1887

Abstract

The polymyxin and lipopeptide classes of antibiotics are membrane-targeting drugs of last resort used to treat infections caused by multi-drug-resistant pathogens. Despite similar structures, these two antibiotic classes have distinct modes of action and clinical uses. The polymyxins target lipopolysaccharide in the membranes of most Gram-negative species and are often used to treat infections caused by carbapenem-resistant species such as , and . By contrast, the lipopeptide daptomycin requires membrane phosphatidylglycerol for activity and is only used to treat infections caused by drug-resistant Gram-positive bacteria such as methicillin-resistant and vancomycin-resistant enterococci. However, despite having distinct targets, both antibiotic classes cause membrane disruption, are potently bactericidal and share similarities in resistance mechanisms. Furthermore, there are concerns about the efficacy of these antibiotics, and there is increasing interest in using both polymyxins and daptomycin in combination therapies to improve patient outcomes. In this review article, we will explore what is known about these distinct but structurally similar classes of antibiotics, discuss recent advances in the field and highlight remaining gaps in our knowledge.

Funding
This study was supported by the:
  • National Institute for Health Research (Award Imperial College BRC)
    • Principle Award Recipient: NotApplicable
  • Rosetrees Trust
    • Principle Award Recipient: AndrewM. Edwards
  • Medical Research Council (Award MR/N014103/1)
    • Principle Award Recipient: AkshaySabnis
  • Wellcome Trust (Award 203812/Z/16/Z)
    • Principle Award Recipient: ElizabethV. K. Ledger
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001136
2022-02-04
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/168/2/mic001136.html?itemId=/content/journal/micro/10.1099/mic.0.001136&mimeType=html&fmt=ahah

References

  1. Hamed K, Gonzalez-Ruiz A, Seaton A. Daptomycin: an evidence-based review of its role in the treatment of Gram-positive infections. IDR 2016; 9:47 [View Article] [PubMed]
    [Google Scholar]
  2. Xu P, Zeng H, Zhou M, Ouyang J, Chen B et al. Successful management of a complicated clinical crisis: A patient with left-sided endocarditis and secondary hemophagocytic lymphohistiocytosis: a rare case report and literature review. Medicine (Baltimore) 2017; 96:e9451 [View Article]
    [Google Scholar]
  3. Telles JP, Cieslinski J, Tuon FF. Daptomycin to bone and joint infections and prosthesis joint infections: a systematic review. The Brazilian Journal of Infectious Diseases 2019; 23:191–196 [View Article]
    [Google Scholar]
  4. Silverman JA, Mortin LI, Vanpraagh ADG, Li T, Alder J. Inhibition of daptomycin by pulmonary surfactant: in vitro modeling and clinical impact. J Infect Dis 2005; 191:2149–2152 [View Article]
    [Google Scholar]
  5. Byren I, Rege S, Campanaro E, Yankelev S, Anastasiou D et al. Randomized controlled trial of the safety and efficacy of daptomycin versus standard-of-care therapy for management of patients with osteomyelitis associated with prosthetic devices undergoing two-stage revision arthroplasty. Antimicrob Agents Chemother 2012; 56:5626–5632 [View Article] [PubMed]
    [Google Scholar]
  6. Seaton RA, Gonzalez-Ruiz A, Cleveland KO, Couch KA, Pathan R et al. Real-world daptomycin use across wide geographical regions: results from a pooled analysis of CORE and EU-CORE. Ann Clin Microbiol Antimicrob 2016; 15:1–11 [View Article] [PubMed]
    [Google Scholar]
  7. Arbeit RD, Maki D, Tally FP, Campanaro E, Eisenstein BI et al. The safety and efficacy of daptomycin for the treatment of complicated skin and skin-structure infections. Clin Infect Dis 2004; 38:1673–1681 [View Article] [PubMed]
