1887

Abstract

Protective symbionts can defend hosts from parasites through several mechanisms, from direct interference to modulating host immunity, with subsequent effects on host and parasite fitness. While research on symbiont-mediated immune priming (SMIP) has focused on ecological impacts and agriculturally important organisms, the evolutionary implications of SMIP are less clear. Here, we review recent advances made in elucidating the ecological and molecular mechanisms by which SMIP occurs. We draw on current works to discuss the potential for this phenomenon to drive host, parasite, and symbiont evolution. We also suggest approaches that can be used to address questions regarding the impact of immune priming on host-microbe dynamics and population structures. Finally, due to the transient nature of some symbionts involved in SMIP, we discuss what it means to be a protective symbiont from ecological and evolutionary perspectives and how such interactions can affect long-term persistence of the symbiosis.

Funding
This study was supported by the:
  • European Research Council (Award COEVOPRO 802242)
    • Principle Award Recipient: KaylaC. King
  • National Science Foundation (Award 1907076)
    • Principle Award Recipient: KimL Hoang
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001181
2022-04-20
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/168/4/mic001181.html?itemId=/content/journal/micro/10.1099/mic.0.001181&mimeType=html&fmt=ahah

References

  1. de Roode JC, Lefèvre T, Hunter MD. Ecology. Self-medication in animals. Science 2013; 340:150–151 [View Article] [PubMed]
    [Google Scholar]
  2. Hart BL, Hart LA. How mammals stay healthy in nature: the evolution of behaviours to avoid parasites and pathogens. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170205 [View Article] [PubMed]
    [Google Scholar]
  3. Boehm T. Evolution of vertebrate immunity. Curr Biol 2012; 22:R722–32 [View Article] [PubMed]
    [Google Scholar]
  4. Robertson M. Innate immunity. Curr Biol 1998; 8:R595–7 [View Article] [PubMed]
    [Google Scholar]
  5. Milutinović B, Kurtz J. Immune memory in invertebrates. Semin Immunol 2016; 28:328–342 [View Article] [PubMed]
    [Google Scholar]
  6. Pradeu T, Du Pasquier L. Immunological memory: What’s in a name?. Immunol Rev 2018; 283:7–20 [View Article] [PubMed]
    [Google Scholar]
  7. Kitano H, Oda K. Robustness trade-offs and host-microbial symbiosis in the immune system. Mol Syst Biol 2006; 2:1–10 [View Article] [PubMed]
    [Google Scholar]
  8. King KC. Defensive symbionts. Curr Biol 2019; 29:R78–R80 [View Article] [PubMed]
    [Google Scholar]
  9. Ford SA, King KC. Harnessing the Power of Defensive Microbes: Evolutionary Implications in Nature and Disease Control. PLoS Pathog 2016; 12:e1005465 [View Article] [PubMed]
    [Google Scholar]
  10. Vorburger C, Perlman SJ. The role of defensive symbionts in host-parasite coevolution. Biol Rev Camb Philos Soc 2018; 93:1747–1764 [View Article] [PubMed]
    [Google Scholar]
  11. Gerardo NM, Parker BJ. Mechanisms of symbiont-conferred protection against natural enemies: an ecological and evolutionary framework. Curr Opin Insect Sci 2014; 4:8–14 [View Article] [PubMed]
    [Google Scholar]
  12. Selosse MA, Bessis A, Pozo MJ. Microbial priming of plant and animal immunity: symbionts as developmental signals. Trends Microbiol 2014; 22:607–613 [View Article] [PubMed]
    [Google Scholar]
  13. King KC, Brockhurst MA, Vasieva O, Paterson S, Betts A et al. Rapid evolution of microbe-mediated protection against pathogens in a worm host. ISME J 2016; 10:1915–1924 [View Article] [PubMed]
    [Google Scholar]
