1887

Abstract

is an obligately anaerobic Gram-negative bacterium and a major colonizer of the human large colon where is a predominant genus. During the growth of an individual clonal population, an astonishing number of reversible DNA inversion events occur, driving within-strain diversity. Additionally, the pan-genome contains a large pool of diverse polysaccharide biosynthesis loci, DNA restriction/modification systems and polysaccharide utilization loci, which generates remarkable between-strain diversity. Diversity clearly contributes to the success of within its normal habitat of the gastrointestinal (GI) tract and during infection in the extra-intestinal host environment. Within the GI tract, is usually symbiotic, for example providing localized nutrients for the gut epithelium, but within the GI tract may not always be benign. Metalloprotease toxin production is strongly associated with colorectal cancer. is unique amongst bacteria; some strains export a protein >99 % structurally similar to human ubiquitin and antigenically cross-reactive, which suggests a link to autoimmune diseases. is not a primary invasive enteric pathogen; however, if colonic contents contaminate the extra-intestinal host environment, it successfully adapts to this new habitat and causes infection; classically peritoneal infection arising from rupture of an inflamed appendix or GI surgery, which if untreated, can progress to bacteraemia and death. In this review selected aspects of adaptation to the different habitats of the GI tract and the extra-intestinal host environment are considered, along with the considerable challenges faced when studying this highly variable bacterium.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001156
2022-04-11
2022-05-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/168/4/mic001156.html?itemId=/content/journal/micro/10.1099/mic.0.001156&mimeType=html&fmt=ahah

References

  1. Patrick S. Bacteroides. In Tang YW, Sussman M, Liu D, Poxton I, Schwartzman J. eds Molecular Medical Microbiology, 2nd ed. Academic Press; 2015 pp 917–944
    [Google Scholar]
  2. Wexler HM. Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev 2007; 20:593–621 [View Article] [PubMed]
    [Google Scholar]
  3. Veillon A, Zuber A. Sur quelques microbes strictement anaerobies et leur role en pathologie. Arch Med Exp Anat 1898; 10:517–545
    [Google Scholar]
  4. Willis AT, Ferguson IR, Jones PH, Phillips KD, Tearle PV et al. Metronidazole in prevention and treatment of bacteroides infections after appendicectomy. Br Med J 1976; 1:318–321 [View Article] [PubMed]
    [Google Scholar]
  5. Redondo MC, Arbo MD, Grindlinger J, Snydman DR. Attributable mortality of bacteremia associated with the Bacteroides fragilis group. Clin Infect Dis 1995; 20:1492–1496 [View Article] [PubMed]
    [Google Scholar]
  6. Wareham DW, Wilks M, Ahmed D, Brazier JS, Millar M. Anaerobic sepsis due to multidrug-resistant Bacteroides fragilis: microbiological cure and clinical response with linezolid therapy. Clin Infect Dis 2005; 40:e67–8 [View Article] [PubMed]
    [Google Scholar]
  7. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T et al. Enterotypes of the human gut microbiome. Nature 2011; 473:174–180 [View Article] [PubMed]
    [Google Scholar]
  8. Willis AT. Abdominal sepsis. In Duerden BI, Drasar BS. eds Anaerobes in Human Disease Edward Arnold; 1991 pp 197–223
    [Google Scholar]
  9. Gibson GR, Macfarlane GT. Intestinal bacteria and disease. In Gibson SAW. eds Human Health: The Contribution of Microorganisms Springer-Verlag; 1994 pp 53–62
    [Google Scholar]
