilla C, Hägele S, Kusch H, Engelmann S et al. Proteomic analysis of Legionella-containing phagosomes isolated from Dictyostelium. Int J Med Microbiol 2009; 299:489–508 [View Article] [PubMed]
    [Google Scholar]
  253. Urwyler S, Nyfeler Y, Ragaz C, Lee H, Mueller LN et al. Proteome analysis of Legionella vacuoles purified by magnetic immunoseparation reveals secretory and endosomal GTPases. Traffic 2009; 10:76–87 [View Article]
    [Google Scholar]
  254. Escoll P, Song O-R, Viana F, Steiner B, Lagache T et al. Legionella pneumophila modulates mitochondrial dynamics to trigger metabolic repurposing of infected macrophages. Cell Host Microbe 2017; 22:302–316 [View Article] [PubMed]
    [Google Scholar]
  255. Rothmeier E, Pfaffinger G, Hoffmann C, Harrison CF, Grabmayr H et al. Activation of Ran GTPase by a Legionella effector promotes microtubule polymerization, pathogen vacuole motility and infection. PLoS Pathog 2013; 9:e1003598 [View Article] [PubMed]
    [Google Scholar]
  256. Swart AL, Steiner B, Gomez-Valero L, Schütz S, Hannemann M et al. Divergent evolution of Legionella RCC1 repeat effectors defines the range of ran GTPase cycle targets. mBio 2020; 11:e00405-20 [View Article] [PubMed]
    [Google Scholar]
  257. Hilbi H, Rothmeier E, Hoffmann C, Harrison CF. Beyond Rab GTPases Legionella activates the small GTPase Ran to promote microtubule polymerization, pathogen vacuole motility, and infection. Small GTPases 2014; 5:1–6 [View Article] [PubMed]
    [Google Scholar]
  258. Dolezal P, Aili M, Tong J, Jiang J-H, Marobbio CMT et al. Legionella pneumophila secretes a mitochondrial carrier protein during infection. PLoS Pathog 2012; 8:e1002459 [View Article] [PubMed]
    [Google Scholar]
  259. Escoll P, Platon L, Dramé M, Sahr T, Schmidt S et al. Reverting the mode of action of the mitochondrial FOF1-atpase by Legionella pneumophila preserves its replication niche. eLife 2021; 10:e71978 [View Article]
    [Google Scholar]
  260. Fu J, Zhou M, Gritsenko MA, Nakayasu ES, Song L et al. Legionella pneumophila modulates host energy metabolism by ADP-ribosylation of ADP/ATP translocases. Elife 2022; 11:e73611 [View Article] [PubMed]
    [Google Scholar]
  261. Fu J, Li P, Guan H, Huang D, Song L et al. Legionella pneumophila temporally regulates the activity of ADP/ATP translocases by reversible ADP‐ribosylation. mLife 2022; 1:51–65 [View Article]
    [Google Scholar]
  262. Zhu W, Hammad LA, Hsu F, Mao Y, Luo ZQ. Induction of caspase 3 activation by multiple Legionella pneumophila Dot/Icm substrates. Cell Microbiol 2013; 15:1783–1795 [View Article] [PubMed]
    [Google Scholar]
  263. Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol 2020; 21:85–100 [View Article] [PubMed]
    [Google Scholar]
  264. Degtyar E, Zusman T, Ehrlich M, Segal G. A Legionella effector acquired from protozoa is involved in sphingolipids metabolism and is targeted to the host cell mitochondria. Cell Microbiol 2009; 11:1219–1235 [View Article] [PubMed]
    [Google Scholar]
  265. Rolando M, Escoll P, Nora T, Botti J, Boitez V et al. Legionella pneumophila S1P-lyase targets host sphingolipid metabolism and restrains autophagy. Proc Natl Acad Sci USA 2016; 113:1901–1906 [View Article] [PubMed]
    [Google Scholar]
  266. Arasaki K, Tagaya M. Legionella blocks autophagy by cleaving STX17 (syntaxin 17). Autophagy 2017; 13:2008–2009 [View Article] [PubMed]
    [Google Scholar]
  267. Banga S, Gao P, Shen X, Fiscus V, Zong W-X et al. Legionella pneumophila inhibits macrophage apoptosis by targeting pro-death members of the Bcl2 protein family. Proc Natl Acad Sci U S A 2007; 104:5121–5126 [View Article] [PubMed]
    [Google Scholar]
  268. Speir M, Vogrin A, Seidi A, Abraham G, Hunot S et al. Legionella pneumophila strain 130b evades macrophage cell death independent of the effector SidF in the absence of flagellin. Front Cell Infect Microbiol 2017; 7: [View Article] [PubMed]
