1887

Abstract

The acylation of sugars, most commonly via acetylation, is a widely used mechanism in bacteria that uses a simple chemical modification to confer useful traits. For structures like lipopolysaccharide, capsule and peptidoglycan, that function outside of the cytoplasm, their acylation during export or post-synthesis requires transport of an activated acyl group across the membrane. In bacteria this function is most commonly linked to a family of integral membrane proteins – acyltransferase-3 (AT3). Numerous studies examining production of diverse extracytoplasmic sugar-containing structures have identified roles for these proteins in -acylation. Many of the phenotypes conferred by the action of AT3 proteins influence host colonisation and environmental survival, as well as controlling the properties of biotechnologically important polysaccharides and the modification of antibiotics and antitumour drugs by Actinobacteria. Herein we present the first systematic review, to our knowledge, of the functions of bacterial AT3 proteins, revealing an important protein family involved in a plethora of systems of importance to bacterial function that is still relatively poorly understood at the mechanistic level. By defining and comparing this set of functions we draw out common themes in the structure and mechanism of this fascinating family of membrane-bound enzymes, which, due to their role in host colonisation in many pathogens, could offer novel targets for the development of antimicrobials.

Funding
This study was supported by the:
  • Biotechnology and Biological Sciences Research Council (Award BB/M011151/1)
    • Principle Award Recipient: GavinH. Thomas
  • British Heart Foundation (Award PG/16/5/31912)
    • Principle Award Recipient: JenniferR. Potts
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001146
2022-03-07
2022-05-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/168/3/mic001146.html?itemId=/content/journal/micro/10.1099/mic.0.001146&mimeType=html&fmt=ahah

References

  1. Shaw WV. The enzymatic acetylation of chloramphenicol by extracts of R factor-resistant Escherichia coli . J Biol Chem 1967; 242:687–693 [PubMed]
    [Google Scholar]
  2. Slauch JM, Lee AA, Mahan MJ, Mekalanos JJ. Molecular characterization of the oafA locus responsible for acetylation of Salmonella typhimurium O-antigen: oafA is a member of a family of integral membrane trans-acylases. J Bacteriol 1996; 178:5904–5909 [View Article] [PubMed]
    [Google Scholar]
  3. Verma NK, Brandt JM, Verma DJ, Lindberg AA. Molecular characterization of the O-acetyl transferase gene of converting bacteriophage SF6 that adds group antigen 6 to Shigella flexneri . Mol Microbiol 1991; 5:71–75 [View Article] [PubMed]
    [Google Scholar]
  4. Kintz E, Davies MR, Hammarlöf DL, Canals R, Hinton JCD et al. A BTP1 prophage gene present in invasive non-typhoidal Salmonella determines composition and length of the O-antigen of the lipopolysaccharide. Mol Microbiol 2015; 96:263–275 [View Article] [PubMed]
    [Google Scholar]
  5. Lacroix JM, Lanfroy E, Cogez V, Lequette Y, Bohin A et al. The mdoC gene of Escherichia coli encodes a membrane protein that is required for succinylation of osmoregulated periplasmic glucans. J Bacteriol 1999; 181:3626–3631 [View Article] [PubMed]
    [Google Scholar]
  6. Bera A, Herbert S, Jakob A, Vollmer W, Götz F. Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus . Mol Microbiol 2005; 55:778–787 [View Article] [PubMed]
    [Google Scholar]
  7. Laaberki MH, Pfeffer J, Clarke AJ, Dworkin J. O-Acetylation of peptidoglycan is required for proper cell separation and S-layer anchoring in Bacillus anthracis . J Biol Chem 2011; 286:5278–5288 [View Article] [PubMed]
    [Google Scholar]
  8. Hara O, Hutchinson CR. A macrolide 3-O-acyltransferase gene from the midecamycin-producing species Streptomyces mycarofaciens . J Bacteriol 1992; 174:5141–5144 [View Article] [PubMed]
    [Google Scholar]
  9. Davis EO, Evans IJ, Johnston AWB. Identification of nodX, a gene that allows Rhizobium leguminosarum biovar viciae strain TOM to nodulate Afghanistan peas. Mol Gen Genet 1988; 212:531–535 [View Article] [PubMed]
    [Google Scholar]
  10. Golkar T, Zieliński M, Berghuis AM. Look and outlook on enzyme-mediated macrolide resistance. Front Microbiol 2018; 9:1942 [View Article] [PubMed]
    [Google Scholar]
  11. Pearson CR, Tindall SN, Herman R, Jenkins HT, Bateman A et al. Acetylation of surface carbohydrates in bacterial pathogens requires coordinated action of a two-domain membrane-bound acyltransferase. mBio 2020; 11:1–19 [View Article] [PubMed]
    [Google Scholar]
  12. Mitchell A, Chang H-Y, Daugherty L, Fraser M, Hunter S et al. The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res 2015; 43:D213–D221 [View Article] [PubMed]
    [Google Scholar]
  13. Choy RKM, Kemner JM, Thomas JH. Fluoxetine-resistance genes in Caenorhabditis elegans function in the intestine and may act in drug transport. Genetics 2006; 172:885–892 [View Article] [PubMed]
    [Google Scholar]
  14. Dzitoyeva S, Dimitrijevic N, Manev H. Identification of a novel Drosophila gene, beltless, using injectable embryonic and adult RNA interference (RNAi). BMC Genomics 2003; 4:33 [View Article]
    [Google Scholar]
  15. Hofmann K. A superfamily of membrane-bound O-acyltransferases with implications for Wnt signaling. Trends Biochem Sci 2000; 25:111–112 [View Article] [PubMed]
