1887

Abstract

is a common species of fungus frequently isolated from plants as both an endophyte and a pathogen. Although the current definition of rests on a foundation of morphological, genetic and genomic analyses, doubts persist regarding the scope of within the genus due to the varied symbiotic interactions and wide host range observed in these fungi. These doubts may be due in large part to the history of unstable taxonomy in , based on limited morphological characters for species delimitation and host specificity associated with toxins encoded by genes carried on conditionally dispensable chromosomes. This review explores the history of taxonomy, focusing in particular on the use of nutritional mode and host associations in species delimitation, with the goal of evaluating as it currently stands based on taxonomic best practice. Given the recombination detected among isolates of , different symbiotic associations in this species should not be considered phylogenetically informative.

Funding
This study was supported by the:
  • Graduate School, University of Minnesota
    • Principle Award Recipient: MaraDeMers
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001153
2022-03-29
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/168/3/mic001153.html?itemId=/content/journal/micro/10.1099/mic.0.001153&mimeType=html&fmt=ahah

References

  1. Arnold AE, Lutzoni F. Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots?. Ecology 2007; 88:541–549 [View Article]
    [Google Scholar]
  2. Taylor DL, Hollingsworth TN, McFarland JW, Lennon NJ, Nusbaum C et al. A first comprehensive census of fungi in soil reveals both hyperdiversity and fine-scale niche partitioning. Ecological Monographs 2014; 84:3–20 [View Article]
    [Google Scholar]
  3. Sánchez-García M, Ryberg M, Khan FK, Varga T, Nagy LG et al. Fruiting body form, not nutritional mode, is the major driver of diversification in mushroom-forming fungi. Proc Natl Acad Sci U S A 2020; 117:32528–32534 [View Article]
    [Google Scholar]
  4. Arnold AE, Miadlikowska J, Higgins KL, Sarvate SD, Gugger P et al. A phylogenetic estimation of trophic transition networks for ascomycetous fungi: are lichens cradles of symbiotrophic fungal diversification?. Syst Biol 2009; 58:283–297 [View Article]
    [Google Scholar]
  5. Chaverri P, Samuels GJ. Evolution of habitat preference and nutrition mode in a cosmopolitan fungal genus with evidence of interkingdom host jumps and major shifts in ecology. Evolution 2013; 67:2823–2837 [View Article]
    [Google Scholar]
  6. Delaye L, García-Guzmán G, Heil M. Endophytes versus biotrophic and necrotrophic pathogens—are fungal lifestyles evolutionarily stable traits?. Fungal Diversity 2013; 60:125–135 [View Article]
    [Google Scholar]
  7. Wheeler DL, Dung JKS, Johnson DA. From pathogen to endophyte: an endophytic population of Verticillium dahliae evolved from a sympatric pathogenic population. New Phytol 2019; 222:497–510 [View Article] [PubMed]
    [Google Scholar]
  8. Thomma BPHJ. Alternaria spp.: from general saprophyte to specific parasite. Mol Plant Pathol 2003; 4:225–236 [View Article] [PubMed]
    [Google Scholar]
  9. Woudenberg JHC, Groenewald JZ, Binder M, Crous PW. Alternaria redefined. Stud Mycol 2013; 75:171–212 [View Article] [PubMed]
    [Google Scholar]
  10. Woudenberg JHC, Seidl MF, Groenewald JZ, de Vries M, Stielow JB et al. Alternaria section Alternaria: Species, formae speciales or pathotypes?. Stud Mycol 2015; 82:1–21 [View Article] [PubMed]
    [Google Scholar]
  11. Armitage AD, Barbara DJ, Harrison RJ, Lane CR, Sreenivasaprasad S et al. Discrete lineages within Alternaria alternata species group: Identification using new highly variable loci and support from morphological characters. Fungal Biol 2015; 119:994–1006 [View Article]
    [Google Scholar]
  12. Armitage AD, Cockerton HM, Sreenivasaprasad S, Woodhall J, Lane CR et al. Genomics evolutionary history and diagnostics of the Alternaria alternata species group including apple and asian pear pathotypes. Front Microbiol 2019; 10:3124 [View Article]
    [Google Scholar]
  13. Lawrence DP, Rotondo F, Gannibal PB. Biodiversity and taxonomy of the pleomorphic genus Alternaria. Mycol Progress 2015; 15:3 [View Article]
    [Google Scholar]
  14. El Gobashy SF, Mikhail WZA, Ismail AM, Zekry A, Moretti A et al. Phylogenetic, toxigenic and virulence profiles of Alternaria species causing leaf blight of tomato in Egypt. Mycol Progress 2018; 17:1269–1282 [View Article]
    [Google Scholar]
  15. Jacks H. A note on fungi isolated from plants. New Zealand J Agric Res 2011; 3:250–252 [View Article]
    [Google Scholar]
  16. Spurr HW. Characterization of endophytic fungi in healthy leaves of Nicotiana spp. Phytopathology 1975; 65:417 [View Article]
    [Google Scholar]
  17. Wallace HAH, Sinha RN. Microflora of stored grain in international trade. Mycopathologia 1975; 57:171–176 [View Article] [PubMed]