    [Google Scholar]
  269. Belyi Y. Targeting Eukaryotic mRNA Translation by Legionella pneumophila. Front Mol Biosci 2020; 7: [View Article] [PubMed]
    [Google Scholar]
  270. Rolando M, Buchrieser C. Legionella pneumophila type IV effectors hijack the transcription and translation machinery of the host cell. Trends in Cell Biology 2014; 24:771–778 [View Article] [PubMed]
    [Google Scholar]
  271. Haenssler E, Isberg RR. Control of host cell phosphorylation by Legionella pneumophila. Front Microbiol 2011; 2:64 [View Article] [PubMed]
    [Google Scholar]
  272. Dorrington MG, Fraser IDC. NF-κB signaling in macrophages: dynamics, crosstalk, and signal integration. Front Immunol 2019; 10:705 [View Article]
    [Google Scholar]
  273. Quaile AT, Stogios PJ, Egorova O, Evdokimova E, Valleau D et al. The Legionella pneumophila effector Ceg4 is a phosphotyrosine phosphatase that attenuates activation of eukaryotic MAPK pathways. Journal of Biological Chemistry 2018; 293:3307–3320 [View Article] [PubMed]
    [Google Scholar]
  274. Fontana MF, Shin S, Vance RE. Activation of host mitogen-activated protein kinases by secreted Legionella pneumophila effectors that inhibit host protein translation. Infect Immun 2012; 80:3570–3575 [View Article] [PubMed]
    [Google Scholar]
  275. Shin S, Case CL, Archer KA, Nogueira CV, Kobayashi KS et al. Type IV secretion-dependent activation of host MAP kinases induces an increased proinflammatory cytokine response to Legionella pneumophila. PLoS Pathog 2008; 4:e1000220 [View Article] [PubMed]
    [Google Scholar]
  276. Kaneko T, Stogios PJ, Ruan X, Voss C, Evdokimova E et al. Identification and characterization of a large family of superbinding bacterial SH2 domains. Nat Commun 2018; 9:4549 [View Article] [PubMed]
    [Google Scholar]
  277. Guan H, Fu J, Yu T, Wang Z-X, Gan N et al. Molecular basis of ubiquitination catalyzed by the bacterial transglutaminase MavC. Adv Sci 2020; 7:2000871 [View Article] [PubMed]
    [Google Scholar]
  278. Puvar K, Iyer S, Fu J, Kenny S, Negrón Terón KI et al. Legionella effector MavC targets the Ube2N~Ub conjugate for noncanonical ubiquitination. Nat Commun 2020; 11:2365 [View Article] [PubMed]
    [Google Scholar]
  279. Mu Y, Wang Y, Huang Y, Li D, Han Y et al. Structural insights into the mechanism and inhibition of transglutaminase-induced ubiquitination by the Legionella effector MavC. Nat Commun 2020; 11:1774 [View Article] [PubMed]
    [Google Scholar]
  280. Hodge CD, Spyracopoulos L, Glover JNM. Ubc13: the Lys63 ubiquitin chain building machine. Oncotarget 2016; 7:64471–64504 [View Article] [PubMed]
    [Google Scholar]
  281. Hrdinka M, Gyrd-Hansen M. The Met1-Linked Ubiquitin Machinery: Emerging Themes of (De)regulation. Mol Cell 2017; 68:265–280 [View Article] [PubMed]
    [Google Scholar]
  282. Wan M, Wang X, Huang C, Xu D, Wang Z et al. A bacterial effector deubiquitinase specifically hydrolyses linear ubiquitin chains to inhibit host inflammatory signalling. Nat Microbiol 2019; 4:1282–1293 [View Article] [PubMed]
    [Google Scholar]
  283. Losick VP, Isberg RR. NF-kappaB translocation prevents host cell death after low-dose challenge by Legionella pneumophila. J Exp Med 2006; 203:2177–2189 [View Article] [PubMed]
    [Google Scholar]
  284. Ge J, Xu H, Li T, Zhou Y, Zhang Z et al. A Legionella type IV effector activates the NF-κB pathway by phosphorylating the IκB family of inhibitors. Proc Natl Acad Sci USA 2009; 106:13725–13730 [View Article] [PubMed]
    [Google Scholar]
  285. Losick VP, Haenssler E, Moy MY, Isberg RR. LnaB: a Legionella pneumophila activator of NF-kappaB. Cell Microbiol 2010; 12:1083–1097 [View Article] [PubMed]
