1887

Abstract

The outer membrane (OM) is a formidable permeability barrier that protects Gram-negative bacteria from detergents and antibiotics. It possesses exquisite lipid asymmetry, requiring the placement and retention of lipopolysaccharides (LPS) in the outer leaflet, and phospholipids (PLs) in the inner leaflet. To establish OM lipid asymmetry, LPS are transported from the inner membrane (IM) directly to the outer leaflet of the OM. In contrast, mechanisms for PL trafficking across the cell envelope are much less understood. In this review, we summarize and discuss recent advances in our understanding of PL transport, making parallel comparisons to well-established pathways for OM lipoprotein (Lol) and LPS (Lpt). Insights into putative PL transport systems highlight possible connections back to the ‘Bayer bridges’, adhesion zones between the IM and the OM that had been observed more than 50 years ago, and proposed as passages for export of OM components, including LPS and PLs.

Funding
This study was supported by the:
  • National Medical Research Council (Award MOH-000145)
    • Principle Award Recipient: Shu-SinChng
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. The Microbiology Society waived the open access fees for this article.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001177
2022-04-06
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/168/4/mic001177.html?itemId=/content/journal/micro/10.1099/mic.0.001177&mimeType=html&fmt=ahah

References

  1. Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 2003; 67:593–656 [View Article] [PubMed]
    [Google Scholar]
  2. Rojas ER, Billings G, Odermatt PD, Auer GK, Zhu L et al. The outer membrane is an essential load-bearing element in Gram-negative bacteria. Nature 2018; 559:617–621 [View Article] [PubMed]
    [Google Scholar]
  3. Kuhn A. The bacterial cell wall and membrane-A treasure chest for antibiotic targets. Subcell Biochem 2019; 92:1–5 [View Article] [PubMed]
    [Google Scholar]
  4. Bogdanov M, Pyrshev K, Yesylevskyy S, Ryabichko S, Boiko V et al. Phospholipid distribution in the cytoplasmic membrane of Gram-negative bacteria is highly asymmetric, dynamic, and cell shape-dependent. Sci Adv 2020; 6:eaaz6333 [View Article] [PubMed]
    [Google Scholar]
  5. Okuda S, Sherman DJ, Silhavy TJ, Ruiz N, Kahne D. Lipopolysaccharide transport and assembly at the outer membrane: the PEZ model. Nat Rev Microbiol 2016; 14:337–345 [View Article] [PubMed]
    [Google Scholar]
  6. Konovalova A, Kahne DE, Silhavy TJ. Outer membrane biogenesis. Annu Rev Microbiol 2017; 71:539–556 [View Article] [PubMed]
    [Google Scholar]
  7. Okuda S, Tokuda H. Lipoprotein sorting in bacteria. Annu Rev Microbiol 2011; 65:239–259 [View Article] [PubMed]
    [Google Scholar]
  8. Matias VRF, Al-Amoudi A, Dubochet J, Beveridge TJ. Cryo-transmission electron microscopy of frozen-hydrated sections of Escherichia coli and Pseudomonas aeruginosa. J Bacteriol 2003; 185:6112–6118 [View Article] [PubMed]
    [Google Scholar]
  9. Bayer ME. Areas of adhesion between wall and membrane of Escherichia coli. J Gen Microbiol 1968; 53:395–404 [View Article] [PubMed]
    [Google Scholar]
  10. Bayer ME. Zones of membrane adhesion in the cryofixed envelope of Escherichia coli. J Struct Biol 1991; 107:268–280 [View Article] [PubMed]
    [Google Scholar]