    [Google Scholar]
  18. Kowalski T, Kehr RD. Endophytic fungal colonization of branch bases in several forest tree species. Sydowia 1992; 44:137–168
    [Google Scholar]
  19. Cabral D, Stone JK, Carroll GC. The internal mycobiota of Juncus spp.: microscopic and cultural observations of infection patterns. Mycological Research 1993; 97:367–376 [View Article]
    [Google Scholar]
  20. Zamora P, Martinez-Ruiz C, Diez JJ. Fungi in needles and twigs of pine plantations from northern spain. Fungal Divers 2008; 30:171–184
    [Google Scholar]
  21. Pryor BM, Gilbertson RL. Molecular phylogenetic relationships amongst Alternaria species and related fungi based upon analysis of nuclear ITS and mt SSU rDNA sequences. Mycological Research 2000; 104:1312–1321 [View Article]
    [Google Scholar]
  22. da Cruz Cabral L, Rodriguero M, Stenglein S, Fog Nielsen K, Patriarca A. Characterization of small-spored Alternaria from Argentinean crops through a polyphasic approach. Int J Food Microbiol 2017; 257:206–215 [View Article] [PubMed]
    [Google Scholar]
  23. Patriarca A, da Cruz Cabral L, Pavicich MA, Nielsen KF, Andersen B. Secondary metabolite profiles of small-spored Alternaria support the new phylogenetic organization of the genus. Int J Food Microbiol 2019; 291:135–143 [View Article] [PubMed]
    [Google Scholar]
  24. DeMers MB, May G. Habitat-scale heterogeneity maintains fungal endophyte diversity in two native prairie legumes. Mycologia 2021; 113:20–32 [View Article] [PubMed]
    [Google Scholar]
  25. Petrini O. Fungal endophytes of tree leaves. In Microbial Ecology of Leaves New York: Springer; 1991 pp 179–197
    [Google Scholar]
  26. Redman RS, Dunigan DD, Rodriguez RJ. Fungal symbiosis from mutualism to parasitism: who controls the outcome, host or invader?. New Phytol 2001; 151:705–716 [View Article] [PubMed]
    [Google Scholar]
  27. Rang J-C, Crous PW, Mchau GRA, Serdani M, Song S-M. Phylogenetic analysis of Alternaria spp. associated with apple core rot and citrus black rot in South Africa. Mycological Research 2002; 106:1151–1162 [View Article]
    [Google Scholar]
  28. Photita W, Lumyong S, Lumyong P, McKenzie EHC, Hyde KD. Are some endophytes of Musa acuminata latent pathogens?. Fungal Divers 2004; 16:131–140
    [Google Scholar]
  29. van Kan JAL, Shaw MW, Grant-Downton RT. Botrytis species: relentless necrotrophic thugs or endophytes gone rogue?. Mol Plant Pathol 2014; 15:957–961 [View Article] [PubMed]
    [Google Scholar]
  30. Elliott JA. Taxonomic characters of the genera Alternaria and Macrosporium. Am J Bot 1917; 4:439–476 [View Article]
    [Google Scholar]
  31. Tweedy BG, Powell D. The taxonomy of Alternaria and species of this genus reported on apples. Bot Rev 1963; 29:405–412 [View Article]
    [Google Scholar]
  32. Simmons EG. Typification of Alternaria, Stemphylium, and Ulocladium. Mycologia 1967; 59:67–92 [View Article]
    [Google Scholar]
  33. Nishimura S, Sugihara M, Kohmoto K, Otani H. Two different phases in the pathogenicity of Alternaria pathogen causing black spot disease of Japanese pear. J Fac Agric Tottori University 1978; 13:1–10
    [Google Scholar]
  34. Kusaba M, Tsuge T. Phylogeny of Alternaria fungi known to produce host-specific toxins on the basis of variation in internal transcribed spacers of ribosomal DNA. Curr Genet 1995; 28:491–498 [View Article]
    [Google Scholar]
  35. Roberts RG, Reymond ST, Andersen B. RAPD fragment pattern analysis and morphological segregation of small-spored Alternaria species and species groups. Mycological Research 2000; 104:151–160 [View Article]
    [Google Scholar]
  36. Peever TL, Su G, Carpenter-Boggs L, Timmer LW. Molecular systematics of citrus-associated Alternaria species. Mycologia 2004; 96:119–134 [View Article] [PubMed]
    [Google Scholar]
  37. Peever TL, Carpenter-Boggs L, Timmer LW, Carris LM, Bhatia A. Citrus black rot is caused by phylogenetically distinct lineages of Alternaria alternata. Phytopathology 2005; 95:512–518 [View Article] [PubMed]
    [Google Scholar]
  38. Andrew M, Peever TL, Pryor BM. An expanded multilocus phylogeny does not resolve morphological species within the small-spored Altemrnaria species complex. Mycologia 2009; 101:95–109 [View Article] [PubMed]
    [Google Scholar]
  39. Thorpe JP, Sole-cava AM. The use of allozyme electrophoresis in invertebrate systematics. Zool Scripta 1994; 23:3–18 [View Article]
    [Google Scholar]
  40. Van Oppen MJH, Klerk H, Olsen JL, Stam WT. Hidden diversity in marine algae: some examples of genetic variation below the species level. J Mar Biol Ass 2009; 76:239–242 [View Article]
    [Google Scholar]
  41. Geiser DM, Pitt JI, Taylor JW. Cryptic speciation and recombination in the aflatoxin-producing fungus Aspergillus flavus. Proc Natl Acad Sci U S A 1998; 95:388–393 [View Article] [PubMed]