    [Google Scholar]
  8. Seaton RA, Menichetti F, Dalekos G, Beiras-Fernandez A, Nacinovich F et al. Evaluation of Effectiveness and Safety of High-Dose Daptomycin: Results from Patients Included in the European Cubicin(®) Outcomes Registry and Experience. Adv Ther 2015; 32:1192–1205 [View Article] [PubMed]
    [Google Scholar]
  9. Sánchez García M. Early antibiotic treatment failure. Int J Antimicrob Agents 2009; 34 Suppl 3:S14–9 [View Article] [PubMed]
    [Google Scholar]
  10. Rybak MJ. The efficacy and safety of daptomycin: first in a new class of antibiotics for Gram-positive bacteria. Clin Microbiol Infect 2006; 12 Suppl 1:24–32 [View Article] [PubMed]
    [Google Scholar]
  11. Klein EY, Van Boeckel TP, Martinez EM, Pant S, Gandra S et al. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc Natl Acad Sci USA 2018; 115:E3463–E3470 [View Article] [PubMed]
    [Google Scholar]
  12. Falagas ME, Kasiakou SK, Tsiodras S, Michalopoulos A. The use of intravenous and aerosolized polymyxins for the treatment of infections in critically ill patients: A review of the recent literature. Clinical Medicine & Research 2006; 4:138–146 [View Article] [PubMed]
    [Google Scholar]
  13. Paul M, Daikos GL, Durante-Mangoni E, Yahav D, Carmeli Y et al. Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant Gram-negative bacteria: an open-label, randomised controlled trial. The Lancet Infectious Diseases 2018; 18:391–400 [View Article] [PubMed]
    [Google Scholar]
  14. Phe K, Lee Y, McDaneld PM, Prasad N, Yin T et al. In vitro assessment and multicenter cohort study of comparative nephrotoxicity rates associated with colistimethate versus polymyxin B therapy. Antimicrobial Agents and Chemotherapy 2014; 58:2740–2746 [View Article] [PubMed]
    [Google Scholar]
  15. Falagas ME, Kasiakou SK. Toxicity of polymyxins: A systematic review of the evidence from old and recent studies. Crit Care 2006; 10:R27 [View Article] [PubMed]
    [Google Scholar]
  16. Marchand S, Grégoire N, Couet W. Pharmacokinetics of polymyxins in animals. Adv Exp Med Biol 2019; 1145:89–103 [View Article] [PubMed]
    [Google Scholar]
  17. Manchandani P, Zhou J, Ledesma KR, Truong LD, Chow DS-L et al. Characterization of polymyxin B biodistribution and disposition in an animal model. Antimicrob Agents Chemother 2016; 60:1029–1034 [View Article] [PubMed]
    [Google Scholar]
  18. Wagenlehner F, Lucenteforte E, Pea F, Soriano A, Tavoschi L et al. Systematic review on estimated rates of nephrotoxicity and neurotoxicity in patients treated with polymyxins. Clin Microbiol Infect 202130764–3 [View Article] [PubMed]
    [Google Scholar]
  19. Tran TB, Velkov T, Nation RL, Forrest A, Tsuji BT et al. Pharmacokinetics/pharmacodynamics of colistin and polymyxin B: are we there yet?. Int J Antimicrob Agents 2016; 48:592–597 [View Article] [PubMed]
    [Google Scholar]
  20. Satlin MJ, Lewis JS, Weinstein MP, Patel J, Humphries RM et al. Clinical and Laboratory Standards Institute and European Committee on Antimicrobial Susceptibility Testing Position Statements on Polymyxin B and Colistin Clinical Breakpoints. Clin Infect Dis 2020; 71:e523–e529 [View Article] [PubMed]
    [Google Scholar]
  21. Soman R, Bakthavatchalam YD, Nadarajan A, Dwarakanathan HT, Venkatasubramanian R et al. Is it time to move away from polymyxins?: evidence and alternatives. Eur J Clin Microbiol Infect Dis 2021; 40:461–475 [View Article] [PubMed]
    [Google Scholar]
  22. Eisenstein BI, Oleson FB, Baltz RH. Daptomycin: from the mountain to the clinic, with essential help from Francis Tally, MD. Clin Infect Dis 2010; 50 Suppl 1:S10–5 [View Article] [PubMed]