  10. Oren A, Garrity GMY. Valid publication of the names of forty-two phyla of prokaryotes. Int J Syst Evol Microbiol 2021; 71:10 [View Article] [PubMed]
    [Google Scholar]
  11. Boleij A, Hechenbleikner EM, Goodwin AC, Badani R, Stein EM et al. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin Infect Dis 2015; 60:208–215 [View Article] [PubMed]
    [Google Scholar]
  12. Shao Y, Forster SC, Tsaliki E, Vervier K, Strang A et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature 2019; 574:117–121 [View Article] [PubMed]
    [Google Scholar]
  13. Browne HP, Neville BA, Forster SC, Lawley TD. Transmission of the gut microbiota: spreading of health. Nat Rev Microbiol 2017; 15:531–543 [View Article] [PubMed]
    [Google Scholar]
  14. Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 2018; 555:210–215 [View Article] [PubMed]
    [Google Scholar]
  15. Bahl MI, Bergström A, Licht TR. Freezing fecal samples prior to DNA extraction affects the Firmicutes to Bacteroidetes ratio determined by downstream quantitative PCR analysis. FEMS Microbiol Lett 2012; 329:193–197 [View Article] [PubMed]
    [Google Scholar]
  16. Bolam DN, Koropatkin NM. Glycan recognition by the Bacteroidetes Sus-like systems. Curr Opin Struct Biol 2012; 22:563–569 [View Article] [PubMed]
    [Google Scholar]
  17. Briliūtė J, Urbanowicz PA, Luis AS, Baslé A, Paterson N et al. Complex N-glycan breakdown by gut Bacteroides involves an extensive enzymatic apparatus encoded by multiple co-regulated genetic loci. Nat Microbiol 2019; 4:1571–1581 [View Article] [PubMed]
    [Google Scholar]
  18. Johansson MEV, Larsson JMH, Hansson GC. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci U S A 2011; 108 Suppl 1:4659–4665 [View Article] [PubMed]
    [Google Scholar]
  19. Crouch LI, Liberato MV, Urbanowicz PA, Baslé A, Lamb CA et al. Prominent members of the human gut microbiota express endo-acting O-glycanases to initiate mucin breakdown. Nat Commun 2020; 11:4017 [View Article] [PubMed]
    [Google Scholar]
  20. Swidsinski A, Weber J, Loening-Baucke V, Hale LP, Lochs H. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J Clin Microbiol 2005; 43:3380–3389 [View Article] [PubMed]
    [Google Scholar]
  21. Hanley SA, Aduse-Opoku J, Curtis MA. A 55-kilodalton immunodominant antigen of Porphyromonas gingivalis W50 has arisen via horizontal gene transfer. Infect Immun 1999; 67:1157–1171 [View Article] [PubMed]
    [Google Scholar]
  22. Cerdeño-Tárraga AM, Patrick S, Crossman LC, Blakely G, Abratt V et al. Extensive DNA inversions in the B. fragilis genome control variable gene expression. Science 2005; 307:1463–1465 [View Article] [PubMed]
    [Google Scholar]
  23. Patrick S, Ingram RB, Schneiders T, Fitzgerald DC. Microbial regulation of gastrointestinal immunity in health and disease. In Constantinescu CS, Arsenescu RI, Arsenescu V. eds Neuro-Immuno-Gastroenterology Springer; 2016 pp 39–52
    [Google Scholar]
  24. De Luca F, Shoenfeld Y. The microbiome in autoimmune diseases. Clin Exp Immunol 2019; 195:74–85 [View Article] [PubMed]
    [Google Scholar]
  25. Schmidt CW. Questions persist: environmental factors in autoimmune disease. Environ Health Perspect 2011; 119:A249–53 [View Article] [PubMed]
    [Google Scholar]
  26. Valles-Colomer M, Bacigalupe R, Vieira-Silva S, Suzuki S, Darzi Y et al. Variation and transmission of the human gut microbiota across multiple familial generations. Nat Microbiol 2022; 7:87–96 [View Article] [PubMed]
    [Google Scholar]
  27. Agrawal M, Shah S, Patel A, Pinotti R, Colombel JF et al. Changing epidemiology of immune-mediated inflammatory diseases in immigrants: A systematic review of population-based studies. J Autoimmun 2019; 105:102303 [View Article] [PubMed]