    [Google Scholar]
  42. O’Donnell K, Cigelnik E, Nirenberg HI. Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia 1998; 90:465 [View Article]
    [Google Scholar]
  43. Klautau M, Russo CAM, Lazoski C, Boury-Esnault N, Thorpe JP et al. Does cosmopolitanism result from overconservative systematics? a case study using the marine sponge Chondrilla nucula. Evolution 1999; 53:1414–1422 [View Article] [PubMed]
    [Google Scholar]
  44. Taylor JW, Jacobson DJ, Fisher MC. The evolution of asexual fungi: reproduction, speciation and classification. Annu Rev Phytopathol 1999; 37:197–246 [View Article] [PubMed]
    [Google Scholar]
  45. Agapow PM, Bininda-Emonds ORP, Crandall KA, Gittleman JL, Mace GM et al. The impact of species concept on biodiversity studies. Q Rev Biol 2004; 79:161–179 [View Article] [PubMed]
    [Google Scholar]
  46. Taylor JW, Turner E, Townsend JP, Dettman JR, Jacobson D. Eukaryotic microbes, species recognition and the geographic limits of species: examples from the kingdom Fungi. Philos Trans R Soc Lond B Biol Sci 2006; 361:1947–1963 [View Article]
    [Google Scholar]
  47. Geiser DM, Dorner JW, Horn BW, Taylor JW. The phylogenetics of mycotoxin and sclerotium production in Aspergillus flavus and Aspergillus oryzae. Fungal Genet Biol 2000; 31:169–179 [View Article]
    [Google Scholar]
  48. Stewart JE, Thomas KA, Lawrence CB, Dang H, Pryor BM et al. Signatures of recombination in clonal lineages of the citrus brown spot pathogen, Alternaria alternata sensu lato. Phytopathology 2013; 103:741–749 [View Article]
    [Google Scholar]
  49. Stewart JE, Timmer LW, Lawrence CB, Pryor BM, Peever TL. Discord between morphological and phylogenetic species boundaries: incomplete lineage sorting and recombination results in fuzzy species boundaries in an asexual fungal pathogen. BMC Evol Biol 2014; 14:38 [View Article]
    [Google Scholar]
  50. Carroll GC. The biology of endophytism in plants with particular reference to woody perennials. In Fokkema NJ, van den Heuvel J. eds Microbiology of the Phyllosphere Cambridge: Cambridge University Press; 1986 pp 205–222
    [Google Scholar]
  51. Wilson D. Endophyte: the evolution of a term, and clarification of its use and definition. Oikos 1995; 73:274 [View Article]
    [Google Scholar]
  52. Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW. Bacterial endophytes in agricultural crops. Can J Microbiol 1997; 43:895–914 [View Article]
    [Google Scholar]
  53. Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S et al. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 2015; 79:293–320 [View Article]
    [Google Scholar]
  54. Galippe V. Note sur la presence de micro-organismes dans les tissus vegetaux. In Comptes Rendus Des Seances de La Societe de Biologie et de Ses Filiales vol 39 1887 pp 410–416
    [Google Scholar]
  55. Frank BA. Ueber die auf wurzelsymbiose beruhende ernahrung gewisser baume durch unterirdische pilze. Ber Dtsch Bot Ges 1885; 3:128–145
    [Google Scholar]
  56. Beijerinck MW. Die bakterien der papilionaceenknollchen. Botanische Zeitung 1888; 46:740–750
    [Google Scholar]
  57. Omacini M, Chaneton EJ, Ghersa CM, Müller CB. Symbiotic fungal endophytes control insect host-parasite interaction webs. Nature 2001; 409:78–81 [View Article] [PubMed]
    [Google Scholar]
  58. Rubini MR, Silva-Ribeiro RT, Pomella AWV, Maki CS, Araújo WL et al. Diversity of endophytic fungal community of cacao (Theobroma cacao L.) and biological control of Crinipellis perniciosa, causal agent of Witches’ Broom Disease. Int J Biol Sci 2005; 1:24–33 [View Article] [PubMed]
    [Google Scholar]
  59. Giauque H, Hawkes CV. Climate affects symbiotic fungal endophyte diversity and performance. Am J Bot 2013; 100:1435–1444 [View Article] [PubMed]
    [Google Scholar]
  60. Hubbard M, Germida JJ, Vujanovic V. Fungal endophytes enhance wheat heat and drought tolerance in terms of grain yield and second-generation seed viability. J Appl Microbiol 2014; 116:109–122 [View Article] [PubMed]
    [Google Scholar]
  61. Neill JC. The endophyte of rye-grass (Lolium perenne). New Zealand Journal of Science and Technology, Section A 1940; 21:280–291
    [Google Scholar]
  62. Rayner RW. Latent infection in Coffea arabica L. Nature 1948; 161:245–246 [View Article]
    [Google Scholar]
  63. Kendrick WB, Burges A. Biological aspects of the decay of pinus sylvestris litter. Nova Hedwigia 1962; 4:313–344
    [Google Scholar]
  64. Dickinson CH. Fungal colonization of pisum leaves. Can J Bot 1967; 45:915–927 [View Article]
    [Google Scholar]
  65. Ruscoe QW. Mycoflora of living and dead leaves of Nothofagus truncata. Transactions of the British Mycological Society 1971; 56:463–474 [View Article]
    [Google Scholar]
  66. Bain DC. Fungi recovered from seed of sorghum vulgare pers. Phytopathology 1950; 40:521–522
    [Google Scholar]