    [Google Scholar]
  23. Taylor SD, Palmer M. The action mechanism of daptomycin. Bioorg Med Chem 2016; 24:6253–6268 [View Article] [PubMed]
    [Google Scholar]
  24. Silverman JA, Perlmutter NG, Shapiro HM. Correlation of daptomycin bactericidal activity and membrane depolarization in Staphylococcus aureus. Antimicrob Agents Chemother 2003; 47:2538–2544 [View Article] [PubMed]
    [Google Scholar]
  25. Ainsworth GC, Brown AM, Brownlee G. Aerosporin, an antibiotic produced by Bacillus aerosporus Greer. Nature 1947; 159:263 [View Article] [PubMed]
    [Google Scholar]
  26. Tambadou F, Caradec T, Gagez A-L, Bonnet A, Sopéna V et al. Characterization of the colistin (polymyxin E1 and E2) biosynthetic gene cluster. Arch Microbiol 2015; 197:521–532 [View Article] [PubMed]
    [Google Scholar]
  27. Choi S-K, Park S-Y, Kim R, Kim S-B, Lee C-H et al. Identification of a polymyxin synthetase gene cluster of Paenibacillus polymyxa and heterologous expression of the gene in Bacillus subtilis . J Bacteriol 2009; 191:3350–3358 [View Article] [PubMed]
    [Google Scholar]
  28. Velkov T, Thompson PE, Nation RL, Li J. Structure--activity relationships of polymyxin antibiotics. J Med Chem 2010; 53:1898–1916 [View Article] [PubMed]
    [Google Scholar]
  29. Li J, Guan D, Chen F, Shi W, Lan L et al. Total and Semisyntheses of Polymyxin Analogues with 2-Thr or 10-Thr Modifications to Decipher the Structure-Activity Relationship and Improve the Antibacterial Activity. J Med Chem 2021; 64:5746–5765 [View Article] [PubMed]
    [Google Scholar]
  30. Guest RL, Rutherford ST, Silhavy TJ. Border control: regulating LPS biogenesis. Trends Microbiol 2021; 29:334–345 [View Article] [PubMed]
    [Google Scholar]
  31. Khadka NK, Aryal CM, Pan J. Lipopolysaccharide-dependent membrane permeation and lipid clustering caused by cyclic lipopeptide colistin. ACS Omega 2018; 3:17828–17834 [View Article] [PubMed]
    [Google Scholar]
  32. Srimal S, Surolia N, Balasubramanian S, Surolia A. Titration calorimetric studies to elucidate the specificity of the interactions of polymyxin B with lipopolysaccharides and lipid A. Biochem J 1996; 315 (Pt 2):679–686 [View Article] [PubMed]
    [Google Scholar]
  33. Pristovsek P, Kidric J. Solution structure of polymyxins B and E and effect of binding to lipopolysaccharide: an NMR and molecular modeling study. J Med Chem 1999; 42:4604–4613 [View Article] [PubMed]
    [Google Scholar]
  34. Moore RA, Bates NC, Hancock RE. Interaction of polycationic antibiotics with Pseudomonas aeruginosa lipopolysaccharide and lipid A studied by using dansyl-polymyxin. Antimicrob Agents Chemother 1986; 29:496–500 [View Article] [PubMed]
    [Google Scholar]
  35. Wu M, Maier E, Benz R, Hancock REW. Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli . Biochemistry 1999; 38:7235–7242 [View Article] [PubMed]
    [Google Scholar]
  36. Hancock REW, Chapple DS. Peptide antibiotics. Antimicrob Agents Chemother 1999; 43:1317–1323 [View Article] [PubMed]
    [Google Scholar]
  37. Sabnis A, Hagart KL, Klöckner A, Becce M, Evans LE et al. Colistin kills bacteria by targeting lipopolysaccharide in the cytoplasmic membrane. Elife 2021; 10:e65836 [View Article] [PubMed]
    [Google Scholar]
  38. Humphrey M, Larrouy-Maumus GJ, Furniss RCD, Mavridou DAI, Sabnis A et al. Colistin resistance in Escherichia coli confers protection of the cytoplasmic but not outer membrane from the polymyxin antibiotic. Microbiology (Reading) 2021; 167: [View Article] [PubMed]
    [Google Scholar]
  39. Moffatt JH, Harper M, Harrison P, Hale JDF, Vinogradov E et al. Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob Agents Chemother 2010; 54:4971–4977 [View Article] [PubMed]