    [Google Scholar]
  16. Chang CCY, Sun J, Chang T-Y. Membrane-bound O-acyltransferases (MBOATs). Front Biol 2011; 6:177–182 [View Article]
    [Google Scholar]
  17. Shindou H, Eto M, Morimoto R, Shimizu T. Identification of membrane O-acyltransferase family motifs. Biochem Biophys Res Commun 2009; 383:320–325 [View Article] [PubMed]
    [Google Scholar]
  18. Chang S-C, Magee AI. Acyltransferases for secreted signalling proteins (Review). Mol Membr Biol 2009; 26:104–113 [View Article] [PubMed]
    [Google Scholar]
  19. Shindou H, Shimizu T. Acyl-CoA:lysophospholipid acyltransferases. J Biol Chem 2009; 284:1–5 [View Article] [PubMed]
    [Google Scholar]
  20. Weadge JT, Pfeffer JM, Clarke AJ. Identification of a new family of enzymes with potential O-acetylpeptidoglycan esterase activity in both Gram-positive and Gram-negative bacteria. BMC Microbiol 2005; 5:49 [View Article] [PubMed]
    [Google Scholar]
  21. Franklin MJ, Nivens DE, Weadge JT, Howell PL. Biosynthesis of the Pseudomonas aeruginosa extracellular polysaccharides, alginate, Pel, and Psl. Front Microbio 2011; 2:1–16 [View Article] [PubMed]
    [Google Scholar]
  22. Chanasit W, Gonzaga ZJC, Rehm BHA. Analysis of the alginate O-acetylation machinery in Pseudomonas aeruginosa . Appl Microbiol Biotechnol 2020; 104:2179–2191 [View Article]
    [Google Scholar]
  23. Veyrier FJ, Williams AH, Mesnage S, Schmitt C, Taha M-K et al. De-O-acetylation of peptidoglycan regulates glycan chain extension and affects in vivo survival of neisseria meningitidis. Mol Microbiol 2013; 87:1100–1112 [View Article]
    [Google Scholar]
  24. Perego M, Glaser P, Minutello A, Strauch MA, Leopold K et al. Incorporation of d-alanine into lipoteichoic acid and wall teichoic acid in Bacillus subtilis. Identification of genes and regulation. J Biol Chem 1995; 270:15598–15606 [View Article] [PubMed]
    [Google Scholar]
  25. Ma D, Wang Z, Merrikh CN, Lang KS, Lu P et al. Crystal structure of a membrane-bound O-acyltransferase. Nature 2018; 562:286–290 [View Article] [PubMed]
    [Google Scholar]
  26. Upton C, Buckley JT. A new family of lipolytic enzymes?. Trends Biochem Sci 1995; 20:178–179 [View Article] [PubMed]
    [Google Scholar]
  27. Dalrymple BP, Cybinski DH, Layton I, McSweeney CS, Xue G-P et al. Three Neocallimastix patriciarum esterases associated with the degradation of complex polysaccharides are members of a new family of hydrolases. Microbiology (Reading) 1997; 143 (Pt 8):2605–2614 [View Article] [PubMed]
    [Google Scholar]
  28. Mølgaard A, Kauppinen S, Larsen S. Rhamnogalacturonan acetylesterase elucidates the structure and function of a new family of hydrolases. Structure 2000; 8:373–383 [View Article] [PubMed]
    [Google Scholar]
  29. Sychantha D, Jones CS, Little DJ, Moynihan PJ, Robinson H et al. In vitro characterization of the antivirulence target of Gram-positive pathogens, peptidoglycan O-acetyltransferase A (OatA). PLoS Pathog 2017; 13:e1006667 [View Article] [PubMed]
    [Google Scholar]
  30. Jones CS, Anderson AC, Clarke AJ. Mechanism of Staphylococcus aureus peptidoglycan O-acetyltransferase a as an O-acyltransferase. Proc Natl Acad Sci 2021; 118: [View Article]
    [Google Scholar]
  31. Moynihan PJ, Sychantha D, Clarke AJ. Chemical biology of peptidoglycan acetylation and deacetylation. Bioorg Chem 2014; 54:44–50 [View Article]
    [Google Scholar]
  32. Thanweer F, Verma NK. Identification of critical residues of the serotype modifying O-acetyltransferase of Shigella flexneri . BMC Biochem 2012; 13:13 [View Article]
    [Google Scholar]
  33. Thanweer F, Tahiliani V, Korres H, Verma NK. Topology and identification of critical residues of the O-acetyltransferase of serotype-converting bacteriophage, SF6, of Shigella flexneri . Biochem Biophys Res Commun 2008; 375:581–585 [View Article]
    [Google Scholar]
  34. Zhang G, Meredith TC, Kahne D. On the essentiality of lipopolysaccharide to Gram-negative bacteria. Curr Opin Microbiol 2013; 16:779–785 [View Article]
    [Google Scholar]
  35. Klein G, Raina S. Regulated assembly of LPS, its structural alterations and cellular response to LPS defects. Int J Mol Sci 2019; 20:356 [View Article]
    [Google Scholar]
  36. Osborn MJ, Rosen SM, Rothfield L, Zeleznick LD, Horecker BL. Lipopolysaccharide of the Gram-negative cell wall. Science 1964; 145:783–789 [View Article] [PubMed]
    [Google Scholar]
  37. Raetz CRH, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem 2002; 71:635–700 [View Article] [PubMed]
    [Google Scholar]
  38. Lerouge I. O-antigen structural variation: mechanisms and possible roles in animal/plant–microbe interactions. FEMS Microbiol Rev 2001; 25:0 [View Article]
    [Google Scholar]
  39. Broeker NK, Barbirz S. Not a barrier but a key: How bacteriophages exploit host’s O-antigen as an essential receptor to initiate infection. Mol Microbiol 2017; 105:353–357 [View Article] [PubMed]
    [Google Scholar]
  40. Davies MR, Broadbent SE, Harris SR, Thomson NR, van der Woude MW. Horizontally acquired glycosyltransferase operons drive Salmonellae lipopolysaccharide diversity. PLoS Genet 2013; 9:e1003568 [View Article] [PubMed]
    [Google Scholar]
  41. Slauch JM, Mahan MJ, Michetti P, Neutra MR, Mekalanos JJ. Acetylation (O-factor 5) affects the structural and immunological properties of Salmonella typhimurium lipopolysaccharide O antigen. Infect Immun 1995; 63:437–441 [View Article]