  11. Kellenberger E. The “Bayer bridges” confronted with results from improved electron microscopy methods. Mol Microbiol 1990; 4:697–705 [View Article]
    [Google Scholar]
  12. Muhlradt PF, Menzel J, Golecki JR, Speth V. Outer membrane of Salmonella. Sites of export of newly synthesised lipopolysaccharide on the bacterial surface. Eur J Biochem 1973; 35:471–481 [View Article] [PubMed]
    [Google Scholar]
  13. Smit J, Nikaido H. Outer membrane of gram-negative bacteria. XVIII. electron microscopic studies on porin insertion sites and growth of cell surface of Salmonella typhimurium. J Bacteriol 1978; 135:687–702 [View Article]
    [Google Scholar]
  14. Osborn MJ, Gander JE, Parisi E, Carson J. Mechanism of assembly of the outer membrane of Salmonella typhimurium. Isolation and characterization of cytoplasmic and outer membrane. J Biol Chem 1972; 247:3962–3972
    [Google Scholar]
  15. Ishidate K, Creeger ES, Zrike J, Deb S, Glauner B et al. Isolation of differentiated membrane domains from Escherichia coli and Salmonella typhimurium, including a fraction containing attachment sites between the inner and outer membranes and the murein skeleton of the cell envelope. Journal of Biological Chemistry 1986; 261:428–443 [View Article]
    [Google Scholar]
  16. Mühlradt PF, Golecki JR. Asymmetrical distribution and artifactual reorientation of lipopolysaccharide in the outer membrane bilayer of Salmonella typhimurium. Eur J Biochem 1975; 51:343–352 [View Article] [PubMed]
    [Google Scholar]
  17. Kamio Y, Nikaido H. Outer membrane of Salmonella typhimurium: accessibility of phospholipid head groups to phospholipase c and cyanogen bromide activated dextran in the external medium. Biochemistry 1976; 15:2561–2570 [View Article] [PubMed]
    [Google Scholar]
  18. Funahara Y, Nikaido H. Asymmetric localization of lipopolysaccharides on the outer membrane of Salmonella typhimurium. J Bacteriol 1980; 141:1463–1465 [View Article] [PubMed]
    [Google Scholar]
  19. White DA, Lennarz WJ, Schnaitman CA. Distribution of lipids in the wall and cytoplasmic membrane subfractions of the cell envelope of Escherichia coli. J Bacteriol 1972; 109:686–690 [View Article] [PubMed]
    [Google Scholar]
  20. Donohue-Rolfe AM, Schaechter M. Translocation of phospholipids from the inner to the outer membrane of Escherichia coli. Proc Natl Acad Sci U S A 1980; 77:1867–1871 [View Article] [PubMed]
    [Google Scholar]
  21. Langley KE, Hawrot E, Kennedy EP. Membrane assembly: movement of phosphatidylserine between the cytoplasmic and outer membranes of Escherichia coli. J Bacteriol 1982; 152:1033–1041 [View Article] [PubMed]
    [Google Scholar]
  22. Jones NC, Osborn MJ. Translocation of phospholipids between the outer and inner membranes of Salmonella typhimurium. J Biol Chem 1977; 252:7405–7412 [PubMed]
    [Google Scholar]
  23. Matsuyama S, Tajima T, Tokuda H. A novel periplasmic carrier protein involved in the sorting and transport of Escherichia coli lipoproteins destined for the outer membrane. EMBO J 1995; 14:3365–3372 [View Article] [PubMed]
    [Google Scholar]
  24. Chng SS, Gronenberg LS, Kahne D. Proteins required for lipopolysaccharide assembly in Escherichia coli form a transenvelope complex. Biochemistry 2010; 49:4565–4567 [View Article] [PubMed]
    [Google Scholar]
  25. Tefsen B, Geurtsen J, Beckers F, Tommassen J, de Cock H. Lipopolysaccharide transport to the bacterial outer membrane in spheroplasts. J Biol Chem 2005; 280:4504–4509 [View Article] [PubMed]