  14. Caragata EP, Rancès E, Hedges LM, Gofton AW, Johnson KN et al. Dietary cholesterol modulates pathogen blocking by Wolbachia. PLoS Pathog 2013; 9:e1003459 [View Article] [PubMed]
    [Google Scholar]
  15. Melillo D, Marino R, Italiani P, Boraschi D. Innate immune memory in invertebrate metazoans: a critical appraisal. Front Immunol 2018; 9:1915 [View Article] [PubMed]
    [Google Scholar]
  16. Chiu L, Bazin T, Truchetet M-E, Schaeverbeke T, Delhaes L et al. Protective microbiota: from localized to long-reaching co-immunity. Front Immunol 2017; 8:1–19 [View Article]
    [Google Scholar]
  17. Wong ZS, Hedges LM, Brownlie JC, Johnson KN. Wolbachia-mediated antibacterial protection and immune gene regulation in Drosophila. PLoS One 2011; 6:e25430 [View Article] [PubMed]
    [Google Scholar]
  18. Rejeb IB, Pastor V, Mauch-Mani B. Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plants (Basel) 2014; 3:458–475 [View Article] [PubMed]
    [Google Scholar]
  19. Sinclair BJ, Ferguson LV, Salehipour-shirazi G, MacMillan HA. Cross-tolerance and cross-talk in the cold: relating low temperatures to desiccation and immune stress in insects. Integr Comp Biol 2013; 53:545–556 [View Article] [PubMed]
    [Google Scholar]
  20. Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y et al. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 2006; 9:436–442 [View Article] [PubMed]
    [Google Scholar]
  21. Fowler AE, Irwin RE, Adler LS. Parasite defense mechanisms in bees: behavior, immunity, antimicrobials, and symbionts. Emerg Top Life Sci 2020; 4:59–76 [View Article] [PubMed]
    [Google Scholar]
  22. Kitano H, Oda K. Self-extending symbiosis: a mechanism for increasing robustness through evolution. Biol Theory 2015; 1:61–66 [View Article]
    [Google Scholar]
  23. Wund MA. Assessing the impacts of phenotypic plasticity on evolution. Integr Comp Biol 2012; 52:5–15 [View Article] [PubMed]
    [Google Scholar]
  24. Lochmiller RL, Deerenberg C. Trade-offs in evolutionary immunology: just what is the cost of immunity?. Oikos 2000; 88:87–98 [View Article]
    [Google Scholar]
  25. Gerardo NM, Hoang KL, Stoy KS. Evolution of animal immunity in the light of beneficial symbioses. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190601 [View Article] [PubMed]
    [Google Scholar]
  26. Gerardo NM, Altincicek B, Anselme C, Atamian H, Barribeau SM et al. Immunity and other defenses in pea aphids, Acyrthosiphon pisum. Genome Biol 2010; 11:R21 [View Article]
    [Google Scholar]
  27. Oliver KM, Degnan PH, Hunter MS, Moran NA. Bacteriophages encode factors required for protection in a symbiotic mutualism. Science 2009; 325:992–994 [View Article] [PubMed]
    [Google Scholar]
  28. Russell JA, Moran NA. Costs and benefits of symbiont infection in aphids: variation among symbionts and across temperatures. Proc Biol Sci 2006; 273:603–610 [View Article] [PubMed]
    [Google Scholar]
  29. Scarborough CL, Ferrari J, Godfray HCJ. Aphid protected from pathogen by endosymbiont. Science 2005; 310:1781 [View Article] [PubMed]
    [Google Scholar]
  30. Metcalf CJE, Koskella B. Protective microbiomes can limit the evolution of host pathogen defense. Evol Lett 2019; 3:534–543 [View Article] [PubMed]
    [Google Scholar]
  31. Ford SA, King KC. In vivo microbial coevolution favors host protection and plastic downregulation of immunity. Mol Biol Evol 2021; 38:1330–1338 [View Article] [PubMed]
    [Google Scholar]
  32. Martinez J, Cogni R, Cao C, Smith S, Illingworth CJR et al. Addicted? Reduced host resistance in populations with defensive symbionts. Proc Biol Sci 2016; 283:20160778 [View Article] [PubMed]
    [Google Scholar]
  33. Ferro K, Peuß R, Yang W, Rosenstiel P, Schulenburg H et al. Experimental evolution of immunological specificity. Proc Natl Acad Sci U S A 2019; 116:20598–20604 [View Article] [PubMed]