    [Google Scholar]
  286. Badouel C, Garg A, McNeill H. Herding Hippos: regulating growth in flies and man. Curr Opin Cell Biol 2009; 21:837–843 [View Article] [PubMed]
    [Google Scholar]
  287. Lee PC, Machner MP. The Legionella effector kinase LegK7 hijacks the host hippo pathway to promote Infection. Cell Host Microbe 2018; 24:429–438 [View Article] [PubMed]
    [Google Scholar]
  288. Hanford HE, Von Dwingelo J, Abu Kwaik Y. Bacterial nucleomodulins: A coevolutionary adaptation to the eukaryotic command center. PLoS Pathog 2021; 17:e1009184 [View Article] [PubMed]
    [Google Scholar]
  289. Li T, Lu Q, Wang G, Xu H, Huang H et al. SET‐domain bacterial effectors target heterochromatin protein 1 to activate host rDNA transcription. EMBO Rep 2013; 14:733–740 [View Article] [PubMed]
    [Google Scholar]
  290. Rolando M, Sanulli S, Rusniok C, Gomez-Valero L, Bertholet C et al. Legionella pneumophila effector RomA uniquely modifies host chromatin to repress gene expression and promote intracellular bacterial replication. Cell Host Microbe 2013; 13:395–405 [View Article] [PubMed]
    [Google Scholar]
  291. Tolsma TO, Hansen JC. Post-translational modifications and chromatin dynamics. Essays Biochem 2019; 63:89–96 [View Article] [PubMed]
    [Google Scholar]
  292. Schuhmacher MK, Rolando M, Bröhm A, Weirich S, Kudithipudi S et al. The Legionella pneumophila methyltransferase RomA methylates also non-histone proteins during infection. Journal of Molecular Biology 2018; 430:1912–1925 [View Article] [PubMed]
    [Google Scholar]
  293. Cramer P. Organization and regulation of gene transcription. Nature 2019; 573:45–54 [View Article] [PubMed]
    [Google Scholar]
  294. Schier AC, Taatjes DJ. Structure and mechanism of the RNA polymerase II transcription machinery. Genes Dev 2020; 34:465–488 [View Article] [PubMed]
    [Google Scholar]
  295. Jonkers I, Lis JT. Getting up to speed with transcription elongation by RNA polymerase II. Nat Rev Mol Cell Biol 2015; 16:167–177 [View Article] [PubMed]
    [Google Scholar]
  296. McNamara RP, Bacon CW, D’Orso I. Transcription elongation control by the 7SK snRNP complex: Releasing the pause. Cell Cycle 2016; 15:2115–2123 [View Article] [PubMed]
    [Google Scholar]
  297. Schuelein R, Spencer H, Dagley LF, Li P fei, Luo L et al. Targeting of RNA Polymerase II by a nuclear Legionella pneumophila Dot/Icm effector SnpL. Cellular Microbiology 2018; 20:e12852 [View Article] [PubMed]
    [Google Scholar]
  298. Von Dwingelo J, Chung IYW, Price CT, Li L, Jones S et al. Interaction of the ankyrin H core effector of Legionella with the host LARP7 component of the 7SK snRNP complex. mBio 2019; 10:e01942-19 [View Article] [PubMed]
    [Google Scholar]
  299. Habyarimana F, Al-Khodor S, Kalia A, Graham JE, Price CT et al. Role for the Ankyrin eukaryotic-like genes of Legionella pneumophila in parasitism of protozoan hosts and human macrophages. Environ Microbiol 2008; 10:1460–1474 [View Article] [PubMed]
    [Google Scholar]
  300. Habyarimana F, Price CT, Santic M, Al-Khodor S, Kwaik YA. Molecular characterization of the Dot/Icm-translocated AnkH and AnkJ eukaryotic-like effectors of Legionella pneumophila. Infect Immun 2010; 78:1123–1134 [View Article] [PubMed]
    [Google Scholar]
  301. Barry KC, Fontana MF, Portman JL, Dugan AS, Vance RE. IL-1α signaling initiates the inflammatory response to virulent Legionella pneumophila in vivo. J Immunol 2013; 190:6329–6339 [View Article] [PubMed]
    [Google Scholar]
  302. Belyi I, Popoff MR, Cianciotto NP. Purification and characterization of a UDP-glucosyltransferase produced by Legionella pneumophila. Infect Immun 2003; 71:181–186 [View Article] [PubMed]
    [Google Scholar]