  67. Ampratwum DB, McQuitty JB. Some physical factors affecting fungal population in stored wheat. Can J Plant Sci 1970; 50:47–51 [View Article]
    [Google Scholar]
  68. Abdel-Hafez SII. Composition of the fungal flora of four cereal grains in Saudi Arabia. Mycopathologia 1984; 85:53–57 [View Article] [PubMed]
    [Google Scholar]
  69. Guerin D. Sur la presence d’un champignon dans l’ivraie. Journal Botany 1898; 12:230–238
    [Google Scholar]
  70. Hanausek TF. Vorlaufige mittheilung uber den von a vogl in der frucht von lolium temulentum entdeckten pilz. Berichte der Deutsche Botanische Gesellshaf 1898; 16:203
    [Google Scholar]
  71. Vogl A. Mehl und die anderen mehlprodukte der cerealien und leguminosen. Zeitschrift Nahrungsmittle Untersuchung Hyg Warenkunde 1898; 12:25–29
    [Google Scholar]
  72. Fletcher LR, Harvey IC. An association of a Lolium endophyte with ryegrass staggers. N Z Vet J 1981; 29:185–186 [View Article] [PubMed]
    [Google Scholar]
  73. Bacon CW, Porter JK, Robbins JD, Luttrell ES. Epichloë typhina from toxic tall fescue grasses. Appl Environ Microbiol 1977; 34:576–581 [View Article] [PubMed]
    [Google Scholar]
  74. White JF. Widespread distribution of endophytes in the poaceae. Plant Dis 1987; 71:340 [View Article]
    [Google Scholar]
  75. Bush LP, Wilkinson HH, Schardl CL. Bioprotective alkaloids of grass-fungal endophyte symbioses. Plant Physiol 1997; 114:1–7 [View Article] [PubMed]
    [Google Scholar]
  76. Cabral D, Cafaro MJ, Saidman BO, Lugo MA, Reddy PV et al. Evidence supporting the occurrence of a new species of endophyte in some South American grasses. Mycologia 1999; 91:315 [View Article]
    [Google Scholar]
  77. Lane GA, Christensen MJ, Miles CO. Coevolution of fungal endophytes with grasses: The significance of secondary metabolites. In Bacon CW, White JF. eds Microbial Endophytes New York: Marcel Dekker; 2000 pp 341–388 [View Article]
    [Google Scholar]
  78. Li C, Nan Z, Paul VH, Dapprich P, Liu Y. A new neotyphodium species symbiotic with drunken horse grass (Achnatherum inebrians) in China. Mycotaxon 2004; 90:141–147
    [Google Scholar]
  79. Gentile A, Rossi MS, Cabral D, Craven KD, Schardl CL. Origin, divergence, and phylogeny of epichloe endophytes of native Argentine grasses. Mol Phylogenet Evol 2005; 35:196–208 [View Article]
    [Google Scholar]
  80. Moon CD, Guillaumin JJ, Ravel C, Li C, Craven KD et al. New neotyphodium endophyte species from the grass tribes stipeae and meliceae. Mycologia 2007; 99:895–905 [View Article]
    [Google Scholar]
  81. Welty RE, Lucas GB, Fletcher JT, Yang H. Fungi isolated from tobacco leaves and brown-spot lesions before and after flue-curing. Appl Microbiol 1968; 16:1309–1313 [View Article] [PubMed]
    [Google Scholar]
  82. Welty RE, Spurr HW. Isolation of alternaria alternata from Nicotiana species. Phytopathology 1971; 61:916
    [Google Scholar]
  83. Norse D. Fungi isoalted from surface-sterilized toabcco leaves. Transactions of the British Mycological Society 1972; 58:515–518 [View Article]
    [Google Scholar]
  84. Spurr Jr HW, RE Welty Incidence of tobacco leaf microflora in relation to brown spot disease and fungicidal treatment. Phytopathology 1972; 62:916 [View Article] [PubMed]
    [Google Scholar]
  85. Millar CS. Decomposition of coniferous leaf litter. In Dickinson CH, Pugh DJF. eds Biology of Plant Litter Decomposition vol 1 New York: Academic Press; 1974 pp 105–108
    [Google Scholar]
  86. Pugh GJF, Buckley NG. Aureobasidium pullulans: An endophyte in sycamore and other trees. Transactions of the British Mycological Society 1971; 57:227–231 [View Article]
    [Google Scholar]
  87. Bernstein ME, Carroll GC. Internal fungi in old-growth Douglas fir foliage. Can J Bot 1977; 55:644–653 [View Article]
    [Google Scholar]
  88. Carroll FE, Muller E, Sutton BC. Preliminary studies on the incidence of needle endophytes in some European conifers. Sydowia 1977; 29:87–103
    [Google Scholar]
  89. Carroll GC, Carroll FE. Studies on the incidence of coniferous needle endophytes in the Pacific Northwest. Can J Bot 1978; 56:3034–3043 [View Article]
    [Google Scholar]
  90. Petrini O, Muller E, Luginbuhl M. Pilze als Endophyten von grunen Pflanzen. Naturwissenschaften 1979; 66:262–263 [View Article]
    [Google Scholar]
  91. Petrini O, Muller E. Pilzliche endophyten von samenpflanzen am beispiel von Juniperus communis l. Sydowia 1980; 32:224–251
    [Google Scholar]
  92. Petrini O, Carroll GC. Endophytic fungi in foliage of some Cupressaceae in Oregon. Can J Bot 1981; 59:629–636 [View Article]
    [Google Scholar]
  93. Petrini O, Stone J, Carroll FE. Endophytic fungi in evergreen shrubs in western Oregon: A preliminary study. Can J Bot 1982; 60:789–796 [View Article]
    [Google Scholar]
  94. Fisher PJ, Anson AE, Petrini O. Fungal endophytes in Ulex europaeus and Ulex gallii. Transactions of the British Mycological Society 1986; 86:153–156 [View Article]