    [Google Scholar]
  34. Pham LN, Dionne MS, Shirasu-Hiza M, Schneider DS. A specific primed immune response in Drosophila is dependent on phagocytes. PLoS Pathog 2007; 3:e26 [View Article] [PubMed]
    [Google Scholar]
  35. Montalvo-Katz S, Huang H, Appel MD, Berg M, Shapira M. Association with soil bacteria enhances p38-dependent infection resistance in Caenorhabditis elegans. Infect Immun 2013; 81:514–520 [View Article] [PubMed]
    [Google Scholar]
  36. Herren JK, Lemaitre B. Spiroplasma and host immunity: activation of humoral immune responses increases endosymbiont load and susceptibility to certain Gram-negative bacterial pathogens in Drosophila melanogaster. Cell Microbiol 2011; 13:1385–1396 [View Article]
    [Google Scholar]
  37. Hurst GDD, Anbutsu H, Kutsukake M, Fukatsu T. Hidden from the host: Spiroplasma bacteria infecting Drosophila do not cause an immune response, but are suppressed by ectopic immune activation. Insect Mol Biol 2003; 12:93–97 [View Article]
    [Google Scholar]
  38. Hamilton PT, Perlman SJ, Knoll LJ. Host defense via symbiosis in Drosophila. PLoS Pathog 2013; 9:e1003808 [View Article]
    [Google Scholar]
  39. Rancès E, Ye YH, Woolfit M, McGraw EA, O’Neill SL. The relative importance of innate immune priming in Wolbachia-mediated dengue interference. PLoS Pathog 2012; 8:e1002548 [View Article]
    [Google Scholar]
  40. Medzhitov R, Schneider DS, Soares MP. Disease tolerance as a defense strategy. Science 2012; 335:936–941 [View Article]
    [Google Scholar]
  41. Armitage SA, Genersch E, McMahon DP, Rafaluk-Mohr C, Rolff J. Tripartite interactions: how immunity, microbiota and pathogens interact and affect pathogen virulence evolution. Curr Opin Insect Sci 2022; 50:100871 [View Article] [PubMed]
    [Google Scholar]
  42. Rafaluk-Mohr C, Gerth M, Sealey JE, Ekroth AKE, Aboobaker AA et al. Microbial protection favors parasite tolerance and alters host-parasite coevolutionary dynamics. Curr Biol 2022 [View Article]
    [Google Scholar]
  43. Engel P, Kwong WK, McFrederick Q, Anderson KE, Barribeau SM et al. The bee microbiome: impact on bee health and model for evolution and ecology of host-microbe interactions. mBio 2016; 7:e02164–15 [View Article] [PubMed]
    [Google Scholar]
  44. Cross ML. Microbes versus microbes: immune signals generated by probiotic lactobacilli and their role in protection against microbial pathogens. FEMS Immunol Med Microbiol 2002; 34:245–253 [View Article] [PubMed]
    [Google Scholar]
  45. Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009; 139:485–498 [View Article] [PubMed]
    [Google Scholar]
  46. Clarke TB, Davis KM, Lysenko ES, Zhou AY, Yu Y et al. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med 2010; 16:228–231 [View Article]
    [Google Scholar]
  47. Hoang KL, Morran LT, Gerardo NM. Experimental evolution as an underutilized tool for studying beneficial animal–microbe interactions. Front Microbiol 2016; 07:1–16 [View Article] [PubMed]
    [Google Scholar]
  48. Chandler JA, Lang JM, Bhatnagar S, Eisen JA, Kopp A. Bacterial communities of diverse Drosophila species: ecological context of a host-microbe model system. PLoS Genet 2011; 7:e1002272 [View Article]
    [Google Scholar]
  49. Frézal L, Félix MA. C. elegans outside the Petri dish. elife 2015; 4:1–14 [View Article] [PubMed]
    [Google Scholar]
  50. Little TJ, Shuker DM, Colegrave N, Day T, Graham AL. The coevolution of virulence: tolerance in perspective. PLoS Pathog 2010; 6:e1001006 [View Article]
    [Google Scholar]
  51. Gandon S, Michalakis Y. Evolution of parasite virulence against qualitative or quantitative host resistance. Proc Biol Sci 2000; 267:985–990 [View Article] [PubMed]