  303. Belyi Y, Niggeweg R, Opitz B, Vogelsgesang M, Hippenstiel S et al. Legionella pneumophila glucosyltransferase inhibits host elongation factor 1A. Proc Natl Acad Sci USA 2006; 103:16953–16958 [View Article] [PubMed]
    [Google Scholar]
  304. Belyi Y, Tabakova I, Stahl M, Aktories K. Lgt: a family of cytotoxic glucosyltransferases produced by Legionella pneumophila. J Bacteriol 2008; 190:3026–3035 [View Article] [PubMed]
    [Google Scholar]
  305. Abbas W, Kumar A, Herbein G. The eef1a proteins: at the crossroads of oncogenesis. Apopt Viral Infect [Review] Front Oncol 2015; 5: [View Article]
    [Google Scholar]
  306. Mills A, Gago F. On the need to tell apart fraternal twins eEF1A1 and eEF1A2, and their respective outfits. Int J Mol Sci 2021; 22:13 [View Article] [PubMed]
    [Google Scholar]
  307. Belyi Y, Stahl M, Sovkova I, Kaden P, Luy B et al. Region of elongation factor 1A1 involved in substrate recognition by Legionella pneumophila glucosyltransferase Lgt1: identification of Lgt1 as a retaining glucosyltransferase. J Biol Chem 2009; 284:20167–20174 [View Article]
    [Google Scholar]
  308. Shen X, Banga S, Liu Y, Xu L, Gao P et al. Targeting eEF1A by a Legionella pneumophila effector leads to inhibition of protein synthesis and induction of host stress response. Cell Microbiol 2009; 11:911–926 [View Article] [PubMed]
    [Google Scholar]
  309. McCloskey A, Perri K, Chen T, Han A, Luo Z-Q. The metaeffector MesI regulates the activity of the Legionella effector SidI through direct protein-protein interactions. Microbes Infect 2021; 23:104794 [View Article] [PubMed]
    [Google Scholar]
  310. Flayhan A, Bergé C, Baïlo N, Doublet P, Bayliss R et al. The structure of Legionella pneumophila LegK4 type four secretion system (T4SS) effector reveals a novel dimeric eukaryotic-like kinase. Sci Rep 2015; 5:14602 [View Article] [PubMed]
    [Google Scholar]
  311. Moss SM, Taylor IR, Ruggero D, Gestwicki JE, Shokat KM et al. A Legionella pneumophila kinase phosphorylates the Hsp70 chaperone family to inhibit eukaryotic protein synthesis. Cell Host & Microbe 2019; 25:454–462 [View Article] [PubMed]
    [Google Scholar]
  312. Barry KC, Ingolia NT, Vance RE. Global analysis of gene expression reveals mRNA superinduction is required for the inducible immune response to a bacterial pathogen. Elife 2017; 6:e22707 [View Article] [PubMed]
    [Google Scholar]
  313. De Leon JA, Qiu J, Nicolai CJ, Counihan JL, Barry KC et al. Positive and negative regulation of the master metabolic regulator mTORC1 by two families of Legionella pneumophila effectors. Cell Reports 2017; 21:2031–2038 [View Article] [PubMed]
    [Google Scholar]
  314. Ivanov SS, Roy CR. Pathogen signatures activate a ubiquitination pathway that modulates the function of the metabolic checkpoint kinase mTOR. Nat Immunol 2013; 14:1219–1228 [View Article] [PubMed]
    [Google Scholar]
  315. Sol A, Lipo E, de Jesús-Díaz DA, Murphy C, Devereux M et al. Legionella pneumophila translocated translation inhibitors are required for bacterial-induced host cell cycle arrest. Proc Natl Acad Sci USA 2019; 116:3221–3228 [View Article] [PubMed]
    [Google Scholar]
  316. de Jesús-Díaz DA, Murphy C, Sol A, Dorer M, Isberg RR. Host cell S phase restricts Legionella pneumophila intracellular replication by destabilizing the membrane-bound replication compartment. mBio 2017; 8:e02345–02316 [View Article] [PubMed]
    [Google Scholar]
  317. Asrat S, Dugan AS, Isberg RR. The frustrated host response to Legionella pneumophila is bypassed by MyD88-dependent translation of pro-inflammatory cytokines. PLoS Pathog 2014; 10:e1004229 [View Article] [PubMed]
    [Google Scholar]
  318. Jayaraj GG, Hipp MS, Hartl FU. Functional modules of the proteostasis network. Cold Spring Harb Perspect Biol 2020; 12:a033951 [View Article] [PubMed]
    [Google Scholar]
