1887

Abstract

Pore-forming toxins (PFTs) are widely distributed in both Gram-negative and Gram-positive bacteria. PFTs can act as virulence factors that bacteria utilise in dissemination and host colonisation or, alternatively, they can be employed to compete with rival microbes in polymicrobial niches. PFTs transition from a soluble form to become membrane-embedded by undergoing large conformational changes. Once inserted, they perforate the membrane, causing uncontrolled efflux of ions and/or nutrients and dissipating the protonmotive force (PMF). In some instances, target cells intoxicated by PFTs display additional effects as part of the cellular response to pore formation. Significant progress has been made in the mechanistic description of pore formation for the different PFTs families, but in several cases a complete understanding of pore structure remains lacking. PFTs have evolved recognition mechanisms to bind specific receptors that define their host tropism, although this can be remarkably diverse even within the same family. Here we summarise the salient features of PFTs and highlight where additional research is necessary to fully understand the mechanism of pore formation by members of this diverse group of protein toxins.

Funding
This study was supported by the:
  • Wellcome Trust (Award 218622/Z/19/Z)
    • Principle Award Recipient: GiuseppinaMariano
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001154
2022-03-25
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/168/3/mic001154.html?itemId=/content/journal/micro/10.1099/mic.0.001154&mimeType=html&fmt=ahah

References

  1. Ma Y, Poole K, Goyette J, Gaus K. Introducing membrane charge and membrane potential to T cell signaling. Front Immunol 2017; 8:1513 [View Article]
    [Google Scholar]
  2. Epand RM, Walker C, Epand RF, Magarvey NA. Molecular mechanisms of membrane targeting antibiotics. Biochim Biophys Acta 2016; 1858:980–987 [View Article]
    [Google Scholar]
  3. Dal Peraro M, van der Goot FG. Pore-forming toxins: ancient, but never really out of fashion. Nat Rev Microbiol 2016; 14:77–92 [View Article]
    [Google Scholar]
  4. Li Y, Li Y, Mengist HM, Shi C, Zhang C et al. Structural basis of the pore-forming toxin/membrane interaction. Toxins 2021; 13:128 [View Article]
    [Google Scholar]
  5. Szczesny P, Iacovache I, Muszewska A, Ginalski K, van der Goot FG et al. Extending the aerolysin family: from bacteria to vertebrates. PLoS One 2011; 6:e20349 [View Article]
    [Google Scholar]
  6. Parker MW, Pattus F, Tucker AD, Tsernoglou D. Structure of the membrane-pore-forming fragment of colicin A. Nature 1989; 337:93–96 [View Article] [PubMed]
    [Google Scholar]
  7. Wilmsen HU, Leonard KR, Tichelaar W, Buckley JT, Pattus F. The aerolysin membrane channel is formed by heptamerization of the monomer. EMBO J 1992; 11:2457–2463 [PubMed]
    [Google Scholar]
  8. Benke S, Roderer D, Wunderlich B, Nettels D, Glockshuber R et al. The assembly dynamics of the cytolytic pore toxin ClyA. Nat Commun 2015; 6:6198 [View Article] [PubMed]
    [Google Scholar]
  9. Wilson JS, Churchill-Angus AM, Davies SP, Sedelnikova SE, Tzokov SB et al. Identification and structural analysis of the tripartite α-pore forming toxin of Aeromonas hydrophila. Nat Commun 2019; 10:2900 [View Article] [PubMed]
    [Google Scholar]
  10. Churchill-Angus AM, Schofield THB, Marlow TR, Sedelnikova SE, Wilson JS et al. Characterisation of a tripartite α-pore forming toxin from Serratia marcescens. Sci Rep 2021; 11:6447 [View Article] [PubMed]
    [Google Scholar]
  11. Tanaka K, Caaveiro JMM, Morante K, González-Mañas JM, Tsumoto K. Structural basis for self-assembly of a cytolytic pore lined by protein and lipid. Nat Commun 2015; 6: [View Article]
    [Google Scholar]
  12. Sobko AA, Kotova EA, Antonenko YN, Zakharov SD, Cramer WA. Lipid dependence of the channel properties of a colicin E1-lipid toroidal pore. J Biol Chem 2006; 281:14408–14416 [View Article] [PubMed]
    [Google Scholar]
  13. Antonini V, Pérez-Barzaga V, Bampi S, Pentón D, Martínez D et al. Functional characterization of sticholysin I and W111C mutant reveals the sequence of the actinoporin’s pore assembly. PLoS One 2014; 9:e110824 [View Article] [PubMed]
    [Google Scholar]
  14. Subburaj Y, Ros U, Hermann E, Tong R, García-Sáez AJ. Toxicity of an α-pore-forming toxin depends on the assembly mechanism on the target membrane as revealed by single molecule imaging. J Biol Chem 2015; 290:4856–4865 [View Article] [PubMed]
    [Google Scholar]
  15. Yamashita D, Sugawara T, Takeshita M, Kaneko J, Kamio Y et al. Molecular basis of transmembrane beta-barrel formation of staphylococcal pore-forming toxins. Nat Commun 2014; 5:4897 [View Article] [PubMed]
    [Google Scholar]
  16. Sugawara T, Yamashita D, Kato K, Peng Z, Ueda J et al. Structural basis for pore-forming mechanism of staphylococcal α-hemolysin. Toxicon 2015; 108:226–231 [View Article] [PubMed]
    [Google Scholar]
  17. Vögele M, Bhaskara RM, Mulvihill E, van Pee K, Yildiz Ö et al. Membrane perforation by the pore-forming toxin pneumolysin. Proc Natl Acad Sci U S A 2019; 116:13352–13357 [View Article] [PubMed]
    [Google Scholar]
  18. Parker MW, Feil SC. Pore-forming protein toxins: from structure to function. Prog Biophys Mol Biol 2005; 88:91–142 [View Article] [PubMed]
    [Google Scholar]
  19. Ostolaza H, González-Bullón D, Uribe KB, Martín C, Amuategi J et al. Membrane permeabilization by pore-forming RTX toxins: what kind of lesions do these toxins form?. Toxins (Basel) 2019; 11:E354 [View Article] [PubMed]
    [Google Scholar]
  20. Sonnen A-P, Plitzko JM, Gilbert RJC. Incomplete pneumolysin oligomers form membrane pores. Open Biol 2014; 4:140044 [View Article] [PubMed]
    [Google Scholar]
  21. Dudev T, Lim C. Ion selectivity in the selectivity filters of acid-sensing ion channels. Sci Rep 2015; 5:7864 [View Article] [PubMed]
    [Google Scholar]
  22. Los FCO, Randis TM, Aroian RV, Ratner AJ. Role of pore-forming toxins in bacterial infectious diseases. Microbiol Mol Biol Rev 2013; 77:173–207 [View Article] [PubMed]
    [Google Scholar]
  23. Hu H, Liu M, Sun S. Pore-forming toxins during bacterial infection: molecular mechanisms and potential therapeutic targets. Drug Des Devel Ther 2021; 15:3773–3781 [View Article] [PubMed]
    [Google Scholar]
  24. Linhartová I, Bumba L, Mašín J, Basler M, Osička R et al. RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol Rev 2010; 34:1076–1112 [View Article] [PubMed]
    [Google Scholar]
  25. Maltz M, Graf J. The type II secretion system is essential for erythrocyte lysis and gut colonization by the leech digestive tract symbiont Aeromonas veronii. Appl Environ Microbiol 2011; 77:597–603 [View Article] [PubMed]
    [Google Scholar]
  26. Sreelatha A, Bennett TL, Zheng H, Jiang Q-X, Orth K et al. Vibrio effector protein, VopQ, forms a lysosomal gated channel that disrupts host ion homeostasis and autophagic flux. Proc Natl Acad Sci U S A 2013; 110:11559–11564 [View Article] [PubMed]
    [Google Scholar]
  27. Cheung GYC, Bae JS, Otto M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 2021; 12:547–569 [View Article] [PubMed]