    [Google Scholar]
  42. Lanzilao L, Stefanetti G, Saul A, MacLennan CA, Micoli F et al. Strain selection for generation of O-antigen-based glycoconjugate vaccines against invasive nontyphoidal Salmonella disease. PLoS ONE 2015; 10:e0139847 [View Article] [PubMed]
    [Google Scholar]
  43. Liu B, Knirel YA, Feng L, Perepelov AV, Senchenkova SN et al. Structural diversity in Salmonella O antigens and its genetic basis. FEMS Microbiol Rev 2014; 38:56–89 [View Article] [PubMed]
    [Google Scholar]
  44. Kingsley RA, Msefula CL, Thomson NR, Kariuki S, Holt KE et al. Epidemic multiple drug resistant Salmonella typhimurium causing invasive disease in sub-Saharan Africa have a distinct genotype. Genome Res 2009; 19:2279–2287 [View Article]
    [Google Scholar]
  45. Kintz E, Heiss C, Black I, Donohue N, Brown N et al. Salmonella enterica Serovar Typhi lipopolysaccharide O-antigen modification impact on serum resistance and antibody recognition. Infect Immun 2017; 85: [View Article] [PubMed]
    [Google Scholar]
  46. Ravenscroft N, Cescutti P, Gavini M, Stefanetti G, MacLennan CA et al. Structural analysis of the O-acetylated O-polysaccharide isolated from Salmonella paratyphi A and used for vaccine preparation. Carbohydr Res 2015; 404:108–116 [View Article] [PubMed]
    [Google Scholar]
  47. Broadbent SE, Davies MR, van der Woude MW. Phase variation controls expression of Salmonella lipopolysaccharide modification genes by a DNA methylation-dependent mechanism. Mol Microbiol 2010; 77:337–353 [View Article] [PubMed]
    [Google Scholar]
  48. Hong Y, Duda KA, Cunneen MM, Holst O, Reeves PR. The WbaK acetyltransferase of Salmonella enterica group E gives insights into O antigen evolution. Microbiology (Reading) 2013; 159:2316–2322 [View Article] [PubMed]
    [Google Scholar]
  49. Kropinski AM, Kovalyova IV, Billington SJ, Patrick AN, Butts BD et al. The genome of ε15, a serotype-converting, Group E1 Salmonella enterica-specific bacteriophage. Virology 2007; 369:234–244 [View Article] [PubMed]
    [Google Scholar]
  50. Clark CA, Beltrame J, Manning PA. The oac gene encoding a lipopolysaccharide O-antigen acetylase maps adjacent to the integrase-encoding gene on the genome of Shigella flexneri bacteriophage Sf6. Gene 1991; 107:43–52 [View Article] [PubMed]
    [Google Scholar]
  51. Sun Q, Lan R, Wang Y, Wang J, Xia S et al. Identification of a divergent O-acetyltransferase gene oac1b from Shigella flexneri serotype 1b strains. Emerg Microbes Infect 2012; 1:e21 [View Article] [PubMed]
    [Google Scholar]
  52. Perepelov AV, Shekht ME, Liu B, Shevelev SD, Ledov VA et al. Shigella flexneri O-antigens revisited: final elucidation of the O-acetylation profiles and a survey of the O-antigen structure diversity. FEMS Immunol Med Microbiol 2012; 66:201–210 [View Article] [PubMed]
    [Google Scholar]
  53. Wang J, Knirel YA, Lan R, Senchenkova SN, Luo X et al. Identification of an O-acyltransferase gene (oacB) that mediates 3- and 4-O-acetylation of rhamnose III in Shigella flexneri O antigens. J Bacteriol 2014; 196:1525–1531 [View Article] [PubMed]
    [Google Scholar]
  54. Knirel YA, Wang J, Luo X, Senchenkova SN, Lan R et al. Genetic and structural identification of an O-acyltransferase gene (oacC) responsible for the 3/4-O-acetylation on rhamnose III in Shigella flexneri serotype 6. BMC Microbiol 2014; 14:266 [View Article] [PubMed]
    [Google Scholar]
  55. Sun Q, Knirel YA, Wang J, Luo X, Senchenkova SN et al. Serotype-converting bacteriophage SfII encodes an acyltransferase protein that mediates 6-O-acetylation of GlcNAc in Shigella flexneri O-antigens, conferring on the host a novel O-antigen epitope. J Bacteriol 2014; 196:3656–3666 [View Article] [PubMed]
    [Google Scholar]
  56. Perry LL, SanMiguel P, Minocha U, Terekhov AI, Shroyer ML et al. Sequence analysis of Escherichia coli O157:H7 bacteriophage PhiV10 and identification of a phage-encoded immunity protein that modifies the O157 antigen. FEMS Microbiol Lett 2009; 292:182–186 [View Article] [PubMed]
    [Google Scholar]
  57. Tikhe CV, Gissendanner CR, Husseneder C. Whole-genome sequence of the novel temperate Enterobacter bacteriophage tyrion, isolated from the gut of the Formosan subterranean termite. Genome Announc 2018; 6:839–856 [View Article] [PubMed]
    [Google Scholar]
  58. Zou CH, Knirel YA, Helbig JH, Zähringer U, Mintz CS. Molecular cloning and characterization of a locus responsible for O acetylation of the O polysaccharide of Legionella pneumophila serogroup 1 lipopolysaccharide. J Bacteriol 1999; 181:4137–4141 [View Article] [PubMed]
    [Google Scholar]
  59. Knirel YA, Rietschel ET, Marre R, Zähringer U. The structure of the O-specific chain of Legionella pneumophila serogroup 1 lipopolysaccharide. Eur J Biochem 1994; 221:239–245 [View Article] [PubMed]
    [Google Scholar]
  60. Kozak NA, Benson RF, Brown E, Alexander NT, Taylor TH et al. Distribution of lag-1 alleles and sequence-based types among Legionella pneumophila serogroup 1 clinical and environmental isolates in the United States. J Clin Microbiol 2009; 47:2525–2535 [View Article] [PubMed]
    [Google Scholar]