    [Google Scholar]
  40. Dixon RA, Chopra I. Polymyxin B and polymyxin B nonapeptide alter cytoplasmic membrane permeability in Escherichia coli. J Antimicrob Chemother 1986; 18:557–563 [View Article] [PubMed]
    [Google Scholar]
  41. Dixon RA, Chopra I. Leakage of periplasmic proteins from Escherichia coli mediated by polymyxin B nonapeptide. Antimicrob Agents Chemother 1986; 29:781–788 [View Article] [PubMed]
    [Google Scholar]
  42. Clausell A, Rabanal F, Garcia-Subirats M, Asunción Alsina M, Cajal Y. Membrane association and contact formation by a synthetic analogue of polymyxin B and its fluorescent derivatives. J Phys Chem B 2006; 110:4465–4471 [View Article] [PubMed]
    [Google Scholar]
  43. Cajal Y, Rogers J, Berg OG, Jain MK. Intermembrane molecular contacts by polymyxin B mediate exchange of phospholipids. Biochemistry 1996; 35:299–308 [View Article] [PubMed]
    [Google Scholar]
  44. Mohapatra SS, Dwibedy SK, Padhy I. Polymyxins, the last-resort antibiotics: Mode of action, resistance emergence, and potential solutions. J Biosci 2021; 46:85 [PubMed]
    [Google Scholar]
  45. Deris ZZ, Akter J, Sivanesan S, Roberts KD, Thompson PE et al. A secondary mode of action of polymyxins against Gram-negative bacteria involves the inhibition of NADH-quinone oxidoreductase activity. J Antibiot (Tokyo) 2014; 67:147–151 [View Article] [PubMed]
    [Google Scholar]
  46. Sampson TR, Liu X, Schroeder MR, Kraft CS, Burd EM et al. Rapid killing of Acinetobacter baumannii by polymyxins is mediated by a hydroxyl radical death pathway. Antimicrob Agents Chemother 2012; 56:5642–5649 [View Article] [PubMed]
    [Google Scholar]
  47. Brochmann RP, Toft A, Ciofu O, Briales A, Kolpen M et al. Bactericidal effect of colistin on planktonic Pseudomonas aeruginosa is independent of hydroxyl radical formation. Int J Antimicrob Agents 2014; 43:140–147 [View Article] [PubMed]
    [Google Scholar]
  48. McCoy LS, Roberts KD, Nation RL, Thompson PE, Velkov T et al. Polymyxins and analogues bind to ribosomal RNA and interfere with eukaryotic translation in vitro . Chembiochem 2013; 14:2083–2086 [View Article] [PubMed]
    [Google Scholar]
  49. Lee M-T, Yang P-Y, Charron NE, Hsieh M-H, Chang Y-Y et al. Comparison of the effects of daptomycin on bacterial and model membranes. Biochemistry 2018; 57:5629–5639 [View Article] [PubMed]
    [Google Scholar]
  50. Zhang T, Muraih JK, MacCormick B, Silverman J, Palmer M. Daptomycin forms cation- and size-selective pores in model membranes. Biochim Biophys Acta 2014; 1838:2425–2430 [View Article] [PubMed]
    [Google Scholar]
  51. Muraih JK, Pearson A, Silverman J, Palmer M. Oligomerization of daptomycin on membranes. Biochimica et Biophysica Acta (BBA) - Biomembranes 2011; 1808:1154–1160 [View Article] [PubMed]
    [Google Scholar]
  52. Chen YF, Sun TL, Sun Y, Huang HW. Interaction of daptomycin with lipid bilayers: a lipid extracting effect. Biochemistry 2014; 53:5384–5392 [View Article] [PubMed]
    [Google Scholar]
  53. Hobbs JK, Miller K, O’Neill AJ, Chopra I. Consequences of daptomycin-mediated membrane damage in Staphylococcus aureus . Journal of Antimicrobial Chemotherapy 2008; 62:1003–1008 [View Article] [PubMed]
    [Google Scholar]
  54. Müller A, Wenzel M, Strahl H, Grein F, Saaki TNV et al. Daptomycin inhibits cell envelope synthesis by interfering with fluid membrane microdomains. Proc Natl Acad Sci USA 2016; 113:E7077–E7086 [View Article] [PubMed]
    [Google Scholar]
  55. Pogliano J, Pogliano N, Silverman JA. Daptomycin-mediated reorganization of membrane architecture causes mislocalization of essential cell division proteins. J Bacteriol 2012; 194:4494–4504 [View Article]
    [Google Scholar]