    [Google Scholar]
  52. Morran LT, Schmidt OG, Gelarden IA, Parrish RC, Lively CM. Running with the Red Queen: host-parasite coevolution selects for biparental sex. Science 2011; 333:216–218 [View Article] [PubMed]
    [Google Scholar]
  53. Jaenike J, Unckless R, Cockburn SN, Boelio LM, Perlman SJ. Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont. Science 2010; 329:212–215 [View Article] [PubMed]
    [Google Scholar]
  54. Parker BJ, Garcia JR, Gerardo NM. Genetic variation in resistance and fecundity tolerance in a natural host-pathogen interaction. Evolution 2014; 68:2421–2429 [View Article] [PubMed]
    [Google Scholar]
  55. Vorburger C, Sandrock C, Gouskov A, Castañeda LE, Ferrari J. Genotypic variation and the role of defensive endosymbionts in an all-parthenogenetic host-parasitoid interaction. Evolution 2009; 63:1439–1450 [View Article] [PubMed]
    [Google Scholar]
  56. Kubinak JL, Potts WK. Host resistance influences patterns of experimental viral adaptation and virulence evolution. Virulence 2013; 4:410–418 [View Article] [PubMed]
    [Google Scholar]
  57. Fleming-Davies AE, Dukic V, Andreasen V, Dwyer G. Effects of host heterogeneity on pathogen diversity and evolution. Ecol Lett 2015; 18:1252–1261 [View Article] [PubMed]
    [Google Scholar]
  58. Hafer-Hahmann N, Vorburger C. Parasitoids as drivers of symbiont diversity in an insect host. Ecol Lett 2020; 23:1232–1241 [View Article] [PubMed]
    [Google Scholar]
  59. Burghardt LT, Epstein B, Guhlin J, Nelson MS, Taylor MR et al. Select and resequence reveals relative fitness of bacteria in symbiotic and free-living environments. Proc Natl Acad Sci USA 2018; 115:2425–2430 [View Article]
    [Google Scholar]
  60. Soto W, Nishiguchi MK. Microbial experimental evolution as a novel research approach in the Vibrionaceae and squid-Vibrio symbiosis. Front Microbiol 2014; 5:593 [View Article] [PubMed]
    [Google Scholar]
  61. Barroso-Batista J, Sousa A, Lourenço M, Bergman M-L, Sobral D et al. The first steps of adaptation of Escherichia coli to the gut are dominated by soft sweeps. PLoS Genet 2014; 10:e1004182 [View Article] [PubMed]
    [Google Scholar]
  62. Nyholm SV, McFall-Ngai MJ. The winnowing: establishing the squid-vibrio symbiosis. Nat Rev Microbiol 2004; 2:632–642 [View Article] [PubMed]
    [Google Scholar]
  63. Foster KR, Schluter J, Coyte KZ, Rakoff-Nahoum S. The evolution of the host microbiome as an ecosystem on a leash. Nature 2017; 548:43–51 [View Article] [PubMed]
    [Google Scholar]
  64. Kim JK, Lee JB, Huh YR, Jang HA, Kim C-H et al. Burkholderia gut symbionts enhance the innate immunity of host Riptortus pedestris. Dev Comp Immunol 2015; 53:265–269 [View Article] [PubMed]
    [Google Scholar]
  65. de Waard R, Garssen J, Bokken GCAM, Vos JG. Antagonistic activity of Lactobacillus casei strain shirota against gastrointestinal Listeria monocytogenes infection in rats. Int J Food Microbiol 2002; 73:93–100 [View Article] [PubMed]
    [Google Scholar]
  66. Anderson RM, May RM. Coevolution of hosts and parasites. Parasitology 1982; 85 (Pt 2):411–426 [View Article] [PubMed]
    [Google Scholar]
  67. Fleming-Davies AE, Williams PD, Dhondt AA, Dobson AP, Hochachka WM et al. Incomplete host immunity favors the evolution of virulence in an emergent pathogen. Science 2018; 359:1030–1033 [View Article] [PubMed]
    [Google Scholar]
  68. Read AF, Baigent SJ, Powers C, Kgosana LB, Blackwell L et al. Imperfect vaccination can enhance the transmission of highly virulent pathogens. PLoS Biol 2015; 13:1–18 [View Article] [PubMed]
    [Google Scholar]
  69. Gandon S, Mackinnon MJ, Nee S, Read AF. Imperfect vaccines and the evolution of pathogen virulence. Nature 2001; 414:751–756 [View Article] [PubMed]