  319. Hetz C, Zhang K, Kaufman RJ. Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol 2020; 21:421–438 [View Article] [PubMed]
    [Google Scholar]
  320. Hempstead AD, Isberg RR. Inhibition of host cell translation elongation by Legionella pneumophila blocks the host cell unfolded protein response. Proc Natl Acad Sci U S A 2015; 112:E6790–7 [View Article] [PubMed]
    [Google Scholar]
  321. Treacy-Abarca S, Mukherjee S. Legionella suppresses the host unfolded protein response via multiple mechanisms. Nat Commun 2015; 6:7887 [View Article] [PubMed]
    [Google Scholar]
  322. Ibe NU, Subramanian A, Mukherjee S. Non-canonical activation of the ER stress sensor ATF6 by Legionella pneumophila effector. Life Sci Alliance 2021; 4:e202101247 [View Article] [PubMed]
    [Google Scholar]
  323. Valvezan AJ, Manning BD. Molecular logic of mTORC1 signalling as a metabolic rheostat. Nat Metab 2019; 1:321–333 [View Article] [PubMed]
    [Google Scholar]
  324. Beck WHJ, Kim D, Das J, Yu H, Smolka MB et al. Glucosylation by the Legionella effector SetA promotes the nuclear localization of the transcription factor TFEB. iScience 2020; 23:101300 [View Article] [PubMed]
    [Google Scholar]
  325. Prevost MS, Pinotsis N, Dumoux M, Hayward RD, Waksman G. The Legionella effector WipB is a translocated Ser/Thr phosphatase that targets the host lysosomal nutrient sensing machinery. Sci Rep 2017; 7:9450 [View Article] [PubMed]
    [Google Scholar]
  326. Sharma V, Verma S, Seranova E, Sarkar S, Kumar D. Selective autophagy and xenophagy in infection and disease. Front Cell Dev Biol 2018; 6:147 [View Article] [PubMed]
    [Google Scholar]
  327. Thomas DR, Newton P, Lau N, Newton HJ. Interfering with autophagy: the opposing strategies deployed by Legionella pneumophila and Coxiella burnetii effector proteins. Front Cell Infect Microbiol 2020; 10:599762 [View Article] [PubMed]
    [Google Scholar]
  328. Yin Z, Popelka H, Lei Y, Yang Y, Klionsky DJ. The roles of ubiquitin in mediating autophagy. Cells 2020; 9:2025 [View Article] [PubMed]
    [Google Scholar]
  329. Omotade TO, Roy CR, Brodsky IE. Legionella pneumophila excludes autophagy adaptors from the ubiquitin-labeled vacuole in which it resides. Infect Immun 2020; 88:e00793–00719 [View Article] [PubMed]
    [Google Scholar]
  330. Harvald EB, Olsen ASB, Færgeman NJ. Autophagy in the light of sphingolipid metabolism. Apoptosis 2015; 20:658–670 [View Article] [PubMed]
    [Google Scholar]
  331. Kumar S, Gu Y, Abudu YP, Bruun JA, Jain A et al. Phosphorylation of syntaxin 17 by TBK1 controls autophagy initiation. Dev Cell 2019; 49:130–144 [View Article] [PubMed]
    [Google Scholar]
  332. Viret C, Faure M. Regulation of syntaxin 17 during autophagosome maturation. Trends Cell Biol 2019; 29:1–3 [View Article] [PubMed]
    [Google Scholar]
  333. Choy A, Dancourt J, Mugo B, O’Connor TJ, Isberg RR et al. The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation. Science 2012; 338:1072–1076 [View Article] [PubMed]
    [Google Scholar]
  334. Lee YK, Lee JA. Role of the mammalian ATG8/LC3 family in autophagy: differential and compensatory roles in the spatiotemporal regulation of autophagy. BMB Rep 2016; 49:424–430 [View Article] [PubMed]
    [Google Scholar]
  335. Yang A, Pantoom S, Wu Y-W. Elucidation of the anti-autophagy mechanism of the Legionella effector RavZ using semisynthetic LC3 proteins. Elife 2017; 6:e23905 [View Article]
    [Google Scholar]
  336. Mei L, Qiu X, Jiang C, Yang A. Host delipidation mediated by bacterial effectors. Trends Microbiol 2021; 29:238–250 [View Article] [PubMed]
    [Google Scholar]
  337. Kubori T, Bui XT, Hubber A, Nagai H. Legionella RavZ Plays a role in preventing ubiquitin recruitment to bacteria-containing vacuoles. Front Cell Infect Microbiol 2017; 7: [View Article] [PubMed]