  61. Zähringer U, Knirel YA, Lindner B, Helbig JH, Sonesson A et al. The lipopolysaccharide of Legionella pneumophila serogroup 1 (strain Philadelphia 1): chemical structure and biological significance. Prog Clin Biol Res 1995; 392:113–139 [PubMed]
    [Google Scholar]
  62. Lück PC, Freier T, Steudel C, Knirel YA, Lüneberg E et al. A point mutation in the active site of Legionella pneumophila O-acetyltransferase results in modified lipopolysaccharide but does not influence virulence. Int J Med Microbiol 2001; 291:345–352 [View Article] [PubMed]
    [Google Scholar]
  63. Brett PJ, Burtnick MN, Heiss C, Azadi P, DeShazer D et al. Burkholderia thailandensis oacA mutants facilitate the expression of Burkholderia mallei-like O polysaccharides. Infect Immun 2011; 79:961–969 [View Article] [PubMed]
    [Google Scholar]
  64. Brett PJ, Burtnick MN, Woods DE. The wbiA locus is required for the 2-O-acetylation of lipopolysaccharides expressed by Burkholderia pseudomallei and Burkholderia thailandensis . FEMS Microbiol Lett 2003; 218:323–328 [View Article] [PubMed]
    [Google Scholar]
  65. Kupferschmied P, Chai T, Flury P, Blom J, Smits THM et al. Specific surface glycan decorations enable antimicrobial peptide resistance in plant-beneficial pseudomonads with insect-pathogenic properties. Environ Microbiol 2016; 18:4265–4281 [View Article] [PubMed]
    [Google Scholar]
  66. Li E, Zhang H, Jiang H, Pieterse CMJ, Jousset A et al. Experimental-evolution-driven identification of Arabidopsis rhizosphere competence genes in Pseudomonas protegens . mBio 2021; 12:e0092721 [View Article] [PubMed]
    [Google Scholar]
  67. Jacques M. Role of lipo-oligosaccharides and lipopolysaccharides in bacterial adherence. Trends Microbiol 1996; 4:408–409 [View Article] [PubMed]
    [Google Scholar]
  68. Preston A, Mandrell RE, Gibson BW, Apicella MA. The lipooligosaccharides of pathogenic Gram-negative bacteria. Crit Rev Microbiol 1996; 22:139–180 [View Article] [PubMed]
    [Google Scholar]
  69. Brandtzaeg P, Bjerre A, Øvstebø R, Brusletto B, Joø GB et al. Neisseria meningitidis lipopolysaccharides in human pathology. J Endotoxin Res 2001; 7:401–420 [View Article] [PubMed]
    [Google Scholar]
  70. Kimura A, Patrick CC, Miller EE, Cope LD, McCracken GH Jr et al. Haemophilus influenzae type b lipooligosaccharide: stability of expression and association with virulence. Infect Immun 1987; 55:1979–1986 [View Article] [PubMed]
    [Google Scholar]
  71. Patrone JB, Stein DC. Effect of gonococcal lipooligosaccharide variation on human monocytic cytokine profile. BMC Microbiol 2007; 7:7 [View Article] [PubMed]
    [Google Scholar]
  72. Zhu P, Klutch MJ, Tsai C-M. Genetic analysis of conservation and variation of lipooligosaccharide expression in two L8-immunotype strains of Neisseria meningitidis . FEMS Microbiol Lett 2001; 203:173–177 [View Article] [PubMed]
    [Google Scholar]
  73. Fox KL, Yildirim HH, Deadman ME, Schweda EKH, Moxon ER et al. Novel lipopolysaccharide biosynthetic genes containing tetranucleotide repeats in Haemophilus influenzae, identification of a gene for adding O-acetyl groups. Mol Microbiol 2005; 58:207–216 [View Article] [PubMed]
    [Google Scholar]
  74. Fox KL, Atack JM, Srikhanta YN, Eckert A, Novotny LA et al. Selection for phase variation of LOS biosynthetic genes frequently occurs in progression of non-typeable Haemophilus influenzae infection from the nasopharynx to the middle ear of human patients. PLoS One 2014; 9:e90505 [View Article] [PubMed]
    [Google Scholar]
  75. Phillips ZN, Brizuela C, Jennison AV, Staples M, Grimwood K et al. Analysis of invasive nontypeable Haemophilus influenzae isolates reveals selection for the expression state of particular phase-variable lipooligosaccharide biosynthetic genes. Infect Immun 2019; 87:e00093-19 [View Article] [PubMed]
    [Google Scholar]
  76. Kahler CM, Lyons-Schindler S, Choudhury B, Glushka J, Carlson RW et al. O-Acetylation of the terminal N-acetylglucosamine of the lipooligosaccharide inner core in Neisseria meningitidis. Influence on inner core structure and assembly. J Biol Chem 2006; 281:19939–19948 [View Article] [PubMed]
    [Google Scholar]
  77. Kahler CM, Stephens DS. Genetic basis for biosynthesis, structure, and function of meningococcal lipooligosaccharide (endotoxin). Crit Rev Microbiol 1998; 24:281–334 [View Article] [PubMed]
    [Google Scholar]
  78. van Deuren M, Brandtzaeg P, van der Meer JW. Update on meningococcal disease with emphasis on pathogenesis and clinical management. Clin Microbiol Rev 2000; 13:144–166 [View Article] [PubMed]
    [Google Scholar]
  79. Jennings HJ, Lugowski C, Ashton FE. Conjugation of meningococcal lipopolysaccharide R-type oligosaccharides to tetanus toxoid as route to a potential vaccine against group B Neisseria meningitidis . Infect Immun 1984; 43:407–412 [View Article] [PubMed]
    [Google Scholar]
  80. Yamaryo-Botte Y, Rainczuk AK, Lea-Smith DJ, Brammananth R, van der Peet PL et al. Acetylation of trehalose mycolates is required for efficient MmpL-mediated membrane transport in Corynebacterineae . ACS Chem Biol 2015; 10:734–746 [View Article] [PubMed]
    [Google Scholar]
  81. Rainczuk AK, Klatt S, Yamaryo-Botté Y, Brammananth R, McConville MJ et al. MtrP, a putative methyltransferase in Corynebacteria, is required for optimal membrane transport of trehalose mycolates. J Biol Chem 2020; 295:6108–6119 [View Article] [PubMed]
    [Google Scholar]