    [Google Scholar]
  70. Fisher RM, Henry LM, Cornwallis CK, Kiers ET, West SA. The evolution of host-symbiont dependence. Nat Commun 2017; 8:1–8 [View Article] [PubMed]
    [Google Scholar]
  71. Garcia JR, Gerardo NM. The symbiont side of symbiosis: do microbes really benefit?. Front Microbiol 2014; 5:1–6 [View Article] [PubMed]
    [Google Scholar]
  72. Douglas AE, Smith DC. Are endosymbioses mutualistic?. Trends Ecol Evol 1989; 4:350–352 [View Article]
    [Google Scholar]
  73. Kim Y, Mylonakis E. Caenorhabditis elegans immune conditioning with the probiotic bacterium Lactobacillus acidophilus strain NCFM enhances gram-positive immune responses. Infect Immun 2012; 80:2500–2508 [View Article] [PubMed]
    [Google Scholar]
  74. Emery O, Schmidt K, Engel P. Immune system stimulation by the gut symbiont Frischella perrara in the honey bee (Apis mellifera). Mol Ecol 2017; 26:2576–2590 [View Article] [PubMed]
    [Google Scholar]
  75. Futo M, Armitage SAO, Kurtz J. Microbiota plays a role in oral immune priming in Tribolium castaneum. Front Microbiol 2015; 6:1–10 [View Article] [PubMed]
    [Google Scholar]
  76. Ogawa M, Shimizu K, Nomoto K, Takahashi M, Watanuki M et al. Protective effect of Lactobacillus casei strain Shirota on Shiga toxin-producing Escherichia coli O157:H7 infection in infant rabbits. Infect Immun 2001; 69:1101–1108 [View Article] [PubMed]
    [Google Scholar]
  77. Broderick NA. Friend, foe or food? Recognition and the role of antimicrobial peptides in gut immunity and Drosophila-microbe interactions. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150295 [View Article] [PubMed]
    [Google Scholar]
  78. Lowe CD, Minter EJ, Cameron DD, Brockhurst MA. Shining a light on exploitative host control in a photosynthetic endosymbiosis. Curr Biol 2016; 26:207–211 [View Article] [PubMed]
    [Google Scholar]
  79. Vigneron A, Masson F, Vallier A, Balmand S, Rey M et al. Insects recycle endosymbionts when the benefit is over. Curr Biol 2014; 24:2267–2273 [View Article] [PubMed]
    [Google Scholar]
  80. Kiers ET, West SA. Evolution: welcome to symbiont prison. Curr Biol 2016; 26:R66–R68 [View Article] [PubMed]
    [Google Scholar]
  81. Moran NA, McCutcheon JP, Nakabachi A. Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 2008; 42:165–190 [View Article] [PubMed]
    [Google Scholar]
  82. McCutcheon JP, Moran NA. Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol 2011; 10:13–26 [View Article] [PubMed]
    [Google Scholar]
  83. McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Lošo T et al. Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci U S A 2013; 110:3229–3236 [View Article] [PubMed]
    [Google Scholar]
  84. McCutcheon JP, Boyd BM, Dale C. The life of an insect endosymbiont from the cradle to the grave. Curr Biol 2019; 29:R485–R495 [View Article] [PubMed]
    [Google Scholar]
  85. McLean AH. Cascading effects of defensive endosymbionts. Curr Opin Insect Sci 2019; 32:42–46 [View Article] [PubMed]
    [Google Scholar]
  86. Drew GC, Stevens EJ, King KC. Microbial evolution and transitions along the parasite-mutualist continuum. Nat Rev Microbiol 2021; 19:623–638 [View Article] [PubMed]
    [Google Scholar]
  87. Hammer TJ, Sanders JG, Fierer N. Not all animals need a microbiome. FEMS Microbiol Lett 2019; 366:fnz117 [View Article] [PubMed]
    [Google Scholar]
  88. Lee KH, Ruby EG. Effect of the squid host on the abundance and distribution of symbiotic Vibrio fischeri in nature. Appl Environ Microbiol 1994; 60:1565–1571 [View Article] [PubMed]
    [Google Scholar]
  89. Brock DA, Douglas TE, Queller DC, Strassmann JE. Primitive agriculture in a social amoeba. Nature 2011; 469:393–396 [View Article] [PubMed]
    [Google Scholar]