    [Google Scholar]
  95. Gallaud I. Etudes sur les mycorrhizas endotrophes. Revue generale de Botanique 1905; 17:5–48
    [Google Scholar]
  96. Rayner MC. Obligate symbiosis in Calluna vulgaris. Ann Bot 1915; os-29:97–98 [View Article]
    [Google Scholar]
  97. Clapp GL. The life history of Aneura pinguis. Botanical Gazette 1912; 54:177–193 [View Article]
    [Google Scholar]
  98. Wollenweber HW. Identification of species of Fusarium occurring on the sweet potato, Ipomoea batatas. J Agric Res 1914; 2:1–286
    [Google Scholar]
  99. Flannigan B. Distribution of seed-borne micro-organisms in naked barley and wheat before harvest. Transactions of the British Mycological Society 1974; 62:51–58 [View Article]
    [Google Scholar]
  100. Koh CM, Lew J. Studies on the population of toxigenic fungi in foodstuffs. Yonsei Med J 1974; 15:74–91 [View Article] [PubMed]
    [Google Scholar]
  101. Basak AB, Karim MR, Hoque MN, Biswas AP. Studies on the fungi associated with different varieties of wheat seeds grown in Bangladesh. Seed Research 1987; 15:71–75
    [Google Scholar]
  102. Neergaard P. Seed Pathology London: Palgrave; 1977 [View Article] [PubMed]
    [Google Scholar]
  103. Gourley CO. Microfungi of crowns and roots of apparently healthy dormant strawberry plants. Can J Bot 1969; 47:945–949 [View Article]
    [Google Scholar]
  104. Penrose LJ. Phlyctaena vagabunda Desm., Pezicula malicorticis (Jackson) Nannf., and other fungi associated with apple twigs. Aust J Exp Agric 1971; 11:254 [View Article]
    [Google Scholar]
  105. Swinburne TR. Microflora of apple leaf scars in relation to infection by Nectria galligena. Transactions of the British Mycological Society 1973; 60:389–403 [View Article]
    [Google Scholar]
  106. Bhuiyan KA. Prevalence of fungi association with Chilli seeds. In Annual Research Review Gazipur, Bangladesh: 1989
    [Google Scholar]
  107. Fisher PJ, Petrini O. Fungal saprobes and pathogens as endophytes of rice (Oryza sativa L.). New Phytol 1992; 120:137–143 [View Article]
    [Google Scholar]
  108. Agarwal PC, Dev U, Singh B, Indra R, Khetarpal RK. Seed-borne fungi detected in consignments of soybean seeds (Glycine max) imported into India. EPPO Bulletin 2006; 36:53–58 [View Article]
    [Google Scholar]
  109. Zhang Q, Zhang J, Yang L, Zhang L, Jiang D et al. Diversity and biocontrol potential of endophytic fungi in Brassica napus. Biological Control 2014; 72:98–108 [View Article]
    [Google Scholar]
  110. Bettucci L, Saravay M. Endophytic fungi of Eucalyptus globulus: a preliminary study. Mycological Research 1993; 97:679–682 [View Article]
    [Google Scholar]
  111. Bettucci L, Alonso R, Tiscornia S. Endophytic mycobiota of healthy twigs and the assemblage of species associated with twig lesions of Eucalyptus globulus and E. grandis in Uruguay. Mycological Research 1999; 103:468–472 [View Article]
    [Google Scholar]
  112. Zhao Y, Xiong Z, Wu G, Bai W, Zhu Z et al. Fungal endophytic communities of two wild Rosa varieties with different powdery mildew susceptibilities. Front Microbiol 2018; 9:2462 [View Article]
    [Google Scholar]
  113. Stanosz GR, Smith DR, Guthmiller MA, Stanosz JC. Persistence of Sphaeropsis sapinea on or in Asymptomatic shoots of red and jack pines. Mycologia 1997; 89:525 [View Article]
    [Google Scholar]
  114. Carroll GC. The foraging ascomycete [abstract]. In 16th International Botanical Congress St. Louis, MO; 1999 p 309
    [Google Scholar]
  115. Schulz B, Boyle C. The endophytic continuum. Mycol Res 2005; 109:661–686 [View Article]
    [Google Scholar]
  116. Promputtha I, Lumyong S, Dhanasekaran V, McKenzie EHC, Hyde KD et al. A phylogenetic evaluation of whether endophytes become saprotrophs at host senescence. Microb Ecol 2007; 53:579–590 [View Article]
    [Google Scholar]
  117. Promputtha I, Hyde KD, McKenzie EHC, Peberdy JF, Lumyong S. Can leaf degrading enzymes provide evidence that endophytic fungi becoming saprobes?. Fungal Diversity 2010; 41:89–99 [View Article]
    [Google Scholar]
  118. Porras-Alfaro A, Bayman P. Hidden fungi, emergent properties: endophytes and microbiomes. Annual Reviews 2011; 49:291–315 [View Article]
    [Google Scholar]
  119. U’Ren JM, Arnold AE. Diversity, taxonomic composition, and functional aspects of fungal communities in living, senesced, and fallen leaves at five sites across North America. PeerJ 2016; 4:e2768 [View Article]
    [Google Scholar]
  120. Zhou J, Li X, Huang PW, Dai CC. Endophytism or saprophytism: Decoding the lifestyle transition of the generalist fungus Phomopsis liquidambari. Microbiol Res 2018; 206:99–112 [View Article]
    [Google Scholar]
  121. Kuo HC, Hui S, Choi J, Asiegbu FO, Valkonen JPT et al. Secret lifestyles of Neurospora crassa. Sci Rep 2014; 4:5135 [View Article] [PubMed]
    [Google Scholar]
