1887

Abstract

Complex carbohydrates shape the gut microbiota, and the collective fermentation of resistant starch by gut microbes positively affects human health through enhanced butyrate production. The keystone species () is a specialist in degrading resistant starch; its degradation products are used by other bacteria including (). We analysed the metabolic and spatial relationships between and during potato starch degradation and found that utilizes glucose that is released from upon degradation of resistant potato starch and soluble potato amylopectin. Additionally, we found that produces a halo of glucose around it when grown on solid media containing potato amylopectin and that cells deficient for growth on potato amylopectin (∆) can grow within the halo. Furthermore, when these ∆ cells grow within this glucose halo, they have an elongated cell morphology. This long-cell phenotype depends on the glucose concentration in the solid media: longer cells are formed at higher glucose concentrations. Together, our results indicate that starch degradation by cross-feeds other bacteria in the surrounding region by releasing glucose. Our results also elucidate the adaptive morphology of cells under different nutrient and physiological conditions.

Funding
This study was supported by the:
  • Life Sciences Division, Army Research Office (Award W911NF‐18‐1‐0339)
    • Principle Award Recipient: JulieS. Biteen
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001180
2022-04-26
2024-06-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/168/4/mic001180.html?itemId=/content/journal/micro/10.1099/mic.0.001180&mimeType=html&fmt=ahah