    [Google Scholar]
  26. Malinverni JC, Silhavy TJ. An ABC transport system that maintains lipid asymmetry in the Gram-negative outer membrane. Proc Natl Acad Sci U S A 2009; 106:8009–8014 [View Article] [PubMed]
    [Google Scholar]
  27. Casali N, Riley LW. A phylogenomic analysis of the Actinomycetales mce operons. BMC Genomics 2007; 8:60 [View Article] [PubMed]
    [Google Scholar]
  28. Benning C. Mechanisms of lipid transport involved in organelle biogenesis in plant cells. Annu Rev Cell Dev Biol 2009; 25:71–91 [View Article] [PubMed]
    [Google Scholar]
  29. Chong ZS, Woo WF, Chng SS. Osmoporin OmpC forms a complex with MlaA to maintain outer membrane lipid asymmetry in Escherichia coli. Mol Microbiol 2015; 98:1133–1146 [View Article] [PubMed]
    [Google Scholar]
  30. Shrivastava R, Jiang X, Chng SS. Outer membrane lipid homeostasis via retrograde phospholipid transport in Escherichia coli. Mol Microbiol 2017; 106:395–408 [View Article] [PubMed]
    [Google Scholar]
  31. Powers MJ, Trent MS. Intermembrane transport: Glycerophospholipid homeostasis of the Gram-negative cell envelope. Proc Natl Acad Sci U S A 2019; 116:17147–17155 [View Article] [PubMed]
    [Google Scholar]
  32. Nagy E, Losick R, Kahne D. Robust suppression of lipopolysaccharide deficiency in Acinetobacter baumannii by growth in minimal medium. J Bacteriol 2019; 201:22 [View Article] [PubMed]
    [Google Scholar]
  33. Hughes GW, Hall SCL, Laxton CS, Sridhar P, Mahadi AH et al. Evidence for phospholipid export from the bacterial inner membrane by the Mla ABC transport system. Nat Microbiol 2019; 4:1692–1705 [View Article] [PubMed]
    [Google Scholar]
  34. Tang X, Chang S, Qiao W, Luo Q, Chen Y et al. Structural insights into outer membrane asymmetry maintenance in Gram-negative bacteria by MlaFEDB. Nat Struct Mol Biol 2021; 28:81–91 [View Article] [PubMed]
    [Google Scholar]
  35. Low WY, Thong S, Chng SS. ATP disrupts lipid-binding equilibrium to drive retrograde transport critical for bacterial outer membrane asymmetry. Proc Natl Acad Sci U S A 2021; 118:50 [View Article] [PubMed]
    [Google Scholar]
  36. Powers MJ, Simpson BW, Trent MS. The Mla pathway in Acinetobacter baumannii has no demonstrable role in anterograde lipid transport. eLife 2020; 9:e56571 [View Article] [PubMed]
    [Google Scholar]
  37. Yeow J, Tan KW, Holdbrook DA, Chong Z-S, Marzinek JK et al. The architecture of the OmpC-MlaA complex sheds light on the maintenance of outer membrane lipid asymmetry in Escherichia coli. J Biol Chem 2018; 293:11325–11340 [View Article] [PubMed]
    [Google Scholar]
  38. Abellón-Ruiz J, Kaptan SS, Baslé A, Claudi B, Bumann D et al. Structural basis for maintenance of bacterial outer membrane lipid asymmetry. Nat Microbiol 2017; 2:1616–1623 [View Article] [PubMed]
    [Google Scholar]
  39. Sutterlin HA, Shi H, May KL, Miguel A, Khare S et al. Disruption of lipid homeostasis in the Gram-negative cell envelope activates a novel cell death pathway. Proc Natl Acad Sci U S A 2016; 113:E1565–74 [View Article] [PubMed]
    [Google Scholar]
  40. Ekiert DC, Bhabha G, Isom GL, Greenan G, Ovchinnikov S et al. Architectures of lipid transport systems for the bacterial outer membrane. Cell 2017; 169:273–285 [View Article] [PubMed]
    [Google Scholar]