  122. Fordyce C, Green RJ. Studies of the host specificity of verticillium albo-atrum var menthae. Phytopathology 1960; 50:635
    [Google Scholar]
  123. Schneider RW, Pendery WE. Stalk rot of corn: mechanism of predisposition by an early season water stress. Phytopathology 1983; 73:863 [View Article]
    [Google Scholar]
  124. Álvarez-Loayza P, White JF Jr, Torres MS, Balslev H, Kristiansen T et al. Light converts endosymbiotic fungus to pathogen, influencing seedling survival and niche-space filling of a common tropical tree, Iriartea deltoidea. PLoS One 2011; 6:e16386 [View Article] [PubMed]
    [Google Scholar]
  125. Wheeler DL, Johnson DA. Verticillium dahliae infects, alters plant biomass, and produces inoculum on rotation crops. Phytopathology 2016; 106:602–613 [View Article] [PubMed]
    [Google Scholar]
  126. Lofgren LA, LeBlanc NR, Certano AK, Nachtigall J, LaBine KM et al. Fusarium graminearum: pathogen or endophyte of North American grasses?. New Phytol 2018; 217:1203–1212 [View Article]
    [Google Scholar]
  127. Moon CD, Scott B, Schardl CL, Christensen MJ. The evolutionary origins of Epichloë endophytes from annual ryegrasses. Mycologia 2019; 92:1103–1118 [View Article]
    [Google Scholar]
  128. Nees von Esenbeck CG. n.d 1816 (“1817” in some copies). Das System der Pilze und Schwamme72 [View Article]
    [Google Scholar]
  129. Wiltshire SP. The foundation species of Alternaria and Macrosporium. Transactions of the British Mycological Society 1933; 18:135–IN3 [View Article]
    [Google Scholar]
  130. Fries E. Macrosporium. Systema Mycologicum 1819; 3:373–375
    [Google Scholar]
  131. Chevallier FF. Flore generale des environs de Paris 1:32; 1826
  132. Fries E. Flora scania. Upsala 1835368
    [Google Scholar]
  133. Fries E. Summa vegetabilium scandinaviae. Sectio posterior 1849; 505:
    [Google Scholar]
  134. Angell HR. Purple blotch of onion (Macrosporium porri Ell). J Agric Res 1929; 38:467–487
    [Google Scholar]
  135. Jackson CR, Weber GF. Morphology and Taxonomy of Alternaria Cucumerina. Mycologia 1959; 51:401 [View Article]
    [Google Scholar]
  136. Lawrence DP, Gannibal PB, Peever TL, Pryor BM. The sections of Alternaria: formalizing species-group concepts. Mycologia 2013; 105:530–546 [View Article] [PubMed]
    [Google Scholar]
  137. Neergaard P. Danish species of Alternaria and Stemphylium London: Oxford University Press; 1945 p 560
    [Google Scholar]
  138. Seung-Hun Y, Mathur SB, Neergaard P. Taxonomy and pathogenicity of four seed-borne species of Alternaria from sesame. Transactions of the British Mycological Society 1982; 78:447–458 [View Article]
    [Google Scholar]
  139. Simmons EG. Alternaria. An identification manual. In CBS Biodiversity Series 6. CBS Fungal Biodiversity Centre Utrecht, The Netherlands: 2007
    [Google Scholar]
  140. Kõljalg U, Nilsson HR, Schigel D, Tedersoo L, Larsson KH et al. The Taxon Hypothesis Paradigm—on the unambiguous detection and communication of Taxa. Microorganisms 2020; 8:1910 [View Article] [PubMed]
    [Google Scholar]
  141. Simmons EG. The theoretical bases for classification of the Fungi Imperfecti. Q Rev Biol 1966; 41:113–123 [View Article] [PubMed]
    [Google Scholar]
  142. Goos RD. Classification of the fungi imperfecti. Proceedings of the Iowa Academy of Science 1956; 63:311–320
    [Google Scholar]
  143. Saccardo PA, Traverso GB, Trotter A. Sylloge fungorum omnium hucusque cognitorum. In Patavii, Sumptibus P. A. Saccardo 1882-1931 [View Article]
    [Google Scholar]
  144. Bisby GR. An introduction to the taxonomy and nomenclature of Fungi Kew, Surrey: The Commonwealth Mycological Institute; 1953
    [Google Scholar]
  145. Young PA. Tabulation of Alternaria and Macrosporium. Mycologia 2018; 21:155–166 [View Article]
    [Google Scholar]
  146. Deshpande KB, Rajderkar NR. New species of Alternaria from Marathwada (India). Mycopathologia et Mycologia Applicata 1964; 23:277–280 [View Article]
    [Google Scholar]
  147. Joly P. Le Genre Alternaria [Encyclopedie Mycologique] Paris: P. Lechevalier; 1964
    [Google Scholar]
  148. Simmons EG, Joly P. Le Genre Alternaria, Encyclopedie Mycologique XXXIII. Mycologia 1966; 58:340 [View Article]
    [Google Scholar]
  149. de Hoog GS, Horré R. Molecular taxonomy of the Alternaria and Ulocladium species from humans and their identification in the routine laboratory. Mycoses 2002; 45:259–276 [View Article] [PubMed]
    [Google Scholar]
  150. Kohmoto K, Khan ID, Renbutsu Y, Taniguchi T, Nishimura S. Multiple host-specific toxins of Alternaria mali and their effect on the permeability of host cells. Physiological Plant Pathology 1976; 8:141–153 [View Article]
    [Google Scholar]
  151. Nishimura S. Host-specific toxins from Alternaria alternata problems and prospects. Proc Jpn Acad, Ser B 1980; 56:362–366 [View Article]
    [Google Scholar]
