1887

Abstract

subspecies serovar Typhimurium (. Typhimurium) definitive phage type 104 (DT104), . Worthington, and produce ArtAB toxin, which catalyses ADP-ribosylation of pertussis toxin-sensitive G protein. ArtAB gene () is encoded on a prophage in , and prophage induction by SOS-inducing agents is associated with increases in ArtAB production . However, little is known about the expression of . Here, we showed a significant increase in transcription of DT104 within macrophage-like RAW264.7 cells. Intracellular expression of ArtAB was also observed by immunofluorescence staining. The induced expression of in DT104 and was enhanced by treatment of RAW264.7 cells with phorbol 12-myristate 13-acetate (PMA), which stimulates the production of reactive oxygen species (ROS); however, such induction was not observed in . Worthington. Upregulation of , a major regulator of oxidative stress, and a repressor of prophage induction, was observed in . Worthington within RAW264.7 cells treated with PMA but not in the DT104 strain. Although the expression of was increased, was upregulated in which lacks the gene in the incomplete -encoded prophage. Taken together, oxidative stress plays a role in the production of toxins in macrophages, and high expression levels of and are responsible for the low expression of . Therefore, strain variation in the level of expression within macrophages could be explained by differences in the oxidative stress response of bacteria and might be reflected in its virulence.

Funding
This study was supported by the:
  • KAKENHI (Award 18K06001)
    • Principle Award Recipient: IkuoUchida
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001152
2022-03-25
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/168/3/mic001152.html?itemId=/content/journal/micro/10.1099/mic.0.001152&mimeType=html&fmt=ahah