  41. Ercan B, Low WY, Liu X, Chng SS. Characterization of interactions and phospholipid transfer between substrate binding proteins of the OmpC-Mla system. Biochemistry 2019; 58:114–119 [View Article] [PubMed]
    [Google Scholar]
  42. Huang Y-MM, Miao Y, Munguia J, Lin L, Nizet V et al. Molecular dynamic study of MlaC protein in Gram-negative bacteria: conformational flexibility, solvent effect and protein-phospholipid binding. Protein Sci 2016; 25:1430–1437 [View Article] [PubMed]
    [Google Scholar]
  43. Yero D, Díaz-Lobo M, Costenaro L, Conchillo-Solé O, Mayo A et al. The Pseudomonas aeruginosa substrate-binding protein Ttg2D functions as a general glycerophospholipid transporter across the periplasm. Commun Biol 2021; 4:448 [View Article] [PubMed]
    [Google Scholar]
  44. Thong S, Ercan B, Torta F, Fong ZY, Wong HYA et al. Defining key roles for auxiliary proteins in an ABC transporter that maintains bacterial outer membrane lipid asymmetry. eLife 2016; 5:e19042 [View Article] [PubMed]
    [Google Scholar]
  45. Chi X, Fan Q, Zhang Y, Liang K, Wan L et al. Structural mechanism of phospholipids translocation by MlaFEDB complex. Cell Res 2020; 30:1127–1135 [View Article] [PubMed]
    [Google Scholar]
  46. Coudray N, Isom GL, MacRae MR, Saiduddin MN, Bhabha G et al. Structure of bacterial phospholipid transporter MlaFEDB with substrate bound. eLife 2020; 9:e62518 [View Article] [PubMed]
    [Google Scholar]
  47. Zhang Y, Fan Q, Chi X, Zhou Q, Li Y. Cryo-EM structures of Acinetobacter baumannii glycerophospholipid transporter. Cell Discov 2020; 6:86 [View Article] [PubMed]
    [Google Scholar]
  48. Mann D, Fan J, Somboon K, Farrell DP, Muenks A et al. Structure and lipid dynamics in the maintenance of lipid asymmetry inner membrane complex of A. baumannii. Commun Biol 2021; 4:817 [View Article] [PubMed]
    [Google Scholar]
  49. Tang X, Chang S, Qiao W, Luo Q, Chen Y et al. Structural insights into outer membrane asymmetry maintenance in Gram-negative bacteria by MlaFEDB. Nat Struct Mol Biol 2021; 28:81–91 [View Article] [PubMed]
    [Google Scholar]
  50. Zhou C, Shi H, Zhang M, Zhou L, Xiao L et al. Structural insight into phospholipid transport by the MlaFEBD complex from P. aeruginosa. J Mol Biol 2021; 433:166986 [View Article] [PubMed]
    [Google Scholar]
  51. Isom GL, Davies NJ, Chong Z-S, Bryant JA, Jamshad M et al. MCE domain proteins: conserved inner membrane lipid-binding proteins required for outer membrane homeostasis. Sci Rep 2017; 7:8608 [View Article] [PubMed]
    [Google Scholar]
  52. Nakayama T, Zhang-Akiyama QM. pqiABC and yebST, putative mce operons of Escherichia coli, encode transport pathways and contribute to membrane integrity. J Bacteriol 2017; 199:e00606-16 [View Article] [PubMed]
    [Google Scholar]
  53. Hassan HM, Fridovich I. Paraquat and Escherichia coli. Mechanism of production of extracellular superoxide radical. J Biol Chem 1979; 254:10846–10852 [View Article]
    [Google Scholar]
  54. Koh YS, Roe JH. Dual regulation of the paraquat-inducible gene pqi-5 by SoxS and RpoS in Escherichia coli. Mol Microbiol 1996; 22:53–61 [View Article] [PubMed]
    [Google Scholar]
  55. Liu C, Ma J, Wang J, Wang H, Zhang L. Cryo-EM structure of a bacterial lipid transporter YebT. J Mol Biol 2020; 432:1008–1019 [View Article] [PubMed]
    [Google Scholar]