  82. Sassetti CM, Boyd DH, Rubin EJ. Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 2003; 48:77–84 [View Article] [PubMed]
    [Google Scholar]
  83. Takayama K, Armstrong EL. Isolation, characterization, and function of 6-mycolyl-6’-acetyltrehalose in the H37Ra strain of Myocobacterium tuberculosis . Biochemistry 1976; 15:441–447 [View Article]
    [Google Scholar]
  84. Davis CP. Normal Flora. In Baron S. eds Medical Microbiology, 4th edn. University of Texas Medical Branch at Galveston; 1996 [View Article]
    [Google Scholar]
  85. Wen Z. Bacterial Capsules. In Molecular Medical Microbiology, 2nd ed. Academic Press; 2014 pp 33–53
    [Google Scholar]
  86. Sørensen UBS, Henrichsen J, Chen H-C, Szu SC. Covalent linkage between the capsular polysaccharide and the cell wall peptidoglycan of Streptococcus pneumoniae revealed by immunochemical methods. Microb Pathog 1990; 8:325–334 [View Article]
    [Google Scholar]
  87. Jann K, Jann B. Bacterial capsules. In The Role of Bacterial Polysaccharide Capsules as Virulence Factors Berlin, Heidelberg: Springer; 1990 pp 65–85 [View Article]
    [Google Scholar]
  88. Roberts IS. The biochemistry and genetics of capsular polysaccharide production in bacteria. Annu Rev Microbiol 1996; 50:285–315 [View Article]
    [Google Scholar]
  89. Tipton KA, Chin C-Y, Farokhyfar M, Weiss DS, Rather PN. Role of capsule in resistance to disinfectants, host antimicrobials, and desiccation in Acinetobacter baumannii . Antimicrob Agents Chemother 2018; 62:e01188-18 [View Article]
    [Google Scholar]
  90. Berical AC, Harris D, Dela Cruz CS, Possick JD. Pneumococcal vaccination strategies. An update and perspective. Ann Am Thorac Soc 2016; 13:933–944 [View Article]
    [Google Scholar]
  91. Peltola H, Mäkelä H, Käyhty H, Jousimies H, Herva E et al. Clinical efficacy of meningococcus group A capsular polysaccharide vaccine in children three months to five years of age. N Engl J Med 1977; 297:686–691 [View Article] [PubMed]
    [Google Scholar]
  92. Thiem VD, Lin F-YC, Canh DG, Son NH, Anh DD et al. The Vi conjugate typhoid vaccine is safe, elicits protective levels of IgG anti-Vi, and is compatible with routine infant vaccines. Clin Vaccine Immunol 2011; 18:730–735 [View Article] [PubMed]
    [Google Scholar]
  93. Yogev R, Arditi M, Chadwick EG, Amer MD, Sroka PA. Haemophilus influenzae type b conjugate vaccine (meningococcal protein conjugate): immunogenicity and safety at various doses. Pediatrics 1990; 85:690–693 [PubMed]
    [Google Scholar]
  94. Calix JJ, Nahm MH. A new pneumococcal serotype, 11E, has a variably inactivated wcjE gene. J Infect Dis 2010; 202:29–38 [View Article] [PubMed]
    [Google Scholar]
  95. Calix JJ, Saad JS, Brady AM, Nahm MH. Structural characterization of Streptococcus pneumoniae serotype 9A capsule polysaccharide reveals role of glycosyl 6-O-acetyltransferase wcjE in serotype 9V capsule biosynthesis and immunogenicity. J Biol Chem 2012; 287:13996–14003 [View Article] [PubMed]
    [Google Scholar]
  96. Geno KA, Saad JS, Nahm MH. Discovery of novel pneumococcal serotype 35D, a natural WciG-deficient variant of serotype 35B. J Clin Microbiol 2017; 55:1416–1425 [View Article] [PubMed]
    [Google Scholar]
  97. Geno KA, Bush CA, Wang M, Jin C, Nahm MH et al. WciG O-Acetyltransferase functionality differentiates pneumococcal serotypes 35C and 42. J Clin Microbiol 2017; 55:2775–2784 [View Article] [PubMed]
    [Google Scholar]
  98. Spencer BL, Saad JS, Shenoy AT, Orihuela CJ, Nahm MH. Position of O-acetylation within the capsular repeat unit impacts the biological properties of pneumococcal serotypes 33A and 33F. Infect Immun 2017; 85:e00132-17 [View Article] [PubMed]
    [Google Scholar]
  99. Deszo EL, Steenbergen SM, Freedberg DI, Vimr ER. Escherichia coli K1 polysialic acid O-acetyltransferase gene, neuO, and the mechanism of capsule form variation involving a mobile contingency locus. Proc Natl Acad Sci U S A 2005; 102:5564–5569 [View Article] [PubMed]
    [Google Scholar]
  100. Lewis AL, Hensler ME, Varki A, Nizet V. The group B streptococcal sialic acid O-acetyltransferase is encoded by neuD, a conserved component of bacterial sialic acid biosynthetic gene clusters. J Biol Chem 2006; 281:11186–11192 [View Article] [PubMed]
    [Google Scholar]
  101. Rohde H, Frankenberger S, Zähringer U, Mack D. Structure, function and contribution of polysaccharide intercellular adhesin (PIA) to Staphylococcus epidermidis biofilm formation and pathogenesis of biomaterial-associated infections. Eur J Cell Biol 2010; 89:103–111 [View Article] [PubMed]
    [Google Scholar]
  102. von Eiff C, Peters G, Heilmann C. Pathogenesis of infections due to coagulase-negative staphylococci. Lancet Infect Dis 2002; 2:677–685 [View Article] [PubMed]
    [Google Scholar]
  103. Sadovskaya I, Vinogradov E, Flahaut S, Kogan G, Jabbouri SS. Extracellular carbohydrate-containing polymers of a model biofilm-producing strain, Staphylococcus epidermidis RP62A. Infect Immun 2005; 73:3007–3017 [View Article] [PubMed]
    [Google Scholar]
  104. Atkin KE, MacDonald SJ, Brentnall AS, Potts JR, Thomas GH. A different path: revealing the function of staphylococcal proteins in biofilm formation. FEBS Lett 2014; 588:1869–1872 [View Article] [PubMed]
    [Google Scholar]
  105. Heilmann C, Schweitzer O, Gerke C, Vanittanakom N, Mack D et al. Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis . Mol Microbiol 1996; 20:1083–1091 [View Article] [PubMed]