  152. Tsuge T, Harimoto Y, Akimitsu K, Ohtani K, Kodama M et al. Host-selective toxins produced by the plant pathogenic fungus Alternaria alternata. FEMS Microbiol Rev 2013; 37:44–66 [View Article]
    [Google Scholar]
  153. Simmons EG. Alternaria themes and variations (22-26). Mycotaxon 1986; 25:287–308
    [Google Scholar]
  154. Simmons EG. Alternaria themes and variations (27-53). Mycotaxon 1990; 37:79–119
    [Google Scholar]
  155. Simmons EG. Alternaria taxonomy: Current status, viewpoint, challenge. In Chelkowski J, Visconti A. eds Alternaria: Biology, Plant Diseases and Metabolites Amsterdam: Elsevier Science Publishers; 1992 pp 1–35
    [Google Scholar]
  156. Simmons EG, Roberts RG. Alternaria themes and variations (73). Mycotaxon 1993; 48:109–140
    [Google Scholar]
  157. Simmons EG. Alternaria themes and variations (106-111). Mycotaxon 1994; 50:409–427
    [Google Scholar]
  158. Simmons EG. Alternaria themes and variations (112-144). Mycotaxon 1995; 55:55–163
    [Google Scholar]
  159. Simmons EG. Alternaria themes and variations (226-235). Classification of citrus pathogens. Mycotaxon 1999; 70:263–323
    [Google Scholar]
  160. Simmons EG. Alternaria themes and variations (236-243). Host-specific toxin producers. Mycotaxon 1999; 70:325–369
    [Google Scholar]
  161. Slifkin MK. Conidial wall structure and morphology of Alternaria spp. The Journal of the Elisha Mitchell Scientific Society December:231-236 1971
    [Google Scholar]
  162. Ohtani H, Kohmoto K. Host-specific toxins of Alternaria species. In Chelkowski J, Visconti A. eds Alternaria, Biology, Plant Diseases and Metabolites Amsterdam: Elsevier; 1992 pp 123–156
    [Google Scholar]
  163. Nishimura S, Kohmoto K, Otani H, Ramachandran P, Tamura F. Pathological and epidemiological aspects of Alternaria alternata infection depending on a host-specific toxin. In Asada Y, Bushnell WR, Ouchi S, Vance CP. eds Plant Infection: The Physiological and Biochemical Basis Berlin Heidelberg New York: Japan Scientific Societies Press, Tokyo/Springer-Verlag; 1982 pp 199–214
    [Google Scholar]
  164. Jasalavich CA, Morales VM, Pelcher LE, Séguin-Swartz G. Comparison of nuclear ribosomal DNA sequences from Alternaria species pathogenic to crucifers. Mycological Research 1995; 99:604–614 [View Article]
    [Google Scholar]
  165. Adachi Y, Watanabe H, Tanabe K, Doke N, Nishimura S et al. Nuclear Ribosomal DNA as a Probe for Genetic Variability in the Japanese Pear Pathotype of Alternaria alternata. Appl Environ Microbiol 1993; 59:3197–3205 [View Article]
    [Google Scholar]
  166. Kusaba M, Tsuge T. Nuclear ribosomal DNA variation and pathogenic specialization in alternaria fungi known to produce host-specific toxins. Appl Environ Microbiol 1994; 60:3055–3062 [View Article] [PubMed]
    [Google Scholar]
  167. Serdani M, Kang JC, Andersen B, Crous PW. Characterisation of Alternaria species-groups associated with core rot of apples in South Africa. Mycological Research 2002; 106:561–569 [View Article]
    [Google Scholar]
  168. Pryor BM, Creamer R, Shoemaker RA, McLain-Romero J, Hambleton S. Undifilum, a new genus for endophytic embellisia oxytropis and parasitic helminthosporium bornmuelleri on legumes. Botany 2009; 87:178–194 [View Article]
    [Google Scholar]
  169. Lawrence DP, Park MS, Pryor BM. Nimbya and Embellisia revisited, with nov. comb for Alternaria celosiae and A. perpunctulata. Mycol Progress 2011; 11:799–815 [View Article]
    [Google Scholar]
  170. Ramires FA, Masiello M, Somma S, Villani A, Susca A et al. Phylogeny and Mycotoxin Characterization of Alternaria Species Isolated from Wheat Grown in Tuscany, Italy. Toxins (Basel) 2018; 10:E472 [View Article] [PubMed]
    [Google Scholar]
  171. Taylor JW, Hann-Soden C, Branco S, Sylvain I, Ellison CE. Clonal reproduction in fungi. Proc Natl Acad Sci U S A 2015; 112:8901–8908 [View Article] [PubMed]
    [Google Scholar]
  172. Zhao D, Fan S, Zhang D, Pan Y, Gu Q et al. Parasexual reproduction in Alternaria solani: Simple sequence repeat molecular evidence for haploidization. Mycologia 2021; 113:949–955 [View Article] [PubMed]
    [Google Scholar]
  173. Tanaka A, Shiotani H, Yamamoto M, Tsuge T. Insertional mutagenesis and cloning of the genes required for biosynthesis of the host-specific AK-toxin in the Japanese pear pathotype of Alternaria alternata. Mol Plant Microbe Interact 1999; 12:691–702 [View Article] [PubMed]
    [Google Scholar]
  174. Tanaka A, Tsuge T. Structural and functional complexity of the genomic region controlling AK-toxin biosynthesis and pathogenicity in the Japanese pear pathotype of Alternaria alternata. Mol Plant Microbe Interact 2000; 13:975–986 [View Article] [PubMed]
    [Google Scholar]
  175. Johnson LJ, Johnson RD, Akamatsu H, Salamiah A, Otani H et al. Spontaneous loss of a conditionally dispensable chromosome from the Alternaria alternata apple pathotype leads to loss of toxin production and pathogenicity. Curr Genet 2001; 40:65–72 [View Article] [PubMed]