  56. Isom GL, Coudray N, MacRae MR, McManus CT, Ekiert DC et al. LetB structure reveals a tunnel for lipid transport across the bacterial envelope. Cell 2020; 181:653–664 [View Article] [PubMed]
    [Google Scholar]
  57. Heinz E, Selkrig J, Belousoff MJ, Lithgow T. Evolution of the translocation and assembly module (TAM). Genome Biol Evol 2015; 7:1628–1643 [View Article] [PubMed]
    [Google Scholar]
  58. Josts I, Stubenrauch CJ, Vadlamani G, Mosbahi K, Walker D et al. The structure of a conserved domain of TamB reveals a hydrophobic β taco fold. Structure 2017; 25:1898–1906 [View Article] [PubMed]
    [Google Scholar]
  59. Levine TP. Remote homology searches identify bacterial homologues of eukaryotic lipid transfer proteins, including Chorein-N domains in TamB and AsmA and Mdm31p. BMC Mol and Cell Biol 2019; 20: [View Article] [PubMed]
    [Google Scholar]
  60. Valverde DP, Yu S, Boggavarapu V, Kumar N, Lees JA et al. ATG2 transports lipids to promote autophagosome biogenesis. J Cell Biol 2019; 218:1787–1798 [View Article] [PubMed]
    [Google Scholar]
  61. Kumar N, Leonzino M, Hancock-Cerutti W, Horenkamp FA, Li P et al. VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites. J Cell Biol 2018; 217:3625–3639 [View Article]
    [Google Scholar]
  62. Deng M, Misra R. Examination of AsmA and its effect on the assembly of Escherichia coli outer membrane proteins. Mol Microbiol 1996; 21:605–612 [View Article]
    [Google Scholar]
  63. Misra R, Miao Y. Molecular analysis of asmA, a locus identified as the suppressor of OmpF assembly mutants of Escherichia coli K-12. Mol Microbiol 1995; 16:779–788 [View Article] [PubMed]
    [Google Scholar]
  64. Selkrig J, Mosbahi K, Webb CT, Belousoff MJ, Perry AJ et al. Discovery of an archetypal protein transport system in bacterial outer membranes. Nat Struct Mol Biol 2012; 19:506–510 [View Article] [PubMed]
    [Google Scholar]
  65. Stubenrauch CJ, Lithgow T. The TAM: A translocation and assembly module of the β-barrel assembly machinery in bacterial outer membranes. EcoSal Plus 2019; 8: [View Article] [PubMed]
    [Google Scholar]
  66. Mitchell AM, Wang W, Silhavy TJ. Novel RpoS-dependent mechanisms strengthen the envelope permeability barrier during stationary phase. J Bacteriol 2017; 199:e00708-16 [View Article] [PubMed]
    [Google Scholar]
  67. Mitchell AM, Srikumar T, Silhavy TJ. Cyclic enterobacterial common antigen maintains the outer membrane permeability barrier of Escherichia coli in a manner controlled by YhdP. mBio 2018; 9:e01321-18 [View Article] [PubMed]
    [Google Scholar]
  68. Grimm J, Shi H, Wang W, Mitchell AM, Wingreen NS et al. The inner membrane protein YhdP modulates the rate of anterograde phospholipid flow in Escherichia coli. Proc Natl Acad Sci USA 2020; 117:26907–26914 [View Article] [PubMed]
    [Google Scholar]
  69. Ruiz N, Davis RM, Kumar S. YhdP, TamB, and YdbH are redundant but essential for growth and lipid homeostasis of the gram-negative outer membrane. mBio 2021; 12: [View Article] [PubMed]
    [Google Scholar]
  70. Douglass MV, McLean AB, Trent MS. Absence of YhdP, TamB, and YdbH leads to defects in glycerophospholipid transport and cell morphology in Gram-negative bacteria. PLoS Genet 2022; 18:e1010096 [View Article] [PubMed]
    [Google Scholar]
  71. Jumper J, Evans R, Pritzel A, Green T, Figurnov M et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021; 596:583–589 [View Article] [PubMed]
    [Google Scholar]