    [Google Scholar]
  106. Jansson PE, Kenne L, Lindberg B. Structure of extracellular polysaccharide from Xanthomonas campestris . Carbohydr Res 1975; 45:275–282 [View Article] [PubMed]
    [Google Scholar]
  107. Katzen F, Ferreiro DU, Oddo CG, Ielmini MV, Becker A et al. Xanthomonas campestris pv. campestris gum mutants: effects on xanthan biosynthesis and plant virulence. J Bacteriol 1998; 180:1607–1617 [View Article] [PubMed]
    [Google Scholar]
  108. Hassler RA, Doherty DH. Genetic engineering of polysaccharide structure: production of variants of xanthan gum in Xanthomonas campestris . Biotechnol Prog 1990; 6:182–187 [View Article] [PubMed]
    [Google Scholar]
  109. Lopes L, Andrade CT, Milas M, Rinaudo M. Role of conformation and acetylation of xanthan on xanthan–guar interaction. Carbohydr Polym 1992; 17:121–126 [View Article]
    [Google Scholar]
  110. Leigh JA, Signer ER, Walker GC. Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules. Proc Natl Acad Sci U S A 1985; 82:6231–6235 [View Article] [PubMed]
    [Google Scholar]
  111. Reinhold BB, Chan SY, Reuber TL, Marra A, Walker GC et al. Detailed structural characterization of succinoglycan, the major exopolysaccharide of Rhizobium meliloti Rm1021. J Bacteriol 1994; 176:1997–2002 [View Article]
    [Google Scholar]
  112. Leigh JA, Reed JW, Hanks JF, Hirsch AM, Walker GC. Rhizobium meliloti mutants that fail to succinylate their calcofluor-binding exopolysaccharide are defective in nodule invasion. Cell 1987; 51:579–587 [View Article]
    [Google Scholar]
  113. Buendia AM, Enenkel B, Köplin R, Niehaus K, Arnold W et al. The Rhizobium meliloti exozl exob fragment of megaplasmid 2: ExoB functions as a UDP-glucose 4-epimerase and ExoZ shows homology to NodX of Rhizobium leguminosarum biovar viciae strain TOM. Mol Microbiol 1991; 5:1519–1530 [View Article]
    [Google Scholar]
  114. Reuber TL, Walker GC. The acetyl substituent of succinoglycan is not necessary for alfalfa nodule invasion by Rhizobium meliloti Rm1021. J Bacteriol 1993; 175:3653–3655 [View Article]
    [Google Scholar]
  115. Becker A, Kleickmann A, Arnold W, Pühler A. Analysis of the rhizobium meliloti exoh/exok/exol fragment: exok shows homology to excreted endo-β-1,3-1,4-glucanases and exoh resembles membrane proteins. MGG Mol Gen Genet 1993; 238:145–154
    [Google Scholar]
  116. Mendis HC, Madzima TF, Queiroux C, Jones KM. Function of succinoglycan polysaccharide in Sinorhizobium meliloti host plant invasion depends on succinylation, not molecular weight. mBio 2016; 7:e00606-16 [View Article] [PubMed]
    [Google Scholar]
  117. Whitfield GB, Marmont LS, Howell PL. Enzymatic modifications of exopolysaccharides enhance bacterial persistence. Front Microbiol 2015; 6:471 [View Article] [PubMed]
    [Google Scholar]
  118. Spiers AJ, Bohannon J, Gehrig SM, Rainey PB. Biofilm formation at the air–liquid interface by the Pseudomonas fluorescens SBW25 wrinkly spreader requires an acetylated form of cellulose. Mol Microbiol 2003; 50:15–27 [View Article] [PubMed]
    [Google Scholar]
  119. Dertli E, Mayer MJ, Colquhoun IJ, Narbad A. EpsA is an essential gene in exopolysaccharide production in Lactobacillus johnsonii FI9785. Microb Biotechnol 2016; 9:496–501 [View Article] [PubMed]
    [Google Scholar]
  120. Höltje JV. Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli . Microbiol Mol Biol Rev 1998; 62:181–203 [View Article] [PubMed]
    [Google Scholar]
  121. Vollmer W, Blanot D, de Pedro MA. Peptidoglycan structure and architecture. FEMS Microbiol Rev 2008; 32:149–167 [View Article] [PubMed]
    [Google Scholar]
  122. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477 [View Article] [PubMed]
    [Google Scholar]
  123. Vollmer W. Structural variation in the glycan strands of bacterial peptidoglycan. FEMS Microbiol Rev 2008; 32:287–306 [View Article] [PubMed]
    [Google Scholar]
  124. Crisóstomo MI, Vollmer W, Kharat AS, Inhülsen S, Gehre F et al. Attenuation of penicillin resistance in a peptidoglycan O-acetyl transferase mutant of Streptococcus pneumoniae . Mol Microbiol 2006; 61:1497–1509 [View Article] [PubMed]
    [Google Scholar]
  125. Aubry C, Goulard C, Nahori M-A, Cayet N, Decalf J et al. OatA, a peptidoglycan O-acetyltransferase involved in Listeria monocytogenes immune escape, is critical for virulence. J Infect Dis 2011; 204:731–740 [View Article] [PubMed]
    [Google Scholar]
  126. Veiga P, Bulbarela-Sampieri C, Furlan S, Maisons A, Chapot-Chartier M-P et al. SpxB regulates O-acetylation-dependent resistance of Lactococcus lactis peptidoglycan to hydrolysis. J Biol Chem 2007; 282:19342–19354 [View Article] [PubMed]
    [Google Scholar]
  127. Bernard E, Rolain T, Courtin P, Guillot A, Langella P et al. Characterization of O-acetylation of N-acetylglucosamine: a novel structural variation of bacterial peptidoglycan. J Biol Chem 2011; 286:23950–23958 [View Article] [PubMed]
    [Google Scholar]
  128. Wang G, Lo LF, Forsberg LS, Maier RJ. Helicobacter pylori peptidoglycan modifications confer lysozyme resistance and contribute to survival in the host. mBio 2012; 3:e00409–12 [View Article] [PubMed]
    [Google Scholar]
  129. Moynihan PJ, Clarke AJ. O-Acetylated peptidoglycan: controlling the activity of bacterial autolysins and lytic enzymes of innate immune systems. Int J Biochem Cell Biol 2011; 43:1655–1659 [View Article] [PubMed]