    [Google Scholar]
  28. Nadeem A, Nagampalli R, Toh E, Alam A, Myint SL et al. A tripartite cytolytic toxin formed by Vibrio cholerae proteins with flagellum-facilitated secretion. Proc Natl Acad Sci USA 2021; 118:e2111418118 [View Article]
    [Google Scholar]
  29. Hertle R. Serratia type pore forming toxins. Curr Protein Pept Sci 2000; 1:75–89 [View Article] [PubMed]
    [Google Scholar]
  30. Guerrero-Mandujano A, Hernández-Cortez C, Ibarra JA, Castro-Escarpulli G. The outer membrane vesicles: Secretion system type zero. Traffic 2017; 18:425–432 [View Article] [PubMed]
    [Google Scholar]
  31. Cortajarena AL, Goñi FM, Ostolaza H. Glycophorin as a receptor for Escherichia coli alpha-hemolysin in erythrocytes. J Biol Chem 2001; 276:12513–12519 [View Article] [PubMed]
    [Google Scholar]
  32. Martín C, Requero M-A, Masin J, Konopasek I, Goñi FM et al. Membrane restructuring by Bordetella pertussis adenylate cyclase toxin, a member of the RTX toxin family. J Bacteriol 2004; 186:3760–3765 [View Article]
    [Google Scholar]
  33. Abrami L, Velluz MC, Hong Y, Ohishi K, Mehlert A et al. The glycan core of GPI-anchored proteins modulates aerolysin binding but is not sufficient: the polypeptide moiety is required for the toxin-receptor interaction. FEBS Lett 2002; 512:249–254 [View Article] [PubMed]
    [Google Scholar]
  34. Iacovache I, De Carlo S, Cirauqui N, Dal Peraro M, van der Goot FG et al. Cryo-EM structure of aerolysin variants reveals a novel protein fold and the pore-formation process. Nat Commun 2016; 7:12062 [View Article] [PubMed]
    [Google Scholar]
  35. Liu S-S, Liu Y-S, Guo X-Y, Murakami Y, Yang G et al. A knockout cell library of GPI biosynthetic genes for functional studies of GPI-anchored proteins. Commun Biol 2021; 4:777 [View Article] [PubMed]
    [Google Scholar]
  36. Ivie SE, McClain MS. Identification of amino acids important for binding of Clostridium perfringens epsilon toxin to host cells and to HAVCR1. Biochemistry 2012; 51:7588–7595 [View Article] [PubMed]
    [Google Scholar]
  37. Trstenjak N, Milić D, Graewert MA, Rouha H, Svergun D et al. Molecular mechanism of leukocidin GH-integrin CD11b/CD18 recognition and species specificity. Proc Natl Acad Sci U S A 2020; 117:317–327 [View Article] [PubMed]
    [Google Scholar]
  38. Shewell LK, Day CJ, Jen FE-C, Haselhorst T, Atack JM et al. All major cholesterol-dependent cytolysins use glycans as cellular receptors. Sci Adv 2020; 6:eaaz4926 [View Article] [PubMed]
    [Google Scholar]
  39. Giddings KS, Zhao J, Sims PJ, Tweten RK. Human CD59 is a receptor for the cholesterol-dependent cytolysin intermedilysin. Nat Struct Mol Biol 2004; 11:1173–1178 [View Article] [PubMed]
    [Google Scholar]
  40. Johnson S, Brooks NJ, Smith RAG, Lea SM, Bubeck D. Structural basis for recognition of the pore-forming toxin intermedilysin by human complement receptor CD59. Cell Rep 2013; 3:1369–1377 [View Article] [PubMed]
    [Google Scholar]
  41. Lawrence SL, Gorman MA, Feil SC, Mulhern TD, Kuiper MJ et al. Structural basis for receptor recognition by the human CD59-responsive cholesterol-dependent cytolysins. Structure 2016; 24:1488–1498 [View Article] [PubMed]
    [Google Scholar]
  42. Levan S, De S, Olson R. Vibrio cholerae cytolysin recognizes the heptasaccharide core of complex N-glycans with nanomolar affinity. J Mol Biol 2013; 425:944–957 [View Article] [PubMed]
    [Google Scholar]
  43. Rai AK, Paul K, Chattopadhyay K. Functional mapping of the lectin activity site on the β-prism domain of Vibrio cholerae cytolysin: implications for the membrane pore-formation mechanism of the toxin. J Biol Chem 2013; 288:1665–1673 [View Article] [PubMed]
    [Google Scholar]
  44. Kaus K, Lary JW, Cole JL, Olson R. Glycan specificity of the Vibrio vulnificus hemolysin lectin outlines evolutionary history of membrane targeting by a toxin family. J Mol Biol 2014; 426:2800–2812 [View Article] [PubMed]
    [Google Scholar]
  45. Gordon VM, Nelson KL, Buckley JT, Stevens VL, Tweten RK et al. Clostridium septicum alpha toxin uses glycosylphosphatidylinositol-anchored protein receptors. J Biol Chem 1999; 274:27274–27280 [View Article] [PubMed]
    [Google Scholar]
  46. Berube BJ, Bubeck Wardenburg J. Staphylococcus aureus α-toxin: nearly a century of intrigue. Toxins (Basel) 2013; 5:1140–1166 [View Article] [PubMed]
    [Google Scholar]
  47. Bruggisser J, Tarek B, Wyder M, Müller P, von Ballmoos C et al. CD31 (PECAM-1) Serves as the endothelial cell-specific receptor of Clostridium perfringens β-Toxin. Cell Host Microbe 2020; 28:69–78 [View Article] [PubMed]
    [Google Scholar]
  48. Spaan AN, Henry T, van Rooijen WJM, Perret M, Badiou C et al. The staphylococcal toxin Panton-Valentine Leukocidin targets human C5a receptors. Cell Host Microbe 2013; 13:584–594 [View Article] [PubMed]
    [Google Scholar]
  49. Spaan AN, Schiepers A, de Haas CJC, van Hooijdonk DDJJ, Badiou C et al. Differential Interaction of the Staphylococcal Toxins Panton-Valentine Leukocidin and γ-Hemolysin CB with Human C5a Receptors. J Immunol 2015; 195:1034–1043 [View Article] [PubMed]
    [Google Scholar]
  50. DuMont AL, Yoong P, Day CJ, Alonzo F 3rd, McDonald WH et al. Staphylococcus aureus LukAB cytotoxin kills human neutrophils by targeting the CD11b subunit of the integrin Mac-1. Proc Natl Acad Sci U S A 2013; 110:10794–10799 [View Article] [PubMed]
    [Google Scholar]
  51. Perelman SS, James DBA, Boguslawski KM, Nelson CW, Ilmain JK et al. Genetic variation of staphylococcal LukAB toxin determines receptor tropism. Nat Microbiol 2021; 6:731–745 [View Article] [PubMed]
    [Google Scholar]
  52. Liu J, Zuo Z, Sastalla I, Liu C, Jang JY et al. Sequential CRISPR-Based Screens Identify LITAF and CDIP1 as the Bacillus cereus Hemolysin BL Toxin Host Receptors. Cell Host Microbe 2020; 28:402–410 [View Article] [PubMed]
    [Google Scholar]
  53. Lally ET, Hill RB, Kieba IR, Korostoff J. The interaction between RTX toxins and target cells. Trends Microbiol 1999; 7:356–361 [View Article] [PubMed]
    [Google Scholar]
  54. Wiles TJ, Mulvey MA. The RTX pore-forming toxin α-hemolysin of uropathogenic Escherichia coli: progress and perspectives. Future Microbiol 2013; 8:73–84 [View Article] [PubMed]
    [Google Scholar]
  55. Osicka R, Osickova A, Hasan S, Bumba L, Cerny J et al. Bordetella adenylate cyclase toxin is a unique ligand of the integrin complement receptor 3. elife 2015; 4:e10766 [View Article] [PubMed]
    [Google Scholar]
  56. Wang C, Li Q, Lv J, Sun X, Cao Y et al. Alpha-hemolysin of uropathogenic Escherichia coli induces GM-CSF-mediated acute kidney injury. Mucosal Immunol 2020; 13:22–33 [View Article]
    [Google Scholar]
  57. Fivaz M, Abrami L, van der Goot FG. Pathogens, toxins, and lipid rafts. Protoplasma 2000; 212:8–14 [View Article]
    [Google Scholar]
  58. Skočaj M, Bakrač B, Križaj I, Maček P, Anderluh G et al. The sensing of membrane microdomains based on pore-forming toxins. Curr Med Chem 2013; 20:491–501 [View Article]
    [Google Scholar]
  59. Dowd KJ, Farrand AJ, Tweten RK. The cholesterol-dependent cytolysin signature motif: a critical element in the allosteric pathway that couples membrane binding to pore assembly. PLoS Pathog 2012; 8:e1002787 [View Article] [PubMed]