    [Google Scholar]
  176. Hatta R, Ito K, Hosaki Y, Tanaka T, Tanaka A et al. A conditionally dispensable chromosome controls host-specific pathogenicity in the fungal plant pathogen Alternaria alternata. Genetics 2002; 161:59–70 [View Article] [PubMed]
    [Google Scholar]
  177. Masunaka A, Tanaka A, Tsuge T, Peever TL, Timmer LW et al. Distribution and Characterization of AKT Homologs in the Tangerine Pathotype of Alternaria alternata. Phytopathology 2000; 90:762–768 [View Article] [PubMed]
    [Google Scholar]
  178. Masunaka A, Ohtani K, Peever TL, Timmer LW, Tsuge T et al. An isolate of Alternaria alternata that is pathogenic to both tangerines and rough lemon and produces two host-selective toxins, ACT- and ACR-toxins. Phytopathology 2005; 95:241–247 [View Article] [PubMed]
    [Google Scholar]
  179. Ma L-J, van der Does HC, Borkovich KA, Coleman JJ, Daboussi M-J et al. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 2010; 464:367–373 [View Article] [PubMed]
    [Google Scholar]
  180. Hu J, Chen C, Peever T, Dang H, Lawrence C et al. Genomic characterization of the conditionally dispensable chromosome in Alternaria arborescens provides evidence for horizontal gene transfer. BMC Genomics 2012; 13:171 [View Article] [PubMed]
    [Google Scholar]
  181. Berbee ML, Payne BP, Zhang G, Roberts RG, Turgeon BG. Shared ITS DNA substitutions in isolates of opposite mating type reveal a recombining history for three presumed asexual species in the filamentous ascomycete genus Alternaria. Mycol Res 2003; 107:169–182 [View Article] [PubMed]
    [Google Scholar]
  182. Johnson RD, Johnson L, Kohmoto K, Otani H, Lane CR et al. A Polymerase Chain Reaction-Based Method to Specifically Detect Alternaria alternata Apple Pathotype (A. mali), the Causal Agent of Alternaria Blotch of Apple. Phytopathology 2000; 90:973–976 [View Article] [PubMed]
    [Google Scholar]
  183. Pavon Moreno MA, Alonso IG, RM de S, Lacarra TG. Importancia del genero Alternaria como productor de micotoxinas y agente causal de enfermedades humanas. Nutr Hosp 2012; 27:1772–1781 [View Article]
    [Google Scholar]
  184. Meena M, Samal S. Alternaria host-specific (HSTs) toxins: An overview of chemical characterization, target sites, regulation and their toxic effects. Toxicol Rep 2019; 6:745–758 [View Article] [PubMed]
    [Google Scholar]
  185. Simpson GG. The species concept. Evolution 1951; 5:285–298 [View Article]
    [Google Scholar]
  186. Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM et al. Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 2000; 31:21–32 [View Article] [PubMed]
    [Google Scholar]
  187. Mayden RL. eds A hierarchy of species concepts: the denouement in the saga of the species problem. In: Species: The units of diversity Chapman & Hall; 1997 pp 381–423
    [Google Scholar]
  188. Harrington TC, Rizzo DM. Defining species in the fungi. In Structure and Dynamics of Fungal Populations Dordrecht: Springer; 1999 pp 43–71
    [Google Scholar]
  189. Hawksworth DL, Kirk PM, Sutton BC, Pegler DN. Ainsworth & Bisby’s dictionary of the fungi. Rev Inst Med trop S Paulo 1996; 38:272 [View Article]
    [Google Scholar]
  190. Mayr E. Speciation phenomena in birds. The American Naturalist 1940; 74:249–278 [View Article]
    [Google Scholar]
  191. Shear CL, Dodge BO. Life histories and heterothallism of the red bread-mold fungi of the Monilia sitophila group. J Agric Res 1927; 34:1019–1042
    [Google Scholar]
  192. Maharachchikumbura SSN, Chen Y, Ariyawansa HA, Hyde KD, Haelewaters D et al. Integrative approaches for species delimitation in Ascomycota. Fungal Diversity 2021; 109:155–179 [View Article]
    [Google Scholar]
  193. Cracraft J. Species concepts and speciation analysis. In Johnston RF. eds Current Ornithology New York, NY: Springer; 1983 pp 159–187
    [Google Scholar]
  194. Avise JC, Ball RM. Principles of genealogical concordance in species concepts and biological taxonomy. In Futuyma D, Antonovics J. eds Oxford Surveys in Evolutionary Biology vol 7 Oxford: Oxford University Press; 1990 pp 45–67
    [Google Scholar]
  195. Baum DA, Shaw KL. Genealogical perspectives on the species problem. Experimental and Molecular Approaches to Plant Biosystematics 1995; 53:289–303
    [Google Scholar]
  196. Avise JC, Wollenberg K. Phylogenetics and the origin of species. Proc Natl Acad Sci U S A 1997; 94:7748–7755 [View Article] [PubMed]
    [Google Scholar]
  197. Garganese F, Schena L, Siciliano I, Prigigallo MI, Spadaro D et al. Characterization of citrus-associated Alternaria species in Mediterranean areas. PLoS One 2016; 11:e0163255 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001153
Loading
/content/journal/micro/10.1099/mic.0.001153
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error