    [Google Scholar]
  130. Lunderberg JM, Nguyen-Mau S-M, Richter GS, Wang Y-T, Dworkin J et al. Bacillus anthracis acetyltransferases PatA1 and PatA2 modify the secondary cell wall polysaccharide and affect the assembly of S-layer proteins. J Bacteriol 2013; 195:977–989 [View Article] [PubMed]
    [Google Scholar]
  131. Bohin J-P. Osmoregulated periplasmic glucans in Proteobacteria . FEMS Microbiol Lett 2000; 186:11–19 [View Article] [PubMed]
    [Google Scholar]
  132. Page F, Altabe S, Hugouvieux-Cotte-Pattat N, Lacroix JM, Robert-Baudouy J et al. Osmoregulated periplasmic glucan synthesis is required for Erwinia chrysanthemi pathogenicity. J Bacteriol 2001; 183:3134–3141 [View Article] [PubMed]
    [Google Scholar]
  133. Bhagwat AA, Jun W, Liu L, Kannan P, Dharne M et al. Osmoregulated periplasmic glucans of Salmonella enterica serovar Typhimurium are required for optimal virulence in mice. Microbiology 2009; 155:229–237 [View Article] [PubMed]
    [Google Scholar]
  134. Cogez V, Gak E, Puskas A, Kaplan S, Bohin JP. The opggih and opgc genes of Rhodobacter sphaeroides form an operon that controls backbone synthesis and succinylation of osmoregulated periplasmic glucans. Eur J Biochem 2002; 269:2473–2484 [View Article]
    [Google Scholar]
  135. Roset MS, Ciocchini AE, Ugalde RA, Iñón de Iannino N. The Brucella abortus cyclic β-1,2-glucan virulence factor is substituted with O-ester-linked succinyl residues. J Bacteriol 2006; 188:5003–5013 [View Article] [PubMed]
    [Google Scholar]
  136. Bontemps-Gallo S, Madec E, Robbe-Masselot C, Souche E, Dondeyne J et al. The opgC gene is required for OPGs succinylation and is osmoregulated through RcsCDB and EnvZ/OmpR in the phytopathogen Dickeya dadantii . Sci Rep 2016; 6:19619 [View Article] [PubMed]
    [Google Scholar]
  137. Kunin CM. Separation, characterization, and biological significance of a common antigen in enterobacteriaceae. J Exp Med 1963; 118:565–586 [View Article] [PubMed]
    [Google Scholar]
  138. Rai AK, Mitchell AM. Enterobacterial common antigen: synthesis and function of an enigmatic molecule. mBio 2020; 11:1–19 [View Article] [PubMed]
    [Google Scholar]
  139. Kuhn HM, Neter E, Mayer H. Modification of the lipid moiety of the enterobacterial common antigen by the “Pseudomonas factor.”. Infect Immun 1983; 40:696–700 [View Article] [PubMed]
    [Google Scholar]
  140. Kajimura J, Rahman A, Rick PD. Assembly of cyclic enterobacterial common antigen in Escherichia coli K-12. J Bacteriol 2005; 187:6917–6927 [View Article] [PubMed]
    [Google Scholar]
  141. Kuhn HM, Meier-Dieter U, Mayer H. ECA, the enterobacterial common antigen. FEMS Microbiol Rev 1988; 4:195–222 [View Article] [PubMed]
    [Google Scholar]
  142. Lugowski C, Romanowska E, Kenne L, Lindberg B. Identification of a trisaccharide repeating-unit in the enterobacterial common-antigen. Carbohydrate Research 1983; 118:173–181 [View Article]
    [Google Scholar]
  143. Kajimura J, Rahman A, Hsu J, Evans MR, Gardner KH et al. O acetylation of the enterobacterial common antigen polysaccharide is catalyzed by the product of the yiaH gene of Escherichia coli K-12. J Bacteriol 2006; 188:7542–7550 [View Article] [PubMed]
    [Google Scholar]
  144. Ramos-Morales F, Prieto AI, Beuzón CR, Holden DW, Casadesús J. Role for Salmonella enterica enterobacterial common antigen in bile resistance and virulence. J Bacteriol 2003; 185:5328–5332 [View Article] [PubMed]
    [Google Scholar]
  145. Mitchell AM, Srikumar T, Silhavy TJ. Cyclic enterobacterial common antigen maintains the outer membrane permeability barrier of Escherichia coli in a manner controlled by YhdP. mBio 2018; 9:1–16 [View Article] [PubMed]
    [Google Scholar]
  146. Geurts R, Bisseling T. Rhizobium nod factor perception and signalling. Plant Cell 2002; 14 Suppl:S239–49 [View Article]
    [Google Scholar]
  147. Dénarié J, Debellé F, Promé J-C. Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem 1996; 65:503–535 [View Article] [PubMed]
    [Google Scholar]
  148. Wais RJ, Keating DH. Structure–function analysis of nod factor-induced root hair calcium spiking in Rhizobium–legume symbiosis. Plant Physiol 2002; 129:211–224 [View Article] [PubMed]
    [Google Scholar]
  149. Firmin JL, Wilson KE, Carlson RW, Davies AE, Downie JA. Resistance to nodulation of cv. Afghanistan peas is overcome by nodX, which mediates an O-acetylation of the Rhizobium leguminosarum lipo-oligosaccharide nodulation factor. Mol Microbiol 1993; 10:351–360 [View Article] [PubMed]
    [Google Scholar]
  150. Geurts R, Heidstra R, Hadri AE, Downie JA, Franssen H et al. Sym2 of pea Is involved in a nodulation factor-perception mechanism that controls the infection process in the epidermis. Plant Physiol 1997; 115:351–359 [View Article] [PubMed]
    [Google Scholar]
  151. Pacios Bras C, Jordá MA, Wijfjes AH, Harteveld M, Stuurman N et al. A Lotus japonicus nodulation system based on heterologous expression of the fucosyl transferase nodz and the acetyl transferase noil in Rhizobium leguminosarum . Mol Plant Microbe Interact 2000; 13:475–479 [View Article]
    [Google Scholar]
  152. Ōmura S. Macrolide Antibiotics: Chemistry, Biology, and Practice Academic Press; 2002
    [Google Scholar]
  153. Vázquez-Laslop N, Mankin AS. How macrolide antibiotics work. Trends Biochem Sci 2018; 43:668–684 [View Article]