    [Google Scholar]
  60. Farrand AJ, LaChapelle S, Hotze EM, Johnson AE, Tweten RK. Only two amino acids are essential for cytolytic toxin recognition of cholesterol at the membrane surface. Proc Natl Acad Sci U S A 2010; 107:4341–4346 [View Article]
    [Google Scholar]
  61. Kozorog M, Sani M-A, Lenarčič Živković M, Ilc G, Hodnik V et al. 19F NMR studies provide insights into lipid membrane interactions of listeriolysin O, a pore forming toxin from Listeria monocytogenes. Sci Rep 2018; 8:1–11 [View Article]
    [Google Scholar]
  62. Sathyanarayana P, Maurya S, Behera A, Ravichandran M, Visweswariah SS et al. Cholesterol promotes Cytolysin A activity by stabilizing the intermediates during pore formation. Proc Natl Acad Sci U S A 2018; 115:E7323–E7330 [View Article] [PubMed]
    [Google Scholar]
  63. Vaidyanathan MS, Sathyanarayana P, Maiti PK, Visweswariah SS, Ayappa KG. Lysis dynamics and membrane oligomerization pathways for Cytolysin A (ClyA) pore-forming toxin. RSC Adv 2014; 4:4930 [View Article]
    [Google Scholar]
  64. Mueller M, Grauschopf U, Maier T, Glockshuber R, Ban N. The structure of a cytolytic alpha-helical toxin pore reveals its assembly mechanism. Nature 2009; 459:726–730 [View Article] [PubMed]
    [Google Scholar]
  65. Peng W, de Souza Santos M, Li Y, Tomchick DR, Orth K. High-resolution cryo-EM structures of the E. coli hemolysin ClyA oligomers. PLoS One 2019; 14:e0213423 [View Article] [PubMed]
    [Google Scholar]
  66. Bräuning B, Bertosin E, Praetorius F, Ihling C, Schatt A et al. Structure and mechanism of the two-component α-helical pore-forming toxin YaxAB. Nat Commun 2018; 9:1806 [View Article] [PubMed]
    [Google Scholar]
  67. Söderblom T, Oxhamre C, Wai SN, Uhlén P, Aperia A et al. Effects of the Escherichia coli toxin cytolysin A on mucosal immunostimulation via epithelial Ca2+ signalling and Toll-like receptor 4. Cell Microbiol 2005; 7:779–788 [View Article] [PubMed]
    [Google Scholar]
  68. Lai XH, Arencibia I, Johansson A, Wai SN, Oscarsson J et al. Cytocidal and apoptotic effects of the ClyA protein from Escherichia coli on primary and cultured monocytes and macrophages. Infect Immun 2000; 68:4363–4367 [View Article] [PubMed]
    [Google Scholar]
  69. Ludwig A, von Rhein C, Bauer S, Hüttinger C, Goebel W. Molecular analysis of cytolysin A (ClyA) in pathogenic Escherichia coli strains. J Bacteriol 2004; 186:5311–5320 [View Article] [PubMed]
    [Google Scholar]
  70. Faucher SP, Forest C, Béland M, Daigle F. A novel PhoP-regulated locus encoding the cytolysin ClyA and the secreted invasin TaiA of Salmonella enterica serovar Typhi is involved in virulence. Microbiology 2009; 155:477–488 [View Article]
    [Google Scholar]
  71. von Rhein C, Bauer S, Simon V, Ludwig A. Occurrence and characteristics of the cytolysin A gene in Shigella strains and other members of the family Enterobacteriaceae. FEMS Microbiol Lett 2008; 287:143–148 [View Article]
    [Google Scholar]
  72. Banerji R, Karkee A, Kanojiya P, Saroj SD. Pore-forming toxins of foodborne pathogens. Compr Rev Food Sci Food Saf 2021; 20:2265–2285 [View Article]
    [Google Scholar]
  73. Mathur A, Feng S, Hayward JA, Ngo C, Fox D et al. A multicomponent toxin from Bacillus cereus incites inflammation and shapes host outcome via the NLRP3 inflammasome. Nat Microbiol 2019; 4:362–374 [View Article]
    [Google Scholar]
  74. Fox D, Mathur A, Xue Y, Liu Y, Tan WH et al. Bacillus cereus non-haemolytic enterotoxin activates the NLRP3 inflammasome. Nat Commun 2020; 11:760 [View Article] [PubMed]
    [Google Scholar]
  75. Wagner NJ, Lin CP, Borst LB, Miller VL. YaxAB, a Yersinia enterocolitica pore-forming toxin regulated by RovA. Infect Immun 2013; 81:4208–4219 [View Article]
    [Google Scholar]
  76. Parker MW, Buckley JT, Postma JP, Tucker AD, Leonard K et al. Structure of the Aeromonas toxin proaerolysin in its water-soluble and membrane-channel states. Nature 1994; 367:292–295 [View Article] [PubMed]
    [Google Scholar]
  77. Bischofberger M, Iacovache I, Boss D, Naef F, van der Goot FG et al. Revealing assembly of a pore-forming complex using single-cell kinetic analysis and modeling. Biophys J 2016; 110:1574–1581 [View Article] [PubMed]
    [Google Scholar]
  78. Cirauqui N, Abriata LA, van der Goot FG, Dal Peraro M. Structural, physicochemical and dynamic features conserved within the aerolysin pore-forming toxin family. Sci Rep 2017; 7:13932 [View Article] [PubMed]
    [Google Scholar]
  79. Briggs DC, Naylor CE, Smedley JG 3rd, Lukoyanova N, Robertson S et al. Structure of the food-poisoning Clostridium perfringens enterotoxin reveals similarity to the aerolysin-like pore-forming toxins. J Mol Biol 2011; 413:138–149 [View Article] [PubMed]
    [Google Scholar]
  80. Savva CG, Clark AR, Naylor CE, Popoff MR, Moss DS et al. The pore structure of Clostridium perfringens epsilon toxin. Nat Commun 2019; 10:2641 [View Article] [PubMed]
    [Google Scholar]
  81. Gurcel L, Abrami L, Girardin S, Tschopp J, van der Goot FG. Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. Cell 2006; 126:1135–1145 [View Article] [PubMed]
    [Google Scholar]
  82. Bücker R, Krug SM, Rosenthal R, Günzel D, Fromm A et al. Aerolysin from Aeromonas hydrophila perturbs tight junction integrity and cell lesion repair in intestinal epithelial HT-29/B6 cells. J Infect Dis 2011; 204:1283–1292 [View Article] [PubMed]
    [Google Scholar]
  83. Stiles BG, Barth G, Barth H, Popoff MR. Clostridium perfringens epsilon toxin: a malevolent molecule for animals and man?. Toxins (Basel) 2013; 5:2138–2160 [View Article] [PubMed]
    [Google Scholar]
  84. Freedman JC, Shrestha A, McClane BA. Clostridium perfringens enterotoxin: action, genetics, and translational applications. Toxins (Basel) 2016; 8:E73 [View Article] [PubMed]
    [Google Scholar]
  85. Blanch M, Dorca-Arévalo J, Not A, Cases M, Gómez de Aranda I et al. The cytotoxicity of epsilon toxin from Clostridium perfringens on lymphocytes is mediated by MAL protein expression. Mol Cell Biol 2018; 38:e00086–18 [View Article]
    [Google Scholar]
  86. Takehara M, Seike S, Sonobe Y, Bandou H, Yokoyama S et al. Clostridium perfringens α-toxin impairs granulocyte colony-stimulating factor receptor-mediated granulocyte production while triggering septic shock. Commun Biol 2019; 2:1–12 [View Article]
    [Google Scholar]
  87. Vandenesch F, Lina G, Henry T. Staphylococcus aureus hemolysins, bi-component leukocidins, and cytolytic peptides: a redundant arsenal of membrane-damaging virulence factors?. Front Cell Infect Microbiol 2012; 2:12 [View Article] [PubMed]
    [Google Scholar]
  88. Song L, Hobaugh MR, Shustak C, Cheley S, Bayley H et al. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 1996; 274:1859–1866 [View Article] [PubMed]
    [Google Scholar]
  89. De S, Olson R. Crystal structure of the Vibrio cholerae cytolysin heptamer reveals common features among disparate pore-forming toxins. Proc Natl Acad Sci U S A 2011; 108:7385–7390 [View Article] [PubMed]
    [Google Scholar]