References

  1. Brenner FW, Villar RG, Angulo FJ, Tauxe R, Swaminathan B. Salmonella nomenclature. J Clin Microbiol 2000; 38:2465–2467 [View Article] [PubMed]
    [Google Scholar]
  2. Guibourdenche M, Roggentin P, Mikoleit M, Fields PI, Bockemühl J et al. Supplement 2003-2007 (No. 47) to the White-Kauffmann-Le Minor scheme. Res Microbiol 2010; 161:26–29 [View Article] [PubMed]
    [Google Scholar]
  3. Hurley D, McCusker MP, Fanning S, Martins M. Salmonella-host interactions - modulation of the host innate immune system. Front Immunol 2014; 5:481 [View Article] [PubMed]
    [Google Scholar]
  4. Swart AL, Hensel M. Interactions of Salmonella enterica with dendritic cells. Virulence 2012; 3:660–667 [View Article] [PubMed]
    [Google Scholar]
  5. Gal-Mor O, Boyle EC, Grassl GA. Same species, different diseases: how and why typhoidal and non-typhoidal Salmonella enterica serovars differ. Front Microbiol 2014; 5:391 [View Article] [PubMed]
    [Google Scholar]
  6. Anderson ES, Ward LR, Saxe MJ, de Sa JD. Bacteriophage-typing designations of Salmonella typhimurium. J Hyg (Lond) 1977; 78:297–300 [View Article] [PubMed]
    [Google Scholar]
  7. Glynn MK, Bopp C, Dewitt W, Dabney P, Mokhtar M et al. Emergence of multidrug-resistant Salmonella enterica serotype Typhimurium DT104 infections in the United States. N Engl J Med 1998; 338:1333–1338 [View Article] [PubMed]
    [Google Scholar]
  8. Sameshima T, Akiba M, Izumiya H, Terajima J, Tamura K et al. Salmonella typhimurium DT104 from livestock in Japan. Jpn J Infect Dis 2000; 53:15–16 [PubMed]
    [Google Scholar]
  9. Threlfall EJ, Frost JA, Ward LR, Rowe B. Epidemic in cattle and humans of Salmonella typhimurium DT 104 with chromosomally integrated multiple drug resistance. Vet Rec 1994; 134:577 [View Article] [PubMed]
    [Google Scholar]
  10. Villar RG, Macek MD, Simons S, Hayes PS, Goldoft MJ et al. Investigation of multidrug-resistant Salmonella serotype Typhimurium DT104 infections linked to raw-milk cheese in Washington State. JAMA 1999; 281:1811–1816 [View Article] [PubMed]
    [Google Scholar]
  11. Saitoh M, Tanaka K, Nishimori K, Makino S-I, Kanno T et al. The artAB genes encode a putative ADP-ribosyltransferase toxin homologue associated with Salmonella enterica serovar Typhimurium DT104. Microbiology (Reading) 2005; 151:3089–3096 [View Article] [PubMed]
    [Google Scholar]
  12. Uchida I, Ishihara R, Tanaka K, Hata E, Makino S-I et al. Salmonella enterica serotype Typhimurium DT104 ArtA-dependent modification of pertussis toxin-sensitive G proteins in the presence of [32P]NAD. Microbiology (Reading) 2009; 155:3710–3718 [View Article] [PubMed]
    [Google Scholar]
  13. Tamamura Y, Tanaka K, Uchida I. Characterization of pertussis-like toxin from Salmonella spp. that catalyzes ADP-ribosylation of G proteins. Sci Rep 2017; 7:2653 [View Article] [PubMed]
    [Google Scholar]
  14. Cheng RA, Wiedmann M. The ADP-ribosylating toxins of Salmonella. Toxins (Basel) 2019; 11:416 [View Article]
    [Google Scholar]
  15. Littler DR, Ang SY, Moriel DG, Kocan M, Kleifeld O et al. Structure-function analyses of a pertussis-like toxin from pathogenic Escherichia coli reveal a distinct mechanism of inhibition of trimeric G-proteins. J Biol Chem 2017; 292:15143–15158 [View Article] [PubMed]
    [Google Scholar]
  16. Jobling MG. The chromosomal nature of LT-II enterotoxins solved: a lambdoid prophage encodes both LT-II and one of two novel pertussis-toxin-like toxin family members in type II enterotoxigenic Escherichia coli. Pathog Dis 2016; 74:ftw001 [View Article] [PubMed]
    [Google Scholar]
  17. Miura S, Tamamura Y, Takayasu M, Sasaki M, Nishimura N et al. Influence of SOS-inducing agents on the expression of ArtAB toxin gene in Salmonella enterica and Salmonella bongori. Microbiology (Reading) 2020; 166:785–793 [View Article] [PubMed]
    [Google Scholar]
  18. Sezonov G, Joseleau-Petit D, D’Ari R. Escherichia coli physiology in Luria-Bertani broth. J Bacteriol 2007; 189:8746–8749 [View Article] [PubMed]
    [Google Scholar]
  19. Finkelstein RA, Atthasampunna P, Chulasamaya M, Charunmethee P. Pathogenesis of experimental cholera: biologic ativities of purified procholeragen A. J Immunol 1966; 96:440–449 [PubMed]
    [Google Scholar]
  20. Imbeault E, Gris D. Assessment of oxidative metabolism. Methods Mol Biol 2013; 1031:51–57 [View Article] [PubMed]
    [Google Scholar]
  21. Gallorini M, Petzel C, Bolay C, Hiller K-A, Cataldi A et al. Activation of the Nrf2-regulated antioxidant cell response inhibits HEMA-induced oxidative stress and supports cell viability. Biomaterials 2015; 56:114–128 [View Article] [PubMed]
    [Google Scholar]
  22. Rao X, Huang X, Zhou Z, Lin X. An improvement of the 2ˆ(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinforma Biomath 2013; 3:71–85 [PubMed]
    [Google Scholar]
  23. Arndt D, Grant JR, Marcu A, Sajed T, Pon A et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 2016; 44:W16–21 [View Article] [PubMed]
    [Google Scholar]
  24. Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J. DNAPlotter: circular and linear interactive genome visualization. Bioinformatics 2009; 25:119–120 [View Article] [PubMed]
    [Google Scholar]
  25. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S et al. NCBI BLAST: a better web interface. Nucleic Acids Res 2008; 36:W5–9 [View Article] [PubMed]