    [Google Scholar]
  338. Khweek AA, Caution K, Akhter A, Abdulrahman BA, Tazi M et al. A bacterial protein promotes the recognition of the Legionella pneumophila vacuole by autophagy. Eur J Immunol 2013; 43:1333–1344 [View Article] [PubMed]
    [Google Scholar]
  339. Ngwaga T, Chauhan D, Shames SR. Mechanisms of effector-mediated immunity revealed by the accidental human pathogen Legionella pneumophila. Front Cell Infect Microbiol 2021; 10: [View Article] [PubMed]
    [Google Scholar]
  340. Ngwaga T, Hydock AJ, Ganesan S, Shames SR, DiRita VJ. Potentiation of cytokine-mediated restriction of Legionella intracellular replication by a Dot/Icm-translocated effector. J Bacteriol 2019; 201:14 [View Article] [PubMed]
    [Google Scholar]
  341. Price C, Jones S, Mihelcic M, Santic M, Abu Kwaik Y. Paradoxical pro-inflammatory responses by human macrophages to an amoebae host-adapted Legionella effector. Cell Host Microbe 2020; 27:571–584 [View Article] [PubMed]
    [Google Scholar]
  342. Byrne B, Swanson MS. Expression of Legionella pneumophila virulence traits in response to growth conditions. Infect Immun 1998; 66:3029–3034 [View Article]
    [Google Scholar]
  343. Oliva G, Sahr T, Buchrieser C. The life cycle of L. pneumophila: cellular differentiation is linked to virulence and metabolism. Front Cell Infect Microbiol 2018; 8:3 [View Article] [PubMed]
    [Google Scholar]
  344. Abeyrathna SS, Abeyrathna NS, Thai NK, Sarkar P, D’Arcy S et al. IroT/MavN is a Legionella transmembrane Fe(II) transporter: metal selectivity and translocation kinetics revealed by in vitro real-time transport. Biochemistry 2019; 58:4337–4342 [View Article] [PubMed]
    [Google Scholar]
  345. Christenson ET, Isaac DT, Yoshida K, Lipo E, Kim J-S et al. The iron-regulated vacuolar Legionella pneumophila MavN protein is a transition-metal transporter. Proc Natl Acad Sci U S A 2019; 116:17775–17785 [View Article] [PubMed]
    [Google Scholar]
  346. Isaac DT, Laguna RK, Valtz N, Isberg RR. MavN is a Legionella pneumophila vacuole-associated protein required for efficient iron acquisition during intracellular growth. Proc Natl Acad Sci USA 2015; 112:E5208–E5217 [View Article] [PubMed]
    [Google Scholar]
  347. Portier E, Zheng H, Sahr T, Burnside DM, Mallama C et al. IroT/mavN, a new iron-regulated gene involved in Legionella pneumophila virulence against amoebae and macrophages. Environ Microbiol 2015; 17:1338–1350 [View Article] [PubMed]
    [Google Scholar]
  348. O’Connor TJ, Zheng H, VanRheenen SM, Ghosh S, Cianciotto NP et al. Iron limitation triggers early egress by the intracellular bacterial pathogen Legionella pneumophila. Infect Immun 2016; 84:2185–2197 [View Article] [PubMed]
    [Google Scholar]
  349. Hood MI, Skaar EP. Nutritional immunity: transition metals at the pathogen-host interface. Nat Rev Microbiol 2012; 10:525–537 [View Article] [PubMed]
    [Google Scholar]
  350. Weber S, Stirnimann CU, Wieser M, Frey D, Meier R et al. A type IV translocated Legionella cysteine phytase counteracts intracellular growth restriction by phytate. Journal of Biological Chemistry 2014; 289:34175–34188 [View Article] [PubMed]
    [Google Scholar]
  351. Alli OA, Gao LY, Pedersen LL, Zink S, Radulic M et al. Temporal pore formation-mediated egress from macrophages and alveolar epithelial cells by Legionella pneumophila. Infect Immun 2000; 68:6431–6440 [View Article] [PubMed]
    [Google Scholar]
  352. Chen J, de Felipe KS, Clarke M, Lu H, Anderson OR et al. Legionella effectors that promote nonlytic release from protozoa. Science 2004; 303:1358–1361 [View Article] [PubMed]
    [Google Scholar]
  353. Molmeret M, Alli OAT, Zink S, Flieger A, Cianciotto NP et al. icmT is essential for pore formation-mediated egress of Legionella pneumophila from mammalian and protozoan cells. Infect Immun 2002; 70:69–78 [View Article] [PubMed]