References

  1. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464:59–65 [View Article] [PubMed]
    [Google Scholar]
  2. D’Argenio V, Salvatore F. The role of the gut microbiome in the healthy adult status. Clin Chim Acta 2015; 451:97–102 [View Article] [PubMed]
    [Google Scholar]
  3. Kho ZY, Lal SK. The human gut microbiome - a potential controller of wellness and disease. Front Microbiol 2018; 9:1–23 [View Article] [PubMed]
    [Google Scholar]
  4. McCarville JL, Chen GY, Cuevas VD, Troha K, Ayres JS. Microbiota metabolites in health and disease. Annu Rev Immunol 2020; 38:147–170 [View Article] [PubMed]
    [Google Scholar]
  5. Koropatkin NM, Cameron EA, Martens EC. How glycan metabolism shapes the human gut microbiota. Nat Rev Microbiol 2012; 10:323–335 [View Article] [PubMed]
    [Google Scholar]
  6. Tropini C, Earle KA, Huang KC, Sonnenburg JL. The gut microbiome: connecting spatial organization to function. Cell Host Microbe 2017; 21:433–442 [View Article] [PubMed]
    [Google Scholar]
  7. Donaldson GP, Lee SM, Mazmanian SK. Gut biogeography of the bacterial microbiota. Nat Rev Microbiol 2016; 14:20–32 [View Article] [PubMed]
    [Google Scholar]
  8. Sheth RU, Li M, Jiang W, Sims PA, Leong KW et al. Spatial metagenomic characterization of microbial biogeography in the gut. Nat Biotechnol 2019; 37:877–883 [View Article] [PubMed]
    [Google Scholar]
  9. Whitaker WR, Shepherd ES, Sonnenburg JL. Tunable expression tools enable single-cell strain distinction in the gut microbiome. Cell 2017; 169:538–546 [View Article] [PubMed]
    [Google Scholar]
  10. Rakoff-Nahoum S, Coyne MJ, Comstock LE. An ecological network of polysaccharide utilization among human intestinal symbionts. Curr Biol 2014; 24:40–49 [View Article] [PubMed]
    [Google Scholar]
  11. Rakoff-Nahoum S, Foster KR, Comstock LE. The evolution of cooperation within the gut microbiota. Nature 2016; 533:255–259 [View Article] [PubMed]
    [Google Scholar]
  12. Hoek MJA van, Merks RMH. Emergence of microbial diversity due to cross-feeding interactions in a spatial model of gut microbial metabolism. BMC Syst Biol 2017; 11:1–18 [View Article] [PubMed]
    [Google Scholar]
  13. Bunesova V, Lacroix C, Schwab C. Mucin cross-feeding of infant bifidobacteria and Eubacterium hallii. Microb Ecol 2018; 75:228–238 [View Article] [PubMed]
    [Google Scholar]
  14. Centanni M, Lawley B, Butts CA, Roy NC, Lee J et al. Bifidobacterium pseudolongum in the ceca of rats fed hi-maize starch has characteristics of a keystone species in bifidobacterial blooms. Appl Environ Microbiol 2018; 84:1–11 [View Article] [PubMed]
    [Google Scholar]
  15. Falony G, Vlachou A, Verbrugghe K, De Vuyst L. Cross-feeding between Bifidobacterium longum BB536 and acetate-converting, butyrate-producing colon bacteria during growth on oligofructose. Appl Environ Microbiol 2006; 72:7835–7841 [View Article] [PubMed]
    [Google Scholar]
  16. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014; 505:559–563 [View Article] [PubMed]
    [Google Scholar]
  17. Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS et al. Diet-induced extinctions in the gut microbiota compound over generations. Nature 2016; 529:212–215 [View Article] [PubMed]
    [Google Scholar]
  18. Flint HJ, Duncan SH, Louis P. The impact of nutrition on intestinal bacterial communities. Curr Opin Microbiol 2017; 38:59–65 [View Article] [PubMed]
    [Google Scholar]
  19. Cordain L, Eaton SB, Sebastian A, Mann N, Lindeberg S et al. Origins and evolution of the Western diet: health implications for the 21st century. Am J Clin Nutr 2005; 81:341–354 [View Article] [PubMed]
    [Google Scholar]
  20. Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 2016; 7:189–200 [View Article] [PubMed]
    [Google Scholar]
  21. Baxter NT, Schmidt AW, Venkataraman A, Kim KS, Waldron C et al. Dynamics of human gut microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibers. mBio 2019; 10:1–13 [View Article] [PubMed]
    [Google Scholar]
  22. Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol 2019; 16:461–478 [View Article] [PubMed]
    [Google Scholar]
  23. Klingbeil EA, Cawthon C, Kirkland R, de La Serre CB. Potato-resistant starch supplementation improves microbiota dysbiosis, inflammation, and gut-brain signaling in high fat-fed rats. Nutrients 2019; 11:11 [View Article] [PubMed]
    [Google Scholar]
  24. DeMartino P, Cockburn DW. Resistant starch: impact on the gut microbiome and health. Curr Opin Biotechnol 2020; 61:66–71 [View Article] [PubMed]
    [Google Scholar]
  25. Ze X, Duncan SH, Louis P, Flint HJ. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J 2012; 6:1535–1543 [View Article] [PubMed]
    [Google Scholar]
  26. Ze X, Ben David Y, Laverde-Gomez JA, Dassa B, Sheridan PO et al. Unique organization of extracellular amylases into amylosomes in the resistant starch-utilizing human colonic firmicutes bacterium Ruminococcus bromii. mBio 2015; 6:e01058–15 [View Article] [PubMed]
    [Google Scholar]
  27. Mukhopadhya I, Moraïs S, Laverde-Gomez J, Sheridan PO, Walker AW et al. Sporulation capability and amylosome conservation among diverse human colonic and rumen isolates of the keystone starch-degrader Ruminococcus bromii. Environ Microbiol 2018; 20:324–336 [View Article] [PubMed]
    [Google Scholar]
  28. Cerqueira FM, Photenhauer AL, Pollet RM, Brown HA, Koropatkin NM. Starch digestion by gut bacteria: crowdsourcing for carbs. Trends Microbiol 2020; 28:95–108 [View Article] [PubMed]
    [Google Scholar]
  29. Crost EH, Le Gall G, Laverde-Gomez JA, Mukhopadhya I, Flint HJ et al. Mechanistic insights into the cross-feeding of Ruminococcus gnavus and Ruminococcus bromii on host and dietary carbohydrates. Front Microbiol 2018; 9:1–13 [View Article] [PubMed]
    [Google Scholar]
  30. Laverde Gomez JA, Mukhopadhya I, Duncan SH, Louis P, Shaw S et al. Formate cross-feeding and cooperative metabolic interactions revealed by transcriptomics in co-cultures of acetogenic and amylolytic human colonic bacteria. Environ Microbiol 2019; 21:259–271 [View Article] [PubMed]