    [Google Scholar]
  26. Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics 2011; 27:1009–1010 [View Article] [PubMed]
    [Google Scholar]
  27. Tanabe T, Otani H, Mishima K, Ogawa R, Inagaki C. Phorbol 12-myristate 13-acetate (PMA)-induced oxyradical production in rheumatoid synovial cells. Jpn J Pharmacol 1997; 73:347–351 [View Article] [PubMed]
    [Google Scholar]
  28. Gieche J, Mehlhase J, Licht A, Zacke T, Sitte N et al. Protein oxidation and proteolysis in RAW264.7 macrophages: effects of PMA activation. Biochim Biophys Acta 2001; 1538:321–328 [View Article] [PubMed]
    [Google Scholar]
  29. Glinkowska M, Loś JM, Szambowska A, Czyz A, Całkiewicz J et al. Influence of the Escherichia coli oxyR gene function on lambda prophage maintenance. Arch Microbiol 2010; 192:673–683 [View Article] [PubMed]
    [Google Scholar]
  30. Loś JM, Loś M, Węgrzyn A, Węgrzyn G. Altruism of Shiga toxin-producing Escherichia coli: recent hypothesis versus experimental results. Front Cell Infect Microbiol 2012; 2:166 [View Article] [PubMed]
    [Google Scholar]
  31. Licznerska K, Nejman-Faleńczyk B, Bloch S, Dydecka A, Topka G et al. Oxidative stress in shiga toxin production by enterohemorrhagic Escherichia coli. Oxid Med Cell Longev 2016; 2016:3578368 [View Article] [PubMed]
    [Google Scholar]
  32. Loś JM, Loś M, Wegrzyn A, Wegrzyn G. Hydrogen peroxide-mediated induction of the Shiga toxin-converting lambdoid prophage ST2-8624 in Escherichia coli O157:H7. FEMS Immunol Med Microbiol 2010; 58:322–329 [View Article]
    [Google Scholar]
  33. Loś JM, Loś M, Wegrzyn G, Wegrzyn A. Differential efficiency of induction of various lambdoid prophages responsible for production of Shiga toxins in response to different induction agents. Microb Pathog 2009; 47:289–298 [View Article]
    [Google Scholar]
  34. Matsushiro A, Sato K, Miyamoto H, Yamamura T, Honda T. Induction of prophages of enterohemorrhagic Escherichia coli O157:H7 with norfloxacin. J Bacteriol 1999; 181:2257–2260 [View Article]
    [Google Scholar]
  35. Wagner PL, Neely MN, Zhang X, Acheson DW, Waldor MK et al. Role for a phage promoter in Shiga toxin 2 expression from a pathogenic Escherichia coli strain. J Bacteriol 2001; 183:2081–2085 [View Article]
    [Google Scholar]
  36. Zhang X, McDaniel AD, Wolf LE, Keusch GT, Waldor MK et al. Quinolone antibiotics induce Shiga toxin-encoding bacteriophages, toxin production, and death in mice. J Infect Dis 2000; 181:664–670 [View Article] [PubMed]
    [Google Scholar]
  37. Mühldorfer I, Hacker J, Keusch GT, Acheson DW, Tschäpe H et al. Regulation of the Shiga-like toxin II operon in Escherichia coli. Infect Immun 1996; 64:495–502 [View Article] [PubMed]
    [Google Scholar]
  38. Chakraborty D, Clark E, Mauro SA, Koudelka GB. Molecular mechanisms governing “Hair-Trigger” induction of shiga toxin-encoding prophages. Viruses 2018; 10:E228 [View Article] [PubMed]
    [Google Scholar]
  39. Colon MP, Chakraborty D, Pevzner Y, Koudelka GB. Mechanisms that Determine the Differential Stability of Stx+ and Stx(-) Lysogens. Toxins (Basel) 2016; 8:96 [View Article] [PubMed]
    [Google Scholar]
  40. Toshima H, Yoshimura A, Arikawa K, Hidaka A, Ogasawara J et al. Enhancement of Shiga toxin production in enterohemorrhagic Escherichia coli serotype O157:H7 by DNase colicins. Appl Environ Microbiol 2007; 73:7582–7588 [View Article] [PubMed]
    [Google Scholar]
  41. Tyler JS, Mills MJ, Friedman DI. The operator and early promoter region of the Shiga toxin type 2-encoding bacteriophage 933W and control of toxin expression. J Bacteriol 2004; 186:7670–7679 [View Article] [PubMed]
    [Google Scholar]
  42. Mustard JA, Little JW. Analysis of Escherichia coli RecA interactions with LexA, lambda CI, and UmuD by site-directed mutagenesis of recA. J Bacteriol 2000; 182:1659–1670 [View Article] [PubMed]
    [Google Scholar]
  43. Eriksson S, Lucchini S, Thompson A, Rhen M, Hinton JCD. Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol Microbiol 2003; 47:103–118 [View Article] [PubMed]
    [Google Scholar]
  44. Poirier K, Faucher SP, Béland M, Brousseau R, Gannon V et al. Escherichia coli O157:H7 survives within human macrophages: global gene expression profile and involvement of the Shiga toxins. Infect Immun 2008; 76:4814–4822 [View Article] [PubMed]
    [Google Scholar]
  45. Hébrard M, Viala JPM, Méresse S, Barras F, Aussel L. Redundant hydrogen peroxide scavengers contribute to Salmonella virulence and oxidative stress resistance. J Bacteriol 2009; 191:4605–4614 [View Article] [PubMed]
    [Google Scholar]
  46. Rhen M. Salmonella and reactive oxygen species: a love-hate relationship. J Innate Immun 2019; 11:216–226 [View Article] [PubMed]
    [Google Scholar]
  47. Rychlik I, Barrow PA. Salmonella stress management and its relevance to behaviour during intestinal colonisation and infection. FEMS Microbiol Rev 2005; 29:1021–1040 [View Article] [PubMed]
    [Google Scholar]
  48. Farr SB, Kogoma T. Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol Rev 1991; 55:561–585 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001152
Loading
/content/journal/micro/10.1099/mic.0.001152
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error