    [Google Scholar]
  154. Vazquez D. Macrolide antibiotics — Spiramycin, Carbomycin, Angolamycin, Methymycin and Lancamycin. In Mechanism of Action Berlin, Heidelberg: Springer; 1967 pp 366–377
    [Google Scholar]
  155. Epp JK, Huber ML, Turner JR, Goodson T, Schoner BE. Production of a hybrid macrolide antibiotic in Streptomyces ambofaciens and Streptomyces lividans by introduction of a cloned carbomycin biosynthetic gene from Streptomyces thermotolerans . Gene 1989; 85:293–301 [View Article] [PubMed]
    [Google Scholar]
  156. Arisawa A, Kawamura N, Tsunekawa H, Okamura K, Tone H et al. Cloning and nucleotide sequences of two genes involved in the 4’’-O-acylation of macrolide antibiotics from Streptomyces thermotolerans . Biosci Biotechnol Biochem 1993; 57:2020–2025 [View Article] [PubMed]
    [Google Scholar]
  157. Arisawa A, Kawamura N, Takeda K, Tsunekawa H, Okamura K et al. Cloning of the macrolide antibiotic biosynthesis gene acyA, which encodes 3-O-acyltransferase, from Streptomyces thermotolerans and its use for direct fermentative production of a hybrid macrolide antibiotic. Appl Environ Microbiol 1994; 60:2657–2660 [View Article] [PubMed]
    [Google Scholar]
  158. Cong L, Piepersberg W. Cloning and characterization of genes encoded in dTDP-d-mycaminose biosynthetic pathway from a midecamycin-producing strain, Streptomyces mycarofaciens . Acta Biochim Biophys Sin (Shanghai) 2007; 39:187–193 [View Article] [PubMed]
    [Google Scholar]
  159. Menéndez N, Nur-e-Alam M, Braña AF, Rohr J, Salas JA et al. Biosynthesis of the antitumor chromomycin A3 in Streptomyces griseus: analysis of the gene cluster and rational design of novel chromomycin analogs. Chem Biol 2004; 11:21–32 [View Article] [PubMed]
    [Google Scholar]
  160. Menéndez N, Nur-E-Alam M, Braña AF, Rohr J, Salas JA et al. Tailoring modification of deoxysugars during biosynthesis of the antitumour drug chromomycin A by Streptomyces griseus ssp. griseus . Mol Microbiol 2004; 53:903–915 [View Article] [PubMed]
    [Google Scholar]
  161. García B, González-Sabín J, Menéndez N, Braña AF, Núñez LE et al. The chromomycin CmmA acetyltransferase: a membrane-bound enzyme as a tool for increasing structural diversity of the antitumour mithramycin. Microb Biotechnol 2011; 4:226–238 [View Article] [PubMed]
    [Google Scholar]
  162. Asai M, Mizuta E, Izawa M, Haibara K, Kishi T. Isolation, chemical characterization and structure of ansamitocin, a new antitumor ansamycin antibiotic. Tetrahedron 1979; 35:1079–1085 [View Article]
    [Google Scholar]
  163. Yu T-W, Bai L, Clade D, Hoffmann D, Toelzer S et al. The biosynthetic gene cluster of the maytansinoid antitumor agent ansamitocin from Actinosynnema pretiosum . Proc Natl Acad Sci U S A 2002; 99:7968–7973 [View Article] [PubMed]
    [Google Scholar]
  164. Moss SJ, Bai L, Toelzer S, Carroll BJ, Mahmud T et al. Identification of asm19 as an acyltransferase attaching the biologically essential ester side chain of ansamitocins using N-desmethyl-4,5-desepoxymaytansinol, not maytansinol, as its substrate. J Am Chem Soc 2002; 124:6544–6545 [View Article] [PubMed]
    [Google Scholar]
  165. Berne C, Ducret A, Hardy GG, Brun YV. Adhesins involved in attachment to abiotic surfaces by Gram-negative bacteria. Microbiol Spectr 2015; 3: [View Article] [PubMed]
    [Google Scholar]
  166. Martinez JJ, Mulvey MA, Schilling JD, Pinkner JS, Hultgren SJ. Type 1 pilus-mediated bacterial invasion of bladder epithelial cells. EMBO J 2000; 19:2803–2812 [View Article] [PubMed]
    [Google Scholar]
  167. Banerjee A, Ghosh SK. The role of pilin glycan in neisserial pathogenesis. Mol Cell Biochem 2003; 253:179–190 [View Article] [PubMed]
    [Google Scholar]
  168. Warren MJ, Roddam LF, Power PM, Terry TD, Jennings MP. Analysis of the role of pglI in pilin glycosylation of Neisseria meningitidis . FEMS Immunol Med Microbiol 2004; 41:43–50 [View Article] [PubMed]
    [Google Scholar]
  169. Stimson E, Virji M, Makepeace K, Dell A, Morris HR et al. Meningococcal pilin: a glycoprotein substituted with digalactosyl 2,4-diacetamido-2,4,6-trideoxyhexose. Mol Microbiol 1995; 17:1201–1214 [View Article] [PubMed]
    [Google Scholar]
  170. Aas FE, Vik A, Vedde J, Koomey M, Egge-Jacobsen W. Neisseria gonorrhoeae O-linked pilin glycosylation: functional analyses define both the biosynthetic pathway and glycan structure. Mol Microbiol 2007; 65:607–624 [View Article] [PubMed]
    [Google Scholar]
  171. Anonsen JH, Børud B, Vik Å, Viburiene R, Koomey M. Structural and genetic analyses of glycan O-acetylation in a bacterial protein glycosylation system: evidence for differential effects on glycan chain length. Glycobiology 2017; 27:888–899 [View Article] [PubMed]
    [Google Scholar]
  172. Reynolds PE, Courvalin P. Vancomycin resistance in enterococci due to synthesis of precursors terminating in d-alanyl-d-serine. Antimicrob Agents Chemother 2005; 49:21–25 [View Article] [PubMed]
    [Google Scholar]
  173. Meziane-Cherif D, Stogios PJ, Evdokimova E, Egorova O, Savchenko A et al. Structural and functional adaptation of vancomycin resistance VanT serine racemases. mBio 2015; 6:1–10 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001146
Loading
/content/journal/micro/10.1099/mic.0.001146
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error