  72. Wong LH, Levine TP. Tubular lipid binding proteins (TULIPs) growing everywhere. Biochim Biophys Acta Mol Cell Res 2017; 1864:1439–1449 [View Article] [PubMed]
    [Google Scholar]
  73. Kuzin AP, Neely H, Seetharaman J, Chen CX, Janjua H et al. Northeast Structural Genomics Consortium (NESG). Crystal structure of the uncharacterized lipoprotein yceb from E. coli at the resolution 2.0a. northeast structural genomics consortium target er542. n.d http://www.rcsb.org/structure/3L6I
  74. Weiss J, Franson RC, Beckerdite S, Schmeidler K, Elsbach P. Partial characterization and purification of a rabbit granulocyte factor that increases permeability of Escherichia coli. J Clin Invest 1975; 55:33–42 [View Article] [PubMed]
    [Google Scholar]
  75. Kopec KO, Alva V, Lupas AN. Homology of SMP domains to the TULIP superfamily of lipid-binding proteins provides a structural basis for lipid exchange between ER and mitochondria. Bioinformatics 2010; 26:1927–1931 [View Article] [PubMed]
    [Google Scholar]
  76. Rahlwes KC, Ha SA, Motooka D, Mayfield JA, Baumoel LR et al. The cell envelope-associated phospholipid-binding protein LmeA is required for mannan polymerization in mycobacteria. J Biol Chem 2017; 292:17407–17417 [View Article] [PubMed]
    [Google Scholar]
  77. Sturgis JN. Organisation and evolution of the tol-pal gene cluster. J Mol Microbiol Biotechnol 2001; 3:113–122 [View Article] [PubMed]
    [Google Scholar]
  78. Lloubès R, Cascales E, Walburger A, Bouveret E, Lazdunski C et al. The Tol-Pal proteins of the Escherichia coli cell envelope: an energized system required for outer membrane integrity?. Res Microbiol 2001; 152:523–529 [View Article] [PubMed]
    [Google Scholar]
  79. Bonsor DA, Hecht O, Vankemmelbeke M, Sharma A, Krachler AM et al. Allosteric beta-propeller signalling in TolB and its manipulation by translocating colicins. EMBO J 2009; 28:2846–2857 [View Article] [PubMed]
    [Google Scholar]
  80. Godlewska R, Wiśniewska K, Pietras Z, Jagusztyn-Krynicka EK. Peptidoglycan-associated lipoprotein (Pal) of Gram-negative bacteria: function, structure, role in pathogenesis and potential application in immunoprophylaxis. FEMS Microbiol Lett 2009; 298:1–11 [View Article] [PubMed]
    [Google Scholar]
  81. Cascales E, Gavioli M, Sturgis JN, Lloubès R. Proton motive force drives the interaction of the inner membrane TolA and outer membrane pal proteins in Escherichia coli. Mol Microbiol 2000; 38:904–915 [View Article] [PubMed]
    [Google Scholar]
  82. Germon P, Ray MC, Vianney A, Lazzaroni JC. Energy-dependent conformational change in the TolA protein of Escherichia coli involves its N-terminal domain, TolQ, and TolR. J Bacteriol 2001; 183:4110–4114 [View Article] [PubMed]
    [Google Scholar]
  83. Bernadac A, Gavioli M, Lazzaroni JC, Raina S, Lloubès R. Escherichia coli tol-pal mutants form outer membrane vesicles. J Bacteriol 1998; 180:4872–4878 [View Article] [PubMed]
    [Google Scholar]
  84. Clavel T, Lazzaroni JC, Vianney A, Portalier R. Expression of the tolQRA genes of Escherichia coli K-12 is controlled by the RcsC sensor protein involved in capsule synthesis. Mol Microbiol 1996; 19:19–25 [View Article] [PubMed]
    [Google Scholar]
  85. Vinés ED, Marolda CL, Balachandran A, Valvano MA. Defective O-antigen polymerization in tolA and pal mutants of Escherichia coli in response to extracytoplasmic stress. J Bacteriol 2005; 187:3359–3368 [View Article] [PubMed]