    [Google Scholar]
  28. Albert LJ, Inman RD. Molecular mimicry and autoimmunity. N Engl J Med 1999; 341:2068–2074 [View Article] [PubMed]
    [Google Scholar]
  29. Patrick S, Jobling KL, O’Connor D, Thacker Z, Dryden DTF et al. A unique homologue of the eukaryotic protein-modifier ubiquitin present in the bacterium Bacteroides fragilis, a predominant resident of the human gastrointestinal tract. Microbiology (Reading) 2011; 157:3071–3078 [View Article] [PubMed]
    [Google Scholar]
  30. Stewart L, D M Edgar J, Blakely G, Patrick S. Antigenic mimicry of ubiquitin by the gut bacterium Bacteroides fragilis: a potential link with autoimmune disease. Clin Exp Immunol 2018; 194:153–165 [View Article] [PubMed]
    [Google Scholar]
  31. Patrick S, Blakely GW. Crossing the eukaryote-prokaryote divide: A ubiquitin homolog in the human commensal bacterium Bacteroides fragilis. Mob Genet Elements 2012; 2:149–151 [View Article]
    [Google Scholar]
  32. Weissman AM, Shabek N, Ciechanover A. The predator becomes the prey: regulating the ubiquitin system by ubiquitylation and degradation. Nat Rev Mol Cell Biol 2011; 12:605–620 [View Article]
    [Google Scholar]
  33. Ciechanover A. Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Biochim Biophys Acta 2012; 1824:3–13 [View Article]
    [Google Scholar]
  34. Varshavsky A. The ubiquitin system, an immense realm. Annu Rev Biochem 2012; 81:167–176 [View Article]
    [Google Scholar]
  35. Zuin A, Isasa M, Crosas B. Ubiquitin signaling: extreme conservation as a source of diversity. Cells 2014; 3:690–701 [View Article] [PubMed]
    [Google Scholar]
  36. Chatzidaki-Livanis M, Coyne MJ, Roelofs KG, Gentyala RR, Caldwell JM et al. Gut symbiont Bacteroides fragilis secretes a eukaryotic-like ubiquitin protein that mediates intraspecies antagonism. mBio 2017; 8:01902–01917 [View Article] [PubMed]
    [Google Scholar]
  37. Lawley TD, Walker AW. Intestinal colonization resistance. Immunology 2013; 138:1–11 [View Article] [PubMed]
    [Google Scholar]
  38. Patrick S, Duerden B. Gram-negative non-spore forming obligate anaerobes. Chapter 45. In Gillespie SH, Hawkey P. eds Principles and Practice of Clinical Bacteriology, 2nd ed. J Wiley; 2006 pp 541–556
    [Google Scholar]
  39. Ledger WJ. Post-partum endomyometritis diagnosis and treatment: a review. J Obstet Gynaecol Res 2003; 29:364–373 [View Article] [PubMed]
    [Google Scholar]
  40. Sherwood JE, Fraser S, Citron DM, Wexler H, Blakely G et al. Multi-drug resistant Bacteroides fragilis recovered from blood and severe leg wounds caused by an improvised explosive device (IED) in Afghanistan. Anaerobe 2011; 17:152–155 [View Article] [PubMed]
    [Google Scholar]
  41. Goldstein EJC. Intra-abdominal anaerobic infections: bacteriology and therapeutic potential of newer antimicrobial carbapenem, fluoroquinolone, and desfluoroquinolone therapeutic agents. Clin Infect Dis 2002; 35:S106–11 [View Article] [PubMed]
    [Google Scholar]
  42. Patrick S, Stewart LD, Damani N, Wilson KG, Lutton DA et al. Immunological detection of Bacteroides fragilis in clinical samples. J Med Microbiol 1995; 43:99–109 [View Article] [PubMed]
    [Google Scholar]
  43. Public Health England Identification of Anaerobic Gram Negative Rods. UK Standards for Microbiology Investigations. ID 25 Issue 2; 2015 https://www.gov.uk/uk-standards-for-microbiology-investigations-smi-quality-and-consistency-in-clinical-laboratories
  44. Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2020; 70:2960–2966 [View Article] [PubMed]
    [Google Scholar]