  90. Yamashita K, Kawai Y, Tanaka Y, Hirano N, Kaneko J et al. Crystal structure of the octameric pore of staphylococcal γ-hemolysin reveals the β-barrel pore formation mechanism by two components. Proc Natl Acad Sci U S A 2011; 108:17314–17319 [View Article] [PubMed]
    [Google Scholar]
  91. Savva CG, Fernandes da Costa SP, Bokori-Brown M, Naylor CE, Cole AR et al. Molecular architecture and functional analysis of NetB, a pore-forming toxin from Clostridium perfringens. J Biol Chem 2013; 288:3512–3522 [View Article] [PubMed]
    [Google Scholar]
  92. Badarau A, Rouha H, Malafa S, Logan DT, Håkansson M et al. Structure-function analysis of heterodimer formation, oligomerization, and receptor binding of the Staphylococcus aureus bi-component toxin LukGH. J Biol Chem 2015; 290:142–156 [View Article] [PubMed]
    [Google Scholar]
  93. Liu J, Kozhaya L, Torres VJ, Unutmaz D, Lu M. Structure-based discovery of a small-molecule inhibitor of methicillin-resistant Staphylococcus aureus virulence. J Biol Chem 2020; 295:5944–5959 [View Article] [PubMed]
    [Google Scholar]
  94. Jayasinghe L, Bayley H. The leukocidin pore: Evidence for an octamer with four LukF subunits and four LukS subunits alternating around a central axis. Protein Sci 2005; 14:2550–2561 [View Article]
    [Google Scholar]
  95. DuMont AL, Torres VJ. Cell targeting by the Staphylococcus aureus pore-forming toxins: it’s not just about lipids. Trends Microbiol 2014; 22:21–27 [View Article] [PubMed]
    [Google Scholar]
  96. Spaan AN, van Strijp JAG, Torres VJ. Leukocidins: staphylococcal bi-component pore-forming toxins find their receptors. Nat Rev Microbiol 2017; 15:435–447 [View Article]
    [Google Scholar]
  97. Hermann I, Räth S, Ziesemer S, Volksdorf T, Dress RJ et al. Staphylococcus aureus hemolysin A disrupts cell-matrix adhesions in human airway epithelial cells. Am J Respir Cell Mol Biol 2015; 52:14–24 [View Article]
    [Google Scholar]
  98. Chow SH, Deo P, Yeung ATY, Kostoulias XP, Jeon Y et al. Targeting NLRP3 and Staphylococcal pore-forming toxin receptors in human-induced pluripotent stem cell-derived macrophages. J Leukoc Biol 2020; 108:967–981 [View Article]
    [Google Scholar]
  99. Khilwani B, Chattopadhyay K. Signaling beyond punching holes: modulation of cellular responses by Vibrio cholerae cytolysin. Toxins (Basel) 2015; 7:3344–3358 [View Article]
    [Google Scholar]
  100. López de Armentia MM, Gauron MC, Colombo MI. Staphylococcus aureus alpha-toxin induces the formation of dynamic tubules labeled with LC3 within Host Cells in a Rab7 and Rab1b-Dependent Manner. Front Cell Infect Microbiol 2017; 7:431 [View Article]
    [Google Scholar]
  101. Rossjohn J, Feil SC, McKinstry WJ, Tweten RK, Parker MW. Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form. Cell 1997; 89:685–692 [View Article] [PubMed]
    [Google Scholar]
  102. Xu L, Huang B, Du H, Zhang XC, Xu J et al. Crystal structure of cytotoxin protein suilysin from Streptococcus suis. Protein Cell 2010; 1:96–105 [View Article] [PubMed]
    [Google Scholar]
  103. Feil SC, Ascher DB, Kuiper MJ, Tweten RK, Parker MW. Structural studies of Streptococcus pyogenes streptolysin O provide insights into the early steps of membrane penetration. J Mol Biol 2014; 426:785–792 [View Article] [PubMed]
    [Google Scholar]
  104. Tilley SJ, Orlova EV, Gilbert RJC, Andrew PW, Saibil HR. Structural basis of pore formation by the bacterial toxin pneumolysin. Cell 2005; 121:247–256 [View Article] [PubMed]
    [Google Scholar]
  105. Köster S, van Pee K, Hudel M, Leustik M, Rhinow D et al. Crystal structure of listeriolysin O reveals molecular details of oligomerization and pore formation. Nat Commun 2014; 5:3690 [View Article] [PubMed]
    [Google Scholar]
  106. Czajkowsky DM, Hotze EM, Shao Z, Tweten RK. Vertical collapse of a cytolysin prepore moves its transmembrane beta-hairpins to the membrane. EMBO J 2004; 23:3206–3215 [View Article] [PubMed]
    [Google Scholar]
  107. Leung C, Dudkina NV, Lukoyanova N, Hodel AW, Farabella I et al. Stepwise visualization of membrane pore formation by suilysin, a bacterial cholesterol-dependent cytolysin. eLife 2014; 3: [View Article]
    [Google Scholar]
  108. Reboul CF, Whisstock JC, Dunstone MA. A new model for pore formation by cholesterol-dependent cytolysins. PLoS Comput Biol 2014; 10:e1003791 [View Article] [PubMed]
    [Google Scholar]
  109. Ramachandran R, Tweten RK, Johnson AE. Membrane-dependent conformational changes initiate cholesterol-dependent cytolysin oligomerization and intersubunit beta-strand alignment. Nat Struct Mol Biol 2004; 11:697–705 [View Article] [PubMed]
    [Google Scholar]
  110. Sato TK, Tweten RK, Johnson AE. Disulfide-bond scanning reveals assembly state and β-strand tilt angle of the PFO β-barrel. Nat Chem Biol 2013; 9:383–389 [View Article] [PubMed]
    [Google Scholar]
  111. Hotze EM, Wilson-Kubalek EM, Rossjohn J, Parker MW, Johnson AE et al. Arresting pore formation of a cholesterol-dependent cytolysin by disulfide trapping synchronizes the insertion of the transmembrane beta-sheet from a prepore intermediate. J Biol Chem 2001; 276:8261–8268 [View Article] [PubMed]
    [Google Scholar]
  112. van Pee K, Neuhaus A, D’Imprima E, Mills DJ, Kühlbrandt W et al. CryoEM structures of membrane pore and prepore complex reveal cytolytic mechanism of Pneumolysin. Elife 2017; 6:e23644 [View Article]
    [Google Scholar]
  113. Morton CJ, Sani M-A, Parker MW, Separovic F. Cholesterol-dependent cytolysins: membrane and protein structural requirements for pore formation. Chem Rev 2019; 119:7721–7736 [View Article] [PubMed]
    [Google Scholar]
  114. Evans JC, Johnstone BA, Lawrence SL, Morton CJ, Christie MP et al. A key motif in the cholesterol-dependent cytolysins reveals a large family of related proteins. mBio 2020; 11:e02351-20 [View Article] [PubMed]
    [Google Scholar]
  115. Andre GO, Converso TR, Politano WR, Ferraz LFC, Ribeiro ML et al. Role of Streptococcus pneumoniae proteins in evasion of complement-mediated immunity. Front Microbiol 2017; 8:224 [View Article] [PubMed]
    [Google Scholar]
  116. Nel JG, Theron AJ, Durandt C, Tintinger GR, Pool R et al. Pneumolysin activates neutrophil extracellular trap formation. Clin Exp Immunol 2016; 184:358–367 [View Article] [PubMed]
    [Google Scholar]
  117. Yamamura K, Ashida H, Okano T, Kinoshita-Daitoku R, Suzuki S et al. Inflammasome activation induced by perfringolysin O of Clostridium perfringens and its involvement in the progression of gas gangrene. Front Microbiol 2019; 10:2406 [View Article] [PubMed]
    [Google Scholar]
  118. Timmer AM, Timmer JC, Pence MA, Hsu L-C, Ghochani M et al. Streptolysin O promotes group A Streptococcus immune evasion by accelerated macrophage apoptosis. J Biol Chem 2009; 284:862–871 [View Article] [PubMed]
    [Google Scholar]
  119. Uchiyama S, Döhrmann S, Timmer AM, Dixit N, Ghochani M et al. Streptolysin O rapidly impairs neutrophil oxidative burst and antibacterial responses to group a Streptococcus. Front Immunol 2016; 6:581
    [Google Scholar]
  120. Tsao N, Kuo C-F, Cheng M-H, Lin W-C, Lin C-F et al. Streptolysin S induces mitochondrial damage and macrophage death through inhibiting degradation of glycogen synthase kinase-3β in Streptococcus pyogenes infection. Sci Rep 2019; 9:5371 [View Article] [PubMed]