    [Google Scholar]
  354. Molmeret M, Abu Kwaik Y. How does Legionella pneumophila exit the host cell?. Trends Microbiol 2002; 10:258–260 [View Article] [PubMed]
    [Google Scholar]
  355. Chen J, Reyes M, Clarke M, Shuman HA. Host cell-dependent secretion and translocation of the LepA and LepB effectors of Legionella pneumophila. Cell Microbiol 2007; 9:1660–1671 [View Article] [PubMed]
    [Google Scholar]
  356. Striednig B, Lanner U, Niggli S, Katic A, Vormittag S et al. Quorum sensing governs a transmissive Legionella subpopulation at the pathogen vacuole periphery. EMBO Reports 2021; 22:e52972 [View Article] [PubMed]
    [Google Scholar]
  357. Chung IYW, Li L, Tyurin O, Gagarinova A, Wibawa R et al. Structural and functional study of Legionella pneumophila effector RavA. Protein Sci 2021; 30:940–955 [View Article] [PubMed]
    [Google Scholar]
  358. Young BH, Caldwell TA, McKenzie AM, Kokhan O, Berndsen CE. Characterization of the structure and catalytic activity of Legionella pneumophila VipF. Proteins 2016; 84:1422–1430 [View Article] [PubMed]
    [Google Scholar]
  359. Haenssler E, Ramabhadran V, Murphy CS, Heidtman MI, Isberg RR. Endoplasmic reticulum tubule protein reticulon 4 associates with the Legionella pneumophila vacuole and with translocated substrate Ceg9. Infect Immun 2015; 83:3479–3489 [View Article] [PubMed]
    [Google Scholar]
  360. Campanacci V, Mukherjee S, Roy CR, Cherfils J. Structure of the Legionella effector AnkX reveals the mechanism of phosphocholine transfer by the FIC domain. EMBO J 2013; 32:1469–1477 [View Article] [PubMed]
    [Google Scholar]
  361. Beyrakhova K, Li L, Xu C, Gagarinova A, Cygler M. Legionella pneumophila effector Lem4 is a membrane-associated protein tyrosine phosphatase. Journal of Biological Chemistry 2018; 293:13044–13058 [View Article] [PubMed]
    [Google Scholar]
  362. Hubber A, Arasaki K, Nakatsu F, Hardiman C, Lambright D et al. The machinery at endoplasmic reticulum-plasma membrane contact sites contributes to spatial regulation of multiple Legionella effector proteins. PLoS Pathog 2014; 10:e1004222 [View Article] [PubMed]
    [Google Scholar]
  363. Lin Y-H, Lucas M, Evans TR, Abascal-Palacios G, Doms AG et al. RavN is a member of a previously unrecognized group of Legionella pneumophila E3 ubiquitin ligases. PLoS Pathog 2018; 14:e1006897 [View Article] [PubMed]
    [Google Scholar]
  364. Arasaki K, Mikami Y, Shames SR, Inoue H, Wakana Y et al. Legionella effector Lpg1137 shuts down ER-mitochondria communication through cleavage of syntaxin 17. Nat Commun 2017; 8:15406 [View Article] [PubMed]
    [Google Scholar]
  365. Song L, Luo J, Wang H, Huang D, Tan Y et al. Legionella pneumophila regulates host cell motility by targeting Phldb2 with a 14-3-3ζ-dependent protease effector. eLife 2022; 11:e73220 [View Article] [PubMed]
    [Google Scholar]
  366. Belyi Y, Tartakovskaya D, Tais A, Fitzke E, Tzivelekidis T et al. Elongation factor 1A is the target of growth inhibition in yeast caused by Legionella pneumophila glucosyltransferase Lgt1. J Biol Chem 2012; 287:26029–26037 [View Article] [PubMed]
    [Google Scholar]
  367. Hurtado-Guerrero R, Zusman T, Pathak S, Ibrahim AFM, Shepherd S et al. Molecular mechanism of elongation factor 1A inhibition by a Legionella pneumophila glycosyltransferase. Biochem J 2010; 426:281–292 [View Article] [PubMed]
    [Google Scholar]
  368. Price CTD, Al-Quadan T, Santic M, Jones SC, Abu Kwaik Y. Exploitation of conserved eukaryotic host cell farnesylation machinery by an F-box effector of Legionella pneumophila. J Exp Med 2010; 207:1713–1726 [View Article] [PubMed]
    [Google Scholar]