  45. Al Masalma M, Raoult D, Roux V. Phocaeicola abscessus gen. nov., sp. nov., an anaerobic bacterium isolated from a human brain abscess sample. Int J Syst Evol Microbiol 2009; 59:2232–2237 [View Article] [PubMed]
    [Google Scholar]
  46. Sóki J, Keszőcze A, Nagy I, Burián K, Nagy E. An update on ampicillin resistance and β-lactamase genes of Bacteroides spp. J Med Microbiol 2021; 70: [View Article] [PubMed]
    [Google Scholar]
  47. Salipante SJ, Kalapila A, Pottinger PS, Hoogestraat DR, Cummings L et al. Characterization of a multidrug-resistant, novel Bacteroides genomospecies. Emerg Infect Dis 2015; 21:95–98 [View Article] [PubMed]
    [Google Scholar]
  48. Sears CL. Enterotoxigenic Bacteroides fragilis: a rogue among symbiotes. Clin Microbiol Rev 2009; 22:349–369 [View Article] [PubMed]
    [Google Scholar]
  49. Myers LL, Firehammer BD, Shoop DS, Border MM. Bacteroides fragilis: a possible cause of acute diarrheal disease in newborn lambs. Infect Immun 1984; 44:241–244 [View Article] [PubMed]
    [Google Scholar]
  50. Myers LL, Shoop DS. Association of enterotoxigenic Bacteroides fragilis with diarrheal disease in young pigs. Am J Vet Res 1987; 48:774–775 [PubMed]
    [Google Scholar]
  51. Sack RB, Albert MJ, Alam K, Neogi PK, Akbar MS. Isolation of enterotoxigenic Bacteroides fragilis from Bangladeshi children with diarrhea: a controlled study. J Clin Microbiol 1994; 32:960–963 [View Article] [PubMed]
    [Google Scholar]
  52. Zitomersky NL, Coyne MJ, Comstock LE. Longitudinal analysis of the prevalence, maintenance, and IgA response to species of the order Bacteroidales in the human gut. Infect Immun 2011; 79:2012–2020 [View Article] [PubMed]
    [Google Scholar]
  53. Łuczak M, Obuch-Woszczatyński P, Pituch H, Leszczyński P, Martirosian G et al. Search for enterotoxin gene in Bacteroides fragilis strains isolated from clinical specimens in Poland, Great Britain, The Netherlands and France. Med Sci Monit 2001; 7:222–225 [PubMed]
    [Google Scholar]
  54. Claros MC, Claros ZC, Hecht DW, Citron DM, Goldstein EJC et al. Characterization of the Bacteroides fragilis pathogenicity island in human blood culture isolates. Anaerobe 2006; 12:17–22 [View Article] [PubMed]
    [Google Scholar]
  55. Choi VM, Herrou J, Hecht AL, Teoh WP, Turner JR et al. Activation of Bacteroides fragilis toxin by a novel bacterial protease contributes to anaerobic sepsis in mice. Nat Med 2016; 22:563–567 [View Article] [PubMed]
    [Google Scholar]
  56. Allan E, Poxton IR, Barclay GR. Anti-bacteroides lipopolysaccharide IgG levels in healthy adults and sepsis patients. FEMS Immunol Med Microbiol 1995; 11:5–12 [View Article] [PubMed]
    [Google Scholar]
  57. Thornton RF, Kagawa TF, O’Toole PW, Cooney JC. The dissemination of C10 cysteine protease genes in Bacteroides fragilis by mobile genetic elements. BMC Microbiol 2010; 10:10 [View Article] [PubMed]
    [Google Scholar]
  58. Veeranagouda Y, Husain F, Boente R, Moore J, Smith CJ et al. Deficiency of the ferrous iron transporter FeoAB is linked with metronidazole resistance in Bacteroides fragilis. J Antimicrob Chemother 2014; 69:2634–2643 [View Article] [PubMed]
    [Google Scholar]
  59. Godoy VG, Dallas MM, Russo TA, Malamy MH. A role for Bacteroides fragilis neuraminidase in bacterial growth in two model systems. Infect Immun 1993; 61:4415–4426 [View Article] [PubMed]
    [Google Scholar]
  60. Vimr ER, Kalivoda KA, Deszo EL, Steenbergen SM. Diversity of microbial sialic acid metabolism. Microbiol Mol Biol Rev 2004; 68:132–153 [View Article] [PubMed]
    [Google Scholar]
  61. Morris JG. Characteristics of anaerobic metabolism. In Duerden BI, Drasar BS. eds Anaerobes in Human Disease Edward Arnold; 1991 pp 16–37
    [Google Scholar]