  90. Burke G, Fiehn O, Moran N. Effects of facultative symbionts and heat stress on the metabolome of pea aphids. ISME J 2010; 4:242–252 [View Article] [PubMed]
    [Google Scholar]
  91. Weldon SR, Strand MR, Oliver KM. Phage loss and the breakdown of a defensive symbiosis in aphids. Proc Biol Sci 2013; 280:20122103 [View Article] [PubMed]
    [Google Scholar]
  92. Polin S, Simon JC, Outreman Y. An ecological cost associated with protective symbionts of aphids. Ecol Evol 2014; 4:826–830 [View Article] [PubMed]
    [Google Scholar]
  93. Chong RA, Moran NA. Intraspecific genetic variation in hosts affects regulation of obligate heritable symbionts. Proc Natl Acad Sci U S A 2016; 113:13114–13119 [View Article] [PubMed]
    [Google Scholar]
  94. Banaszak AT, García Ramos M, Goulet TL. The symbiosis between the gastropod Strombus gigas and the dinoflagellate Symbiodinium: An ontogenic journey from mutualism to parasitism. J Exp Mar Biol Ecol 2013; 449:358–365 [View Article]
    [Google Scholar]
  95. Davidson SK, Koropatnick TA, Kossmehl R, Sycuro L, McFall-Ngai MJ. NO means “yes” in the squid-vibrio symbiosis: nitric oxide (NO) during the initial stages of a beneficial association. Cell Microbiol 2004; 6:1139–1151 [View Article] [PubMed]
    [Google Scholar]
  96. Lange A, Schäfer A, Bender A, Steimle A, Beier S et al. Galleria mellonella: A novel invertebrate model to distinguish intestinal symbionts from pathobionts. Front Immunol 2018; 9:1–12 [View Article]
    [Google Scholar]
  97. Voolstra CR, Schwarz JA, Schnetzer J, Sunagawa S, Desalvo MK et al. The host transcriptome remains unaltered during the establishment of coral-algal symbioses. Mol Ecol 2009; 18:1823–1833 [View Article]
    [Google Scholar]
  98. Leonard SP, Powell JE, Perutka J, Geng P, Heckmann LC et al. Engineered symbionts activate honey bee immunity and limit pathogens. Science 2020; 367:573–576 [View Article]
    [Google Scholar]
  99. Daisley BA, Chmiel JA, Pitek AP, Thompson GJ, Reid G. Missing microbes in bees: how systematic depletion of key symbionts erodes immunity. Trends Microbiol 2020; 28:1010–1021 [View Article]
    [Google Scholar]
  100. Cheng J, Laitila A, Ouwehand AC. Bifidobacterium animalis subsp. lactis HN019 effects on gut health: A review. Front Nutr 2021; 8: [View Article]
    [Google Scholar]
  101. Duar RM, Lin XB, Zheng J, Martino ME, Grenier T et al. Lifestyles in transition: evolution and natural history of the genus Lactobacillus. FEMS Microbiol Rev 2017; 41:S27–S48 [View Article] [PubMed]
    [Google Scholar]
  102. Hall JA, Bouladoux N, Sun CM, Wohlfert EA, Blank RB et al. Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity 2008; 29:637–649 [View Article] [PubMed]
    [Google Scholar]
  103. Dubuffet A, Zanchi C, Boutet G, Moreau J, Teixeira M et al. Trans-generational immune priming protects the eggs only against gram-positive bacteria in the mealworm beetle. PLoS Pathog 2015; 11:e1005178 [View Article] [PubMed]
    [Google Scholar]
  104. Willis AR, Sukhdeo R, Reinke AW. Remembering your enemies: mechanisms of within‐generation and multigenerational immune priming in Caenorhabditis elegans. FEBS J 2020; 288:1759–1770 [View Article] [PubMed]
    [Google Scholar]
  105. Mertenskötter A, Keshet A, Gerke P, Paul RJ. The p38 MAPK PMK-1 shows heat-induced nuclear translocation, supports chaperone expression, and affects the heat tolerance of Caenorhabditis elegans. Cell Stress and Chaperones 2012; 18:293–306 [View Article] [PubMed]
    [Google Scholar]
  106. Keshet A, Mertenskötter A, Winter SA, Brinkmann V, Dölling R et al. PMK-1 p38 MAPK promotes cadmium stress resistance, the expression of SKN-1/Nrf and DAF-16 target genes, and protein biosynthesis in Caenorhabditis elegans. Mol Genet Genomics 2017; 292:1341–1361 [View Article]