    [Google Scholar]
  86. Meury J, Devilliers G. Impairment of cell division in tolA mutants of Escherichia coli at low and high medium osmolarities. Biol Cell 1999; 91:67–75 [PubMed]
    [Google Scholar]
  87. Gerding MA, Ogata Y, Pecora ND, Niki H, de Boer PAJ. The trans-envelope Tol-Pal complex is part of the cell division machinery and required for proper outer-membrane invagination during cell constriction in E. coli. Mol Microbiol 2007; 63:1008–1025 [View Article] [PubMed]
    [Google Scholar]
  88. Petiti M, Serrano B, Faure L, Lloubes R, Mignot T et al. Tol energy-driven localization of Pal and anchoring to the peptidoglycan promote outer-membrane connstriction. J Mol Biol 2019; 431:3275–3288 [View Article] [PubMed]
    [Google Scholar]
  89. Szczepaniak J, Holmes P, Rajasekar K, Kaminska R, Samsudin F et al. The lipoprotein Pal stabilises the bacterial outer membrane during constriction by a mobilisation-and-capture mechanism. Nat Commun 2020; 11:1305 [View Article] [PubMed]
    [Google Scholar]
  90. Yakhnina AA, Bernhardt TG. The Tol-Pal system is required for peptidoglycan-cleaving enzymes to complete bacterial cell division. Proc Natl Acad Sci U S A 2020; 117:6777–6783 [View Article] [PubMed]
    [Google Scholar]
  91. Tan WB, Chng SS. Genetic interaction mapping highlights key roles of the Tol-Pal complex. Mol Microbiol 2022 [View Article] [PubMed]
    [Google Scholar]
  92. Masilamani R, Cian MB, Dalebroux ZD. Salmonella Tol-Pal reduces outer membrane glycerophospholipid levels for envelope homeostasis and survival during bacteremia. Infect Immun 2018; 86:e00173-18 [View Article] [PubMed]
    [Google Scholar]
  93. Lubkowski J, Hennecke F, Plückthun A, Wlodawer A. Filamentous phage infection: crystal structure of g3p in complex with its coreceptor, the C-terminal domain of TolA. Structure 1999; 7:711–722 [View Article] [PubMed]
    [Google Scholar]
  94. Carr S, Penfold CN, Bamford V, James R, Hemmings AM. The structure of TolB, an essential component of the tol-dependent translocation system, and its protein-protein interaction with the translocation domain of colicin E9. Structure 2000; 8:57–66 [View Article] [PubMed]
    [Google Scholar]
  95. Deprez C, Lloubès R, Gavioli M, Marion D, Guerlesquin F et al. Solution structure of the E.coli TolA C-terminal domain reveals conformational changes upon binding to the phage g3p N-terminal domain. J Mol Biol 2005; 346:1047–1057 [View Article] [PubMed]
    [Google Scholar]
  96. Cascales E, Lloubès R, Sturgis JN. The TolQ-TolR proteins energize TolA and share homologies with the flagellar motor proteins MotA-MotB. Mol Microbiol 2001; 42:795–807 [View Article] [PubMed]
    [Google Scholar]
  97. Krewulak KD, Vogel HJ. TonB or not TonB: is that the question?. Biochem Cell Biol 2011; 89:87–97 [View Article] [PubMed]
    [Google Scholar]
  98. Morimoto YV, Minamino T. Structure and function of the bi-directional bacterial flagellar motor. Biomolecules 2014; 4:217–234 [View Article] [PubMed]
    [Google Scholar]
  99. Sun M, Wartel M, Cascales E, Shaevitz JW, Mignot T. Motor-driven intracellular transport powers bacterial gliding motility. Proc Natl Acad Sci U S A 2011; 108:7559–7564 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001177
Loading
/content/journal/micro/10.1099/mic.0.001177
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error