    [Google Scholar]
  121. Osborne SE, Brumell JH. Listeriolysin O: from bazooka to Swiss army knife. Phil Trans R Soc B 2017; 372:20160222 [View Article]
    [Google Scholar]
  122. Prochazkova K, Shuvalova LA, Minasov G, Voburka Z, Anderson WF et al. Structural and molecular mechanism for autoprocessing of MARTX toxin of Vibrio cholerae at multiple sites. J Biol Chem 2009; 284:26557–26568 [View Article]
    [Google Scholar]
  123. Baumann U, Wu S, Flaherty KM, McKay DB. Three-dimensional structure of the alkaline protease of Pseudomonas aeruginosa: a two-domain protein with a calcium binding parallel beta roll motif. EMBO J 1993; 12:3357–3364 [View Article]
    [Google Scholar]
  124. O’Brien DP, Perez ACS, Karst J, Cannella SE, Enguéné VYN et al. Calcium-dependent disorder-to-order transitions are central to the secretion and folding of the CyaA toxin of Bordetella pertussis, the causative agent of whooping cough. Toxicon 2018; 149:37–44 [View Article]
    [Google Scholar]
  125. Döbereiner A, Schmid A, Ludwig A, Goebel W, Benz R. The effects of calcium and other polyvalent cations on channel formation by Escherichia coli alpha-hemolysin in red blood cells and lipid bilayer membranes. Eur J Biochem 1996; 240:454–460 [View Article]
    [Google Scholar]
  126. Knapp O, Maier E, Polleichtner G, Masín J, Sebo P et al. Channel formation in model membranes by the adenylate cyclase toxin of Bordetella pertussis: effect of calcium. Biochemistry 2003; 42:8077–8084 [View Article] [PubMed]
    [Google Scholar]
  127. Novak J, Cerny O, Osickova A, Linhartova I, Masin J et al. Structure-function relationships underlying the capacity of bordetella adenylate cyclase toxin to disarm host phagocytes. Toxins (Basel) 2017; 9:E300 [View Article] [PubMed]
    [Google Scholar]
  128. Herlax V, Maté S, Rimoldi O, Bakás L. Relevance of fatty acid covalently bound to Escherichia coli alpha-hemolysin and membrane microdomains in the oligomerization process. J Biol Chem 2009; 284:25199–25210 [View Article] [PubMed]
    [Google Scholar]
  129. Guo Q, Shen Y, Lee Y-S, Gibbs CS, Mrksich M et al. Structural basis for the interaction of Bordetella pertussis adenylyl cyclase toxin with calmodulin. EMBO J 2005; 24:3190–3201 [View Article] [PubMed]
    [Google Scholar]
  130. Vojtova-Vodolanova J, Basler M, Osicka R, Knapp O, Maier E et al. Oligomerization is involved in pore formation by Bordetella adenylate cyclase toxin. FASEB J 2009; 23:2831–2843 [View Article] [PubMed]
    [Google Scholar]
  131. González-Bullón D, B. Uribe K, Largo E, Guembelzu G, García-Arribas AB et al. Membrane permeabilization by bordetella adenylate cyclase toxin involves pores of tunable size. Biomolecules 2019; 9:183 [View Article] [PubMed]
    [Google Scholar]
  132. Benz R. Channel formation by RTX-toxins of pathogenic bacteria: Basis of their biological activity. Biochim Biophys Acta 2016; 1858:526–537 [View Article] [PubMed]
    [Google Scholar]
  133. Verma V, Kumar P, Gupta S, Yadav S, Dhanda RS et al. α-Hemolysin of uropathogenic E. coli regulates NLRP3 inflammasome activation and mitochondrial dysfunction in THP-1 macrophages. Sci Rep 2020; 10:12653 [View Article] [PubMed]
    [Google Scholar]
  134. Dhakal BK, Mulvey MA. The UPEC pore-forming toxin α-hemolysin triggers proteolysis of host proteins to disrupt cell adhesion, inflammatory, and survival pathways. Cell Host Microbe 2012; 11:58–69 [View Article] [PubMed]
    [Google Scholar]
  135. Fiser R, Masín J, Basler M, Krusek J, Spuláková V et al. Third activity of Bordetella adenylate cyclase (AC) toxin-hemolysin. Membrane translocation of AC domain polypeptide promotes calcium influx into CD11b+ monocytes independently of the catalytic and hemolytic activities. J Biol Chem 2007; 282:2808–2820 [View Article] [PubMed]
    [Google Scholar]
  136. Knapp O, Benz R. Membrane activity and channel formation of the adenylate cyclase toxin (CyaA) of Bordetella pertussis in lipid bilayer membranes. Toxins 2020; 12:169 [View Article] [PubMed]
    [Google Scholar]
  137. Ahmad JN, Cerny O, Linhartova I, Masin J, Osicka R et al. cAMP signalling of Bordetella adenylate cyclase toxin through the SHP-1 phosphatase activates the BimEL-Bax pro-apoptotic cascade in phagocytes. Cell Microbiol 2016; 18:384–398 [View Article] [PubMed]
    [Google Scholar]
  138. MacKenzie KF, Clark K, Naqvi S, McGuire VA, Nöehren G et al. PGE(2) induces macrophage IL-10 production and a regulatory-like phenotype via a protein kinase A-SIK-CRTC3 pathway. J Immunol 2013; 190:565–577 [View Article] [PubMed]
    [Google Scholar]
  139. Yong Kim S, Jeong S, Chah K-H, Jung E, Baek K-H et al. Salt-inducible kinases 1 and 3 negatively regulate Toll-like receptor 4-mediated signal. Mol Endocrinol 2013; 27:1958–1968 [View Article] [PubMed]
    [Google Scholar]
  140. Novák J, Fabrik I, Linhartová I, Link M, Černý O et al. Phosphoproteomics of cAMP signaling of Bordetella adenylate cyclase toxin in mouse dendritic cells. Sci Rep 2017; 7:1–14 [View Article] [PubMed]
    [Google Scholar]
  141. Eby JC, Gray MC, Hewlett EL. Cyclic AMP-mediated suppression of neutrophil extracellular trap formation and apoptosis by the Bordetella pertussis adenylate cyclase toxin. Infect Immun 2014; 82:5256–5269 [View Article] [PubMed]
    [Google Scholar]
  142. Matsuda S, Okada N, Kodama T, Honda T, Iida T. A cytotoxic type III secretion effector of Vibrio parahaemolyticus targets vacuolar H+-ATPase subunit c and ruptures host cell lysosomes. PLoS Pathog 2012; 8:e1002803 [View Article] [PubMed]
    [Google Scholar]
  143. Peng W, Casey AK, Fernandez J, Carpinone EM, Servage KA et al. A distinct inhibitory mechanism of the V-ATPase by Vibrio VopQ revealed by cryo-EM. Nat Struct Mol Biol 2020; 27:589–597 [View Article] [PubMed]
    [Google Scholar]
  144. Sreelatha A, Bennett TL, Carpinone EM, O’Brien KM, Jordan KD et al. Vibrio effector protein VopQ inhibits fusion of V-ATPase-containing membranes. Proc Natl Acad Sci U S A 2015; 112:100–105 [View Article] [PubMed]
    [Google Scholar]
  145. Burdette DL, Seemann J, Orth K. Vibrio VopQ induces PI3-kinase-independent autophagy and antagonizes phagocytosis. Mol Microbiol 2009; 73:639–649 [View Article] [PubMed]
    [Google Scholar]
  146. Higa N, Toma C, Koizumi Y, Nakasone N, Nohara T et al. Vibrio parahaemolyticus effector proteins suppress inflammasome activation by interfering with host autophagy signaling. PLoS Pathog 2013; 9:e1003142 [View Article] [PubMed]
    [Google Scholar]
  147. Nguyen AQ, Shimohata T, Hatayama S, Tentaku A, Kido J et al. Type III Secretion Effector VopQ of Vibrio parahaemolyticus modulates central carbon metabolism in epithelial cells. mSphere 2020; 5:e00960-19 [View Article]
    [Google Scholar]
  148. Shimohata T, Nakano M, Lian X, Shigeyama T, Iba H et al. Vibrio parahaemolyticus infection induces modulation of IL-8 secretion through dual pathway via VP1680 in Caco-2 cells. J Infect Dis 2011; 203:537–544 [View Article] [PubMed]
    [Google Scholar]
  149. Hertle R. Serratia marcescens hemolysin (ShlA) binds artificial membranes and forms pores in a receptor-independent manner. J Membr Biol 2002; 189:1–14 [View Article] [PubMed]