    [Google Scholar]
  107. Matozzo V, Marin MG. Bivalve immune responses and climate changes: is there a relationship? abstract global climate changes (gccs) are predicted to occur in the next hundred years through increases in temperature, water acidification and changes in seawater salinity; 2011
  108. Singh V, Aballay A. Heat shock and genetic activation of HSF-1 enhance immunity to bacteria. Cell Cycle 2006; 5:2443–2446 [View Article]
    [Google Scholar]
  109. Kim Y, Choudhry QN, Chatterjee N, Choi J. Immune and xenobiotic response crosstalk to chemical exposure by PA01 infection in the nematode Caenorhabditis elegans. Chemosphere 2018; 210:1082–1090 [View Article]
    [Google Scholar]
  110. Leroy M, Mosser T, Manière X, Alvarez DF, Matic I. Pathogen-induced Caenorhabditis elegans developmental plasticity has a hormetic effect on the resistance to biotic and abiotic stresses. BMC Evol Biol 2012; 12:187 [View Article]
    [Google Scholar]
  111. Sung YY, Pineda C, MacRae TH, Sorgeloos P, Bossier P. Exposure of gnotobiotic Artemia franciscana larvae to abiotic stress promotes heat shock protein 70 synthesis and enhances resistance to pathogenic Vibrio campbellii. Cell Stress Chaperones 2008; 13:59–66 [View Article]
    [Google Scholar]
  112. Mattson MP. Hormesis defined. Ageing Res Rev 2008; 7:1–7 [View Article]
    [Google Scholar]
  113. Calabrese EJ. Hormesis: A fundamental concept in biology. Microb Cell 2014; 1:145–149 [View Article]
    [Google Scholar]
  114. Kwong WK, Mancenido AL, Moran NA. Immune system stimulation by the native gut microbiota of honey bees. R Soc Open Sci 2017; 4:170003 [View Article]
    [Google Scholar]
  115. Horak RD, Leonard SP, Moran NA. Symbionts shape host innate immunity in honeybees. Proc Biol Sci 2020; 287:20201184 [View Article]
    [Google Scholar]
  116. Muhammad A, Habineza P, Ji T, Hou Y, Shi Z. Intestinal microbiota confer protection by priming the immune system of red palm weevil Rhynchophorus ferrugineus olivier (Coleoptera: Dryophthoridae). Front Physiol 2019; 10:1–13 [View Article] [PubMed]
    [Google Scholar]
  117. Gupta V, Vasanthakrishnan RB, Siva-Jothy J, Monteith KM, Brown SP et al. The route of infection determines Wolbachia antibacterial protection in Drosophila. Proc R Soc B Biol Sci 2017; 287: [View Article]
    [Google Scholar]
  118. Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 2008; 453:620–625 [View Article] [PubMed]
    [Google Scholar]
  119. Ganal SC, Sanos SL, Kallfass C, Oberle K, Johner C et al. Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota. Immunity 2012; 37:171–186 [View Article] [PubMed]
    [Google Scholar]
  120. Reynolds LA, Smith KA, Filbey KJ, Harcus Y, Hewitson JP et al. Commensal-pathogen interactions in the intestinal tract: lactobacilli promote infection with, and are promoted by, helminth parasites. Gut Microbes 2014; 5:522–532 [View Article] [PubMed]
    [Google Scholar]
  121. Näpflin K, Schmid-Hempel P. Immune response and gut microbial community structure in bumblebees after microbiota transplants. Proc R Soc B 2016; 283:20160312 [View Article]
    [Google Scholar]
  122. Evans JD, Lopez DL. Bacterial probiotics induce an immune response in the honey bee (Hymenoptera: Apidae). J Econ Entomol 2004; 97:752–756 [View Article] [PubMed]
    [Google Scholar]
  123. Rodrigues J, Brayner FA, Alves LC, Dixit R, Barillas-Mury C. Hemocyte differentiation mediates innate immune memory in Anopheles gambiae mosquitoes. Science 2010; 329:1353–1355 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001181
Loading
/content/journal/micro/10.1099/mic.0.001181
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error