    [Google Scholar]
  31. Tancula E, Feldhaus MJ, Bedzyk LA, Salyers AA. Location and characterization of genes involved in binding of starch to the surface of Bacteroides thetaiotaomicron. J Bacteriol 1992; 174:5609–5616 [View Article] [PubMed]
    [Google Scholar]
  32. Lapébie P, Lombard V, Drula E, Terrapon N, Henrissat B. Bacteroidetes use thousands of enzyme combinations to break down glycans. Nat Commun 2019; 10:2043 [View Article] [PubMed]
    [Google Scholar]
  33. Ndeh D, Gilbert HJ. Biochemistry of complex glycan depolymerisation by the human gut microbiota. FEMS Microbiol Rev 2018; 42:146–164 [View Article] [PubMed]
    [Google Scholar]
  34. Glowacki RWP, Pudlo NA, Tuncil Y, Luis AS, Sajjakulnukit P et al. A ribose-scavenging system confers colonization fitness on the human gut symbiont Bacteroides thetaiotaomicron in a diet-specific manner. Cell Host Microbe 2020; 27:79–92 [View Article] [PubMed]
    [Google Scholar]
  35. Young KD. Bacterial morphology: why have different shapes?. Curr Opin Microbiol 2007; 10:596–600 [View Article] [PubMed]
    [Google Scholar]
  36. Levin PA, Angert ER. Small but mighty: cell size and bacteria. Cold Spring Harb Perspect Biol 2015; 7:a019216 [View Article] [PubMed]
    [Google Scholar]
  37. Yang DC, Blair KM, Salama NR. Staying in shape: the impact of cell shape on bacterial survival in diverse environments. Microbiol Mol Biol Rev 2016; 80:187–203 [View Article] [PubMed]
    [Google Scholar]
  38. Kysela DT, Randich AM, Caccamo PD, Brun YV. Diversity takes shape: understanding the mechanistic and adaptive basis of bacterial morphology. PLoS Biol 2016; 14:1–15 [View Article] [PubMed]
    [Google Scholar]
  39. Rangarajan AA, Koropatkin NM, Biteen JS. Nutrient-dependent morphological variability of Bacteroides thetaiotaomicron. Microbiology (Reading) 2020; 166:624–628 [View Article] [PubMed]
    [Google Scholar]
  40. Mulvey MA, Schilling JD, Hultgren SJ. Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection. Infect Immun 2001; 69:4572–4579 [View Article] [PubMed]
    [Google Scholar]
  41. Prashar A, Bhatia S, Tabatabaeiyazdi Z, Duncan C, Garduño RA et al. Mechanism of invasion of lung epithelial cells by filamentous Legionella pneumophila. Cell Microbiol 2012; 14:1632–1655 [View Article] [PubMed]
    [Google Scholar]
  42. Rodriguez JL, Dalia AB, Weiser JN. Increased chain length promotes pneumococcal adherence and colonization. Infect Immun 2012; 80:3454–3459 [View Article] [PubMed]
    [Google Scholar]
  43. Gode-Potratz CJ, Kustusch RJ, Breheny PJ, Weiss DS, McCarter LL. Surface sensing in Vibrio parahaemolyticus triggers a programme of gene expression that promotes colonization and virulence. Mol Microbiol 2011; 79:240–263 [View Article] [PubMed]
    [Google Scholar]
  44. Belas R, Suvanasuthi R. The ability of Proteus mirabilis to sense surfaces and regulate virulence gene expression involves FliL, a flagellar basal body protein. J Bacteriol 2005; 187:6789–6803 [View Article] [PubMed]
    [Google Scholar]
  45. Chia HE, Zuo T, Koropatkin NM, Marsh ENG, Biteen JS. Imaging living obligate anaerobic bacteria with bilin-binding fluorescent proteins. Curr Res Microb Sci 2020; 1:1–6 [View Article] [PubMed]
    [Google Scholar]
  46. Koropatkin NM, Martens EC, Gordon JI, Smith TJ. Starch catabolism by a prominent human gut symbiont is directed by the recognition of amylose helices. Structure 2008; 16:1105–1115 [View Article] [PubMed]
    [Google Scholar]
  47. Holdeman LV, Moore WEC. Anaerobe Laboratory Manual; 1973 (Virginia Polytechnic Institute and State University, Blacksburg, Va. V.P.I. Anaerobe Laboratory). n.d https://books.google.com/books?id=qYr9HAAACAAJ
  48. Martens EC, Chiang HC, Gordon JI. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe 2008; 4:447–457 [View Article] [PubMed]
    [Google Scholar]
  49. Karunatilaka KS, Cameron EA, Martens EC, Koropatkin NM, Biteen JS. Superresolution imaging captures carbohydrate utilization dynamics in human gut symbionts. mBio 2014; 5:e02172 [View Article] [PubMed]
    [Google Scholar]
  50. Stringer C, Wang T, Michaelos M, Pachitariu M. Cellpose: a generalist algorithm for cellular segmentation. Nat Methods 2021; 18:100–106 [View Article] [PubMed]
    [Google Scholar]
  51. van der Walt S, Schönberger JL, Nunez-Iglesias J, Boulogne F, Warner JD et al. scikit-image: image processing in Python. PeerJ 2014; 2:e453 [View Article] [PubMed]
    [Google Scholar]
  52. Duncan SH, Louis P, Thomson JM, Flint HJ. The role of pH in determining the species composition of the human colonic microbiota. Environ Microbiol 2009; 11:2112–2122 [View Article] [PubMed]
    [Google Scholar]
  53. Foley MH, Cockburn DW, Koropatkin NM. The Sus operon: a model system for starch uptake by the human gut Bacteroidetes. Cell Mol Life Sci 2016; 73:2603–2617 [View Article] [PubMed]
    [Google Scholar]
  54. Liu H, Shiver AL, Price MN, Carlson HK, Trotter VV et al. Functional genetics of human gut commensal Bacteroides thetaiotaomicron reveals metabolic requirements for growth across environments. Cell Rep 2021; 34:108789 [View Article] [PubMed]
    [Google Scholar]
  55. Townsend GE, Han W, Schwalm ND, Hong X, Bencivenga-Barry NA et al. A master regulator of Bacteroides thetaiotaomicron gut colonization controls carbohydrate utilization and an alternative protein synthesis factor. mBio 2020; 11:2020 [View Article] [PubMed]
    [Google Scholar]
  56. Caccamo PD, Brun YV. The molecular basis of noncanonical bacterial morphology. Trends Microbiol 2018; 26:191–208 [View Article] [PubMed]
    [Google Scholar]
  57. Sargent MG. Control of cell length in Bacillus subtilis. J Bacteriol 1975; 123:7–19 [View Article]
    [Google Scholar]
  58. Zaritsky A, Woldringh CL, Helmstetter CE, Grover NB. Dimensional rearrangement of Escherichia coli B/r cells during a nutritional shift-down. J Gen Microbiol 1993; 139:2711–2714 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001180
Loading
/content/journal/micro/10.1099/mic.0.001180
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error