    [Google Scholar]
  150. Bertrand Q, Job V, Maillard AP, Imbert L, Teulon J-M et al. Exolysin (ExlA) from Pseudomonas aeruginosa punctures holes into target membranes using a molten globule domain. J Mol Biol 2020; 432:4466–4480 [View Article] [PubMed]
    [Google Scholar]
  151. Schönherr R, Tsolis R, Focareta T, Braun V. Amino acid replacements in the Serratia marcescens haemolysin ShIA define sites involved in activation and secretion. Mol Microbiol 1993; 9:1229–1237 [View Article] [PubMed]
    [Google Scholar]
  152. Weaver TM, Hocking JM, Bailey LJ, Wawrzyn GT, Howard DR et al. Structural and functional studies of truncated hemolysin A from Proteus mirabilis. J Biol Chem 2009; 284:22297–22309 [View Article] [PubMed]
    [Google Scholar]
  153. Novak WRP, Bhattacharyya B, Grilley DP, Weaver TM. Proteolysis of truncated hemolysin A yields a stable dimerization interface. Acta Crystallogr F Struct Biol Commun 2017; 73:138–145 [View Article] [PubMed]
    [Google Scholar]
  154. Hertle R, Hilger M, Weingardt-Kocher S, Walev I. Cytotoxic action of Serratia marcescens hemolysin on human epithelial cells. Infect Immun 1999; 67:817–825 [View Article] [PubMed]
    [Google Scholar]
  155. Brothers KM, Callaghan JD, Stella NA, Bachinsky JM, AlHigaylan M et al. Blowing epithelial cell bubbles with GumB: ShlA-family pore-forming toxins induce blebbing and rapid cellular death in corneal epithelial cells. PLoS Pathog 2019; 15:e1007825 [View Article] [PubMed]
    [Google Scholar]
  156. Brothers KM, Stella NA, Shanks RMQ. Biologically active pigment and ShlA cytolysin of Serratia marcescens induce autophagy in a human ocular surface cell line. BMC Ophthalmol 2020; 20:120 [View Article] [PubMed]
    [Google Scholar]
  157. Di Venanzio G, Stepanenko TM, García Véscovi E. Serratia marcescens ShlA pore-forming toxin is responsible for early induction of autophagy in host cells and is transcriptionally regulated by RcsB. Infect Immun 2014; 82:3542–3554 [View Article] [PubMed]
    [Google Scholar]
  158. Reboud E, Bouillot S, Patot S, Béganton B, Attrée I et al. Pseudomonas aeruginosa ExlA and Serratia marcescens ShlA trigger cadherin cleavage by promoting calcium influx and ADAM10 activation. PLoS Pathog 2017; 13:e1006579 [View Article] [PubMed]
    [Google Scholar]
  159. Basso P, Wallet P, Elsen S, Soleilhac E, Henry T et al. Multiple Pseudomonas species secrete exolysin-like toxins and provoke Caspase-1-dependent macrophage death. Environ Microbiol 2017; 19:4045–4064 [View Article] [PubMed]
    [Google Scholar]
  160. Ulhuq FR, Gomes MC, Duggan GM, Guo M, Mendonca C et al. A membrane-depolarizing toxin substrate of the Staphylococcus aureus type VII secretion system mediates intraspecies competition. Proc Natl Acad Sci U S A 2020; 117:20836–20847 [View Article] [PubMed]
    [Google Scholar]
  161. Mariano G, Trunk K, Williams DJ, Monlezun L, Strahl H et al. A family of Type VI secretion system effector proteins that form ion-selective pores. Nat Commun 2019; 10:5484 [View Article] [PubMed]
    [Google Scholar]
  162. Behrens HM, Lowe ED, Gault J, Housden NG, Kaminska R et al. Pyocin S5 import into Pseudomonas aeruginosa reveals a generic mode of bacteriocin transport. mBio 2020; 11:e03230-19 [View Article] [PubMed]
    [Google Scholar]
  163. Cascales E, Buchanan SK, Duché D, Kleanthous C, Lloubès R et al. Colicin biology. Microbiol Mol Biol Rev 2007; 71:158–229 [View Article] [PubMed]
    [Google Scholar]
  164. Willett JLE, Ruhe ZC, Goulding CW, Low DA, Hayes CS. Contact-Dependent Growth Inhibition (CDI) and CdiB/CdiA Two-Partner Secretion Proteins. J Mol Biol 2015; 427:3754–3765 [View Article] [PubMed]
    [Google Scholar]
  165. Hernandez RE, Gallegos-Monterrosa R, Coulthurst SJ. Type VI secretion system effector proteins: Effective weapons for bacterial competitiveness. Cell Microbiol 2020; 22:e13241 [View Article] [PubMed]
    [Google Scholar]
  166. Bowman L, Palmer T. The type VII secretion system of staphylococcus. Annu Rev Microbiol 2021
    [Google Scholar]
  167. Whitney JC, Peterson SB, Kim J, Pazos M, Verster AJ et al. A broadly distributed toxin family mediates contact-dependent antagonism between gram-positive bacteria. elife 2017; 6:e26938 [View Article] [PubMed]
    [Google Scholar]
  168. Johnson CL, Ridley H, Marchetti R, Silipo A, Griffin DC et al. The antibacterial toxin colicin N binds to the inner core of lipopolysaccharide and close to its translocator protein. Mol Microbiol 2014; 92:440–452 [View Article] [PubMed]
    [Google Scholar]
  169. Fourel D, Hikita C, Bolla JM, Mizushima S, Pagès JM. Characterization of ompF domains involved in Escherichia coli K-12 sensitivity to colicins A and N. J Bacteriol 1990; 172:3675–3680 [View Article] [PubMed]
    [Google Scholar]
  170. Jansen KB, Inns PG, Housden NG, Hopper JTS, Kaminska R et al. Bifurcated binding of the OmpF receptor underpins import of the bacteriocin colicin N into Escherichia coli. J Biol Chem 2020; 295:9147–9156 [View Article] [PubMed]
    [Google Scholar]
  171. Parker MW, Postma JPM, Pattus F, Tucker AD, Tsernoglou D. Refined structure of the pore-forming domain of colicin A at 2.4 A resolution. J Mol Biol 1992; 224:639–657 [View Article]
    [Google Scholar]
  172. Hilsenbeck JL, Park H, Chen G, Youn B, Postle K et al. Crystal structure of the cytotoxic bacterial protein colicin B at 2.5 A resolution. Mol Microbiol 2004; 51:711–720 [View Article]
    [Google Scholar]
  173. Elkins P, Bunker A, Cramer WA, Stauffacher CV. A mechanism for toxin insertion into membranes is suggested by the crystal structure of the channel-forming domain of colicin E1. Structure 1997; 5:443–458 [View Article]
    [Google Scholar]
  174. Vetter IR, Parker MW, Tucker AD, Lakey JH, Pattus F et al. Crystal structure of a colicin N fragment suggests a model for toxicity. Structure 1998; 6:863–874 [View Article]
    [Google Scholar]
  175. Wiener M, Freymann D, Ghosh P, Stroud RM. Crystal structure of colicin Ia. Nature 1997; 385:461–464 [View Article]
    [Google Scholar]
  176. Arnold T, Zeth K, Linke D. Structure and function of colicin S4, a colicin with a duplicated receptor-binding domain. J Biol Chem 2009; 284:6403–6413 [View Article] [PubMed]
    [Google Scholar]
  177. Denkovskienė E, Paškevičius Š, Misiūnas A, Stočkūnaitė B, Starkevič U et al. Broad and efficient control of Klebsiella pathogens by peptidoglycan-degrading and pore-forming bacteriocins klebicins. Sci Rep 2019; 9:15422 [View Article] [PubMed]
    [Google Scholar]
  178. Kim Y, Valentine K, Opella SJ, Schendel SL, Cramer WA. Solid-state NMR studies of the membrane-bound closed state of the colicin E1 channel domain in lipid bilayers. Protein Science 1998; 7:342–348 [View Article]
    [Google Scholar]
  179. Pulagam LP, Steinhoff H-J. Acidic pH-induced membrane insertion of colicin A into E. coli natural lipids probed by site-directed spin labeling. J Mol Biol 2013; 425:1782–1794 [View Article] [PubMed]
    [Google Scholar]
  180. Dunkel S, Pulagam LP, Steinhoff H-J, Klare JP. In vivo EPR on spin labeled colicin A reveals an oligomeric assembly of the pore-forming domain in E. coli membranes. Phys Chem Chem Phys 2015; 17:4875–4878 [View Article] [PubMed]