  369. Bennett TL, Kraft SM, Reaves BJ, Mima J, O’Brien KM et al. LegC3, an effector protein from Legionella pneumophila, inhibits homotypic yeast vacuole fusion in vivo and in vitro. PLoS ONE 2013; 8:e56798 [View Article] [PubMed]
    [Google Scholar]
  370. Yao D, Cherney M, Cygler M. Structure of the N-terminal domain of the effector protein LegC3 from Legionella pneumophila. Acta Crystallogr D Biol Crystallogr 2014; 70:436–441 [View Article] [PubMed]
    [Google Scholar]
  371. Amor JC, Swails J, Zhu X, Roy CR, Nagai H et al. The structure of RalF, an ADP-ribosylation factor guanine nucleotide exchange factor from Legionella pneumophila, reveals the presence of a cap over the active site. J Biol Chem 2005; 280:1392–1400 [View Article] [PubMed]
    [Google Scholar]
  372. Simon S, Wagner MA, Rothmeier E, Müller-Taubenberger A, Hilbi H. Icm/Dot-dependent inhibition of phagocyte migration by Legionella is antagonized by a translocated Ran GTPase activator. Cell Microbiol 2014; 16:977–992 [View Article] [PubMed]
    [Google Scholar]
  373. Heidtman M, Chen EJ, Moy MY, Isberg RR. Large-scale identification of Legionella pneumophila Dot/Icm substrates that modulate host cell vesicle trafficking pathways. Cell Microbiol 2009; 11:230–248 [View Article] [PubMed]
    [Google Scholar]
  374. Hervet E, Charpentier X, Vianney A, Lazzaroni JC, Gilbert C et al. Protein kinase LegK2 is a type IV secretion system effector involved in endoplasmic reticulum recruitment and intracellular replication of Legionella pneumophila. Infect Immun 2011; 79:1936–1950 [View Article] [PubMed]
    [Google Scholar]
  375. O’Brien KM, Lindsay EL, Starai VJ, Abu Kwaik Y. The Legionella pneumophila effector protein, LegC7, alters yeast endosomal trafficking. PLoS ONE 2015; 10:e0116824 [View Article] [PubMed]
    [Google Scholar]
  376. Schoebel S, Oesterlin LK, Blankenfeldt W, Goody RS, Itzen A. RabGDI displacement by DrrA from Legionella is a consequence of its guanine nucleotide exchange activity. Mol Cell 2009; 36:1060–1072 [View Article] [PubMed]
    [Google Scholar]
  377. Mishra AK, Del Campo CM, Collins RE, Roy CR, Lambright DG. The Legionella pneumophila GTPase activating protein LepB accelerates Rab1 deactivation by a non-canonical hydrolytic mechanism. J Biol Chem 2013; 288:24000–24011 [View Article] [PubMed]
    [Google Scholar]
  378. Yu Q, Hu L, Yao Q, Zhu Y, Dong N et al. Structural analyses of Legionella LepB reveal a new GAP fold that catalytically mimics eukaryotic RasGAP. Cell Res 2013; 23:775–787 [View Article] [PubMed]
    [Google Scholar]
  379. Weber SS, Ragaz C, Reus K, Nyfeler Y, Hilbi H et al. Legionella pneumophila exploits PI(4)P to anchor secreted effector proteins to the replicative vacuole. PLoS Pathog 2006; 2:e46 [View Article] [PubMed]
    [Google Scholar]
  380. Voth K, Pasricha S, Chung IYW, Wibawa RR, Zainudin ENHE et al. Structural and functional characterization of Legionella pneumophila Effector MavL. Biomolecules 2021; 11:12 [View Article] [PubMed]
    [Google Scholar]
  381. Gomez-Valero L, Rusniok C, Rolando M, Neou M, Dervins-Ravault D et al. Comparative analyses of Legionella species identifies genetic features of strains causing Legionnaires’ disease. Genome Biol 2014; 15:505 [View Article] [PubMed]
    [Google Scholar]
  382. Sreelatha A, Nolan C, Park BC, Pawłowski K, Tomchick DR et al. A Legionella effector kinase is activated by host inositol hexakisphosphate. J Biol Chem 2020; 295:6214–6224 [View Article] [PubMed]
    [Google Scholar]
  383. Pruneda JN, Durkin CH, Geurink PP, Ovaa H, Santhanam B et al. The molecular basis for ubiquitin and ubiquitin-like specificities in bacterial effector proteases. Mol Cell 2016; 63:261–276 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001187
Loading
/content/journal/micro/10.1099/mic.0.001187
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error