  62. Meehan BM, Malamy MH. Fumarate reductase is a major contributor to the generation of reactive oxygen species in the anaerobe Bacteroides fragilis. Microbiology (Reading) 2012; 158:539–546 [View Article] [PubMed]
    [Google Scholar]
  63. Patrick S, Houston S, Thacker Z, Blakely GW. Mutational analysis of genes implicated in LPS and capsular polysaccharide biosynthesis in the opportunistic pathogen Bacteroides fragilis. Microbiology (Reading) 2009; 155:1039–1049 [View Article] [PubMed]
    [Google Scholar]
  64. Patrick S, McKenna JP, O’Hagan S, Dermott E. A comparison of the haemagglutinating and enzymic activities of Bacteroides fragilis whole cells and outer membrane vesicles. Microb Pathog 1996; 20:191–202 [View Article] [PubMed]
    [Google Scholar]
  65. Lutton DA, Patrick S, Crockard AD, Stewart LD, Larkin MJ et al. Flow cytometric analysis of within-strain variation in polysaccharide expression by Bacteroides fragilis by use of murine monoclonal antibodies. J Med Microbiol 1991; 35:229–237 [View Article] [PubMed]
    [Google Scholar]
  66. Patrick S, Parkhill J, McCoy LJ, Lennard N, Larkin MJ et al. Multiple inverted DNA repeats of Bacteroides fragilis that control polysaccharide antigenic variation are similar to the hin region inverted repeats of Salmonella typhimurium. Microbiology (Reading) 2003; 149:915–924 [View Article] [PubMed]
    [Google Scholar]
  67. Chatzidaki-Livanis M, Coyne MJ, Comstock LE. A family of transcriptional antitermination factors necessary for synthesis of the capsular polysaccharides of Bacteroides fragilis. J Bacteriol 2009; 191:7288–7295 [View Article] [PubMed]
    [Google Scholar]
  68. Patrick S, Blakely GW, Houston S, Moore J, Abratt VR et al. Twenty-eight divergent polysaccharide loci specifying within- and amongst-strain capsule diversity in three strains of Bacteroides fragilis. Microbiology (Reading) 2010; 156:3255–3269 [View Article] [PubMed]
    [Google Scholar]
  69. Johnson JL, Jones MB, Cobb BA. Polysaccharide A from the capsule of Bacteroides fragilis induces clonal CD4+ T cell expansion. J Biol Chem 2015; 290:5007–5014 [View Article] [PubMed]
    [Google Scholar]
  70. Houston S, Blakely GW, McDowell A, Martin L, Patrick S. Binding and degradation of fibrinogen by Bacteroides fragilis and characterization of a 54 kDa fibrinogen-binding protein. Microbiology (Reading) 2010; 156:2516–2526 [View Article] [PubMed]
    [Google Scholar]
  71. Husain F, Tang K, Veeranagouda Y, Boente R, Patrick S et al. Novel large-scale chromosomal transfer in Bacteroides fragilis contributes to its pan-genome and rapid environmental adaptation. Microb Genom 2017; 3:11 [View Article] [PubMed]
    [Google Scholar]
  72. Patrick S, Gilpin D, Stevenson L. Detection of intrastrain antigenic variation of Bacteroides fragilis surface polysaccharides by monoclonal antibody labelling. Infect Immun 1999; 67:4346–4351 [View Article] [PubMed]
    [Google Scholar]
  73. Berg G, Rybakova D, Fischer D, Cernava T, Vergès M-CC et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome 2020; 8:103 [View Article]
    [Google Scholar]
  74. Marchesi JR, Ravel J. The vocabulary of microbiome research: a proposal. Microbiome 2015; 3:31 [View Article]
    [Google Scholar]
  75. Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J. DNAPlotter: circular and linear interactive genome visualization. Bioinformatics 2009; 25:119–120 [View Article]
    [Google Scholar]
  76. Kelley LA, Sternberg MJE. Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 2009; 4:363–371 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001156
Loading
/content/journal/micro/10.1099/mic.0.001156
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error