    [Google Scholar]
  181. Greig SL, Radjainia M, Mitra AK. Oligomeric structure of colicin ia channel in lipid bilayer membranes. J Biol Chem 2009; 284:16126–16134 [View Article]
    [Google Scholar]
  182. Wu Z, Jakes KS, Samelson-Jones BS, Lai B, Zhao G et al. Protein translocation by bacterial toxin channels: a comparison of diphtheria toxin and colicin Ia. Biophys J 2006; 91:3249–3256 [View Article]
    [Google Scholar]
  183. Bullock JO, Kolen ER. Ion selectivity of colicin E1: III. Anion permeability. J Membr Biol 1995; 144:131–145 [View Article]
    [Google Scholar]
  184. Dolejšová T, Sokol A, Bosák J, Šmajs D, Konopásek I et al. Colicin U from Shigella boydii Forms Voltage-Dependent Pores. J Bacteriol 2019; 201:e00493-19 [View Article]
    [Google Scholar]
  185. Sobko AA, Kotova EA, Antonenko YN, Zakharov SD, Cramer WA. Lipid dependence of the channel properties of a colicin E1-lipid toroidal pore. J Biol Chem 2006; 281:14408–14416 [View Article]
    [Google Scholar]
  186. Aguilella VM, Queralt-Martín M, Aguilella-Arzo M, Alcaraz A. Insights on the permeability of wide protein channels: measurement and interpretation of ion selectivity. Integr Biol (Camb) 2011; 3:159–172 [View Article] [PubMed]
    [Google Scholar]
  187. Kienker PK, Qiu X-Q, Slatin SL, Finkelstein A, Jakes KS. Transmembrane insertion of the colicin Ia hydrophobic hairpin. J Membr Biol 1997; 157:27–37 [View Article] [PubMed]
    [Google Scholar]
  188. Bullock JO. Ion selectivity of colicin E1: modulation by pH and membrane composition. J Membr Biol 1992; 125:255–271 [View Article] [PubMed]
    [Google Scholar]
  189. Bullock JO, Armstrong SK, Shear JL, Lies DP, McIntosh MA. Formation of ion channels by colicin B in planar lipid bilayers. J Membr Biol 1990; 114:79–95 [View Article] [PubMed]
    [Google Scholar]
  190. Slatin SL, Duché D, Baty D. Determinants of the proton selectivity of the colicin A channel. Biochemistry 2010; 49:4786–4793 [View Article] [PubMed]
    [Google Scholar]
  191. Simons A, Alhanout K, Duval RE. Bacteriocins, antimicrobial peptides from bacterial origin: overview of their biology and their impact against multidrug-resistant bacteria. Microorganisms 2020; 8:E639 [View Article] [PubMed]
    [Google Scholar]
  192. Hayes CS, Koskiniemi S, Ruhe ZC, Poole SJ, Low DA. Mechanisms and biological roles of contact-dependent growth inhibition systems. Cold Spring Harb Perspect Med 2014; 4:a010025 [View Article] [PubMed]
    [Google Scholar]
  193. Aoki SK, Webb JS, Braaten BA, Low DA. Contact-dependent growth inhibition causes reversible metabolic downregulation in Escherichia coli. J Bacteriol 2009; 191:1777–1786 [View Article] [PubMed]
    [Google Scholar]
  194. Miyata ST, Kitaoka M, Brooks TM, McAuley SB, Pukatzki S. Vibrio cholerae requires the type VI secretion system virulence factor VasX to kill Dictyostelium discoideum. Infect Immun 2011; 79:2941–2949 [View Article] [PubMed]
    [Google Scholar]
  195. LaCourse KD, Peterson SB, Kulasekara HD, Radey MC, Kim J et al. Conditional toxicity and synergy drive diversity among antibacterial effectors. Nat Microbiol 2018; 3:440–446 [View Article] [PubMed]
    [Google Scholar]
  196. Fridman CM, Keppel K, Gerlic M, Bosis E, Salomon D. A comparative genomics methodology reveals a widespread family of membrane-disrupting T6SS effectors. Nat Commun 2020; 11:1085 [View Article] [PubMed]
    [Google Scholar]
  197. Miyata ST, Unterweger D, Rudko SP, Pukatzki S. Dual expression profile of type VI secretion system immunity genes protects pandemic Vibrio cholerae. PLoS Pathog 2013; 9:12 [View Article] [PubMed]
    [Google Scholar]
  198. Bowran K, Palmer T. Extreme genetic diversity in the type VII secretion system of Listeria monocytogenes suggests a role in bacterial antagonism. Microbiology (Reading) 2021; 167: [View Article] [PubMed]
    [Google Scholar]
  199. Chatterjee A, Willett JLE, Dunny GM, Duerkop BA. Phage infection and sub-lethal antibiotic exposure mediate Enterococcus faecalis type VII secretion system dependent inhibition of bystander bacteria. PLoS Genet 2021; 17:e1009204 [View Article] [PubMed]
    [Google Scholar]
  200. Chen M, Blum D, Engelhard L, Raunser S, Wagner R et al. Molecular architecture of black widow spider neurotoxins. Nat Commun 2021; 12:2021 [View Article] [PubMed]
    [Google Scholar]
  201. Lin S-H, Guidotti G. Chapter 35 Purification of Membrane Proteins. In Burgess RR, Deutscher MP. eds Methods in Enzymology, 2nd ed. vol 463 Academic Press; 2009 pp 619–629
    [Google Scholar]
  202. Benton JT, Bayly-Jones C. Challenges and approaches to studying pore-forming proteins. Biochem Soc Trans 2021; 49:2749–2765 [View Article] [PubMed]
    [Google Scholar]
  203. Shah NR, Voisin TB, Parsons ES, Boyd CM, Hoogenboom BW et al. Structural basis for tuning activity and membrane specificity of bacterial cytolysins. Nat Commun 2020; 11:5818 [View Article] [PubMed]
    [Google Scholar]
  204. Jiao F, Ruan Y, Scheuring S. Chapter seven-High-speed atomic force microscopy to study pore-forming proteins. In Heuck AP. eds Methods in Enzymology vol 649 Academic Press; 2021 pp 189–217
    [Google Scholar]
  205. Voss JM, Harder OF, Olshin PK, Drabbels M, Lorenz UJ. Rapid melting and revitrification as an approach to microsecond time-resolved cryo-electron microscopy. Chemical Physics Letters 2021; 778:138812 [View Article]
    [Google Scholar]
  206. Zhong ED, Bepler T, Berger B, Davis JH. CryoDRGN: reconstruction of heterogeneous cryo-EM structures using neural networks. Nat Methods 2021; 18:176–185 [View Article] [PubMed]
    [Google Scholar]
  207. Mäeots M-E, Lee B, Nans A, Jeong S-G, Esfahani MMN et al. Modular microfluidics enables kinetic insight from time-resolved cryo-EM. Nat Commun 2020; 11:3465 [View Article] [PubMed]
    [Google Scholar]
  208. Schmidli C, Albiez S, Rima L, Righetto R, Mohammed I et al. Microfluidic protein isolation and sample preparation for high-resolution cryo-EM. Proc Natl Acad Sci U S A 2019; 116:15007–15012 [View Article] [PubMed]
    [Google Scholar]
  209. Omersa N, Podobnik M, Anderluh G. Inhibition of pore-forming proteins. Toxins (Basel) 2019; 11:E545 [View Article] [PubMed]
    [Google Scholar]
  210. Thomsen IP. Antibody-based intervention against the pore-forming toxins of Staphylococcus aureus. Virulence 2018; 9:645–647 [View Article] [PubMed]
    [Google Scholar]
  211. Qiu J, Niu X, Dong J, Wang D, Wang J et al. Baicalin protects mice from Staphylococcus aureus pneumonia via inhibition of the cytolytic activity of α-hemolysin. J Infect Dis 2012; 206:292–301 [View Article]
    [Google Scholar]
  212. Rani N, Saravanan V, Lakshmi PTV, Annamalai A. Inhibition of pore formation by blocking the assembly of Staphylococcus aureus α-hemolysin through a novel peptide inhibitor: an in silco approach. Int J Pept Res Ther 2014; 20:575–583 [View Article]
    [Google Scholar]
  213. Zhao X, Li H, Wang J, Guo Y, Liu B et al. Verbascoside alleviates pneumococcal pneumonia by reducing pneumolysin oligomers. Mol Pharmacol 2016; 89:376–387 [View Article]
    [Google Scholar]
  214. Ghafari S, Komeilian M, Hashemi MS, Oushani S, Rigi G et al. Molecular docking based screening of Listeriolysin-O for improved inhibitors. Bioinformation 2017; 13:160–163 [View Article]
    [Google Scholar]
  215. Karginov VA, Nestorovich EM, Schmidtmann F, Robinson TM, Yohannes A et al. Inhibition of S. aureus alpha-hemolysin and B. anthracis lethal toxin by beta-cyclodextrin derivatives. Bioorg Med Chem 2007; 15:5424–5431 [View Article]
    [Google Scholar]
  216. Melo MCA, Teixeira LR, Pol-Fachin L, Rodrigues CG, Flock J-I. Inhibition of the hemolytic activity caused by Staphylococcus aureus alpha-hemolysin through isatin-Schiff copper(II) complexes. FEMS Microbiology Letters 2016; 363:fnv207 [View Article]
    [Google Scholar]
  217. Subramanian K, Iovino F, Tsikourkitoudi V, Merkl P, Ahmed S et al. Mannose receptor-derived peptides neutralize pore-forming toxins and reduce inflammation and development of pneumococcal disease. EMBO Mol Med 2020; 12:e12695 [View Article]
    [Google Scholar]
  218. Mutter NL, Soskine M, Huang G, Albuquerque IS, Bernardes GJL, Maglia G. Modular pore-forming immunotoxins with caged cytotoxicity tailored by directed evolution. ACS Chem Biol 20183153–60
    [Google Scholar]
  219. Koo S, Cheley S, Bayley H. Redirecting pore assembly of staphylococcal α-hemolysin by protein engineering. ACS Cent Sci 2019; 5:629–639 [View Article]
    [Google Scholar]
  220. Kisovec M, Rezelj S, Knap P, Cajnko MM, Caserman S et al. Engineering a pH responsive pore forming protein. Sci Rep 2017; 7:42231 [View Article]
    [Google Scholar]
  221. Provoda CJ, Lee K-D. Bacterial pore-forming hemolysins and their use in the cytosolic delivery of macromolecules. Adv Drug Deliv Rev 2000; 41:209–221 [View Article] [PubMed]
    [Google Scholar]
  222. Tabata A, Ohkubo Y, Sakakura E, Tomoyasu T, Ohkura K et al. Investigation of a bacterial pore-forming chimera toxin for application as a novel drug-delivery system tool. Anticancer Res 2012; 32:2323–2329 [PubMed]
    [Google Scholar]
  223. Jin X, An S, Kightlinger W, Zhou J, Hong SH. Engineering Escherichia coli to produce and secrete colicins for rapid and selective biofilm cell killing. AIChE J 2021; 67:12
    [Google Scholar]
  224. Six A, Mosbahi K, Barge M, Kleanthous C, Evans T et al. Pyocin efficacy in a murine model of Pseudomonas aeruginosa sepsis. J Antimicrob Chemother 2021; 76:2317–2324 [View Article] [PubMed]
    [Google Scholar]
  225. Carpena N, Richards K, Bello Gonzalez TDJ, Bravo-Blas A, Housden NG et al. Targeted delivery of narrow-spectrum protein antibiotics to the lower gastrointestinal tract in a murine model of Escherichia coli colonization. Front Microbiol 2021; 12: [View Article]
    [Google Scholar]
  226. Kim S. A New Paradigm of Developing Therapeutics to Infectious Diseases by Combining Insights from Nature and Engineering; 2020 https://www.biorxiv.org/content/10.1101/2020.08.11.246744v1
  227. Benítez-Chao DF, León-Buitimea A, Lerma-Escalera JA, Morones-Ramírez JR. Bacteriocins: an overview of antimicrobial, toxicity, and biosafety assessment by in vivo models. Front Microbiol 2021; 12:677 [View Article]
    [Google Scholar]
  228. Vecchio AJ, Rathnayake SS, Stroud RM. Structural basis for Clostridium perfringens enterotoxin targeting of claudins at tight junctions in mammalian gut. Proc Natl Acad Sci USA 2021; 118:e2024651118 [View Article]
    [Google Scholar]
  229. Schwiering M, Brack A, Stork R, Hellmann N. Lipid and phase specificity of α-toxin from S. aureus. Biochimica et Biophysica Acta (BBA) - Biomembranes 2013; 1828:1962–1972 [View Article]
    [Google Scholar]
  230. Potrich C, Bastiani H, Colin DA, Huck S, Prévost G et al. The influence of membrane lipids in Staphylococcus aureus gamma-hemolysins pore formation. J Membr Biol 2009; 227:13–24 [View Article] [PubMed]
    [Google Scholar]
  231. Reyes-Robles T, Alonzo F, Kozhaya L, Lacy DB, Unutmaz D et al. Staphylococcus aureus leukotoxin ED targets the chemokine receptors CXCR1 and CXCR2 to kill leukocytes and promote infection. Cell Host Microbe 2013; 14:453–459 [View Article] [PubMed]
    [Google Scholar]
  232. Spaan AN, Reyes-Robles T, Badiou C, Cochet S, Boguslawski KM et al. Staphylococcus aureus Targets the Duffy Antigen Receptor for Chemokines (DARC) to Lyse Erythrocytes. Cell Host Microbe 2015; 18:363–370 [View Article] [PubMed]
    [Google Scholar]
  233. Hodille E, Plesa A, Bourrelly E, Belmont L, Badiou C et al. Staphylococcal panton-valentine leucocidin and gamma haemolysin target and lyse mature bone marrow leucocytes. Toxins (Basel) 2020; 12:E725 [View Article] [PubMed]
    [Google Scholar]
  234. Huyet J, Naylor CE, Savva CG, Gibert M, Popoff MR et al. Structural insights into Clostridium perfringens delta toxin pore formation. PLoS One 2013; 8:e66673 [View Article] [PubMed]
    [Google Scholar]
  235. Housden NG, Loftus SR, Moore GR, James R, Kleanthous C. Cell entry mechanism of enzymatic bacterial colicins: porin recruitment and the thermodynamics of receptor binding. Proc Natl Acad Sci U S A 2005; 102:13849–13854 [View Article] [PubMed]
    [Google Scholar]
  236. Devanathan S, Postle K. Studies on colicin B translocation: FepA is gated by TonB. Mol Microbiol 2007; 65:441–453 [View Article] [PubMed]
    [Google Scholar]
  237. Smarda J, Macholán L. Binding domains of colicins E1, E2 and E3 in the receptor protein BtuB of Escherichia coli. Folia Microbiol (Praha) 2000; 45:379–385 [View Article] [PubMed]
    [Google Scholar]
  238. Buchanan SK, Lukacik P, Grizot S, Ghirlando R, Ali MMU et al. Structure of colicin I receptor bound to the R-domain of colicin Ia: implications for protein import. EMBO J 2007; 26:2594–2604 [View Article] [PubMed]
    [Google Scholar]
  239. Lugtenberg B, Van Alphen L. Molecular architecture and functioning of the outer membrane of Escherichia coli and other gram-negative bacteria. Biochim Biophys Acta 1983; 737:51–115 [View Article]
    [Google Scholar]
  240. Pilsl H, Smajs D, Braun V. Characterization of colicin S4 and its receptor, OmpW, a minor protein of the Escherichia coli outer membrane. J Bacteriol 1999; 181:3578–3581 [View Article] [PubMed]
    [Google Scholar]
  241. Smajs D, Pilsl H, Braun V. Colicin U, a novel colicin produced by Shigella boydii. J Bacteriol 1997; 179:4919–4928 [View Article] [PubMed]
    [Google Scholar]
  242. Bradley DE, Howard SP. A new colicin that adsorbs to outer-membrane protein Tsx but is dependent on the tonB instead of the tolQ membrane transport system. J Gen Microbiol 1992; 138:2721–2724 [View Article] [PubMed]
    [Google Scholar]
  243. Pilsl H, Braun V. Novel colicin 10: assignment of four domains to TonB- and TolC-dependent uptake via the Tsx receptor and to pore formation. Mol Microbiol 1995; 16:57–67 [View Article] [PubMed]
    [Google Scholar]
  244. Enfedaque J, Ferrer S, Guasch JF, Tomás J, Regué M. Bacteriocin 28b from Serratia marcescens N28b: identification of Escherichia coli surface components involved in bacteriocin binding and translocation. Can J Microbiol 1996; 42:19–26 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001154
Loading
/content/journal/micro/10.1099/mic.0.001154
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error