  56. Jung D, Rozek A, Okon M, Hancock REW. Structural transitions as determinants of the action of the calcium-dependent antibiotic daptomycin. Chem Biol 2004; 11:949–957 [View Article] [PubMed]
    [Google Scholar]
  57. Muraih JK, Harris J, Taylor SD, Palmer M. Characterization of daptomycin oligomerization with perylene excimer fluorescence: stoichiometric binding of phosphatidylglycerol triggers oligomer formation. Biochim Biophys Acta 2012; 1818:673–678 [View Article] [PubMed]
    [Google Scholar]
  58. Ye Y, Xia Z, Zhang D, Sheng Z, Zhang P et al. Multifunctional pharmaceutical effects of the antibiotic daptomycin. Biomed Res Int 2019; 2019:8609218 [View Article] [PubMed]
    [Google Scholar]
  59. Zhang YM, Rock CO. Membrane lipid homeostasis in bacteria. Nat Rev Microbiol 2008; 6:222–233 [View Article] [PubMed]
    [Google Scholar]
  60. Lakey JH, Ptak M. Fluorescence indicates a calcium-dependent interaction between the lipopeptide antibiotic LY146032 and phospholipid membranes. Biochemistry 1988; 27:4639–4645 [View Article] [PubMed]
    [Google Scholar]
  61. Allen NE, Hobbs JN, Alborn WE. Inhibition of peptidoglycan biosynthesis in gram-positive bacteria by LY146032. Antimicrob Agents Chemother 1987; 31:1093–1099 [View Article] [PubMed]
    [Google Scholar]
  62. Hayhurst EJ, Kailas L, Hobbs JK, Foster SJ. Cell wall peptidoglycan architecture in Bacillus subtilis . Proc Natl Acad Sci U S A 2008; 105:14603–14608 [View Article] [PubMed]
    [Google Scholar]
  63. Laganas V, Alder J, Silverman JA. In vitro bactericidal activities of daptomycin against Staphylococcus aureus and Enterococcus faecalis are not mediated by inhibition of lipoteichoic acid biosynthesis. Antimicrob Agents Chemother 2003; 47:2682–2684 [View Article] [PubMed]
    [Google Scholar]
  64. Grein F, Müller A, Scherer KM, Liu X, Ludwig KC et al. Ca2+-Daptomycin targets cell wall biosynthesis by forming a tripartite complex with undecaprenyl-coupled intermediates and membrane lipids. Nat Commun 2020; 11:1455 [View Article] [PubMed]
    [Google Scholar]
  65. Muthaiyan A, Silverman JA, Jayaswal RK, Wilkinson BJ. Transcriptional profiling reveals that daptomycin induces the Staphylococcus aureus cell wall stress stimulon and genes responsive to membrane depolarization. Antimicrob Agents Chemother 2008; 52:980–990 [View Article] [PubMed]
    [Google Scholar]
  66. Dengler V, Meier PS, Heusser R, Berger-Bächi B, McCallum N. Induction kinetics of the Staphylococcus aureus cell wall stress stimulon in response to different cell wall active antibiotics. BMC Microbiol 2011; 11:16 [View Article] [PubMed]
    [Google Scholar]
  67. Ganchev DN, Hasper HE, Breukink E, de Kruijff B. Size and orientation of the lipid II headgroup as revealed by AFM imaging. Biochemistry 2006; 45:6195–6202 [View Article] [PubMed]
    [Google Scholar]
  68. Strahl H, Bürmann F, Hamoen LW. The actin homologue MreB organizes the bacterial cell membrane. Nat Commun 2014; 5:3442 [View Article] [PubMed]
    [Google Scholar]
  69. Kotsogianni I, Wood TM, Alexander FM, Cochrane SA, Martin NI. Binding studies reveal phospholipid specificity and its role in the calcium-dependent mechanism of action of daptomycin. ACS Infect Dis 2021; 7:2612–2619 [View Article] [PubMed]
    [Google Scholar]
  70. Pader V, Hakim S, Painter KL, Wigneshweraraj S, Clarke TB et al. Staphylococcus aureus inactivates daptomycin by releasing membrane phospholipids. Nat Microbiol 2016; 2:16194 [View Article] [PubMed]
    [Google Scholar]
  71. Kleijn LHJ, Oppedijk SF, ’t Hart P, van Harten RM, Martin-Visscher LA et al. Total synthesis of laspartomycin C and characterization of its antibacterial mechanism of action. J Med Chem 2016; 59:3569–3574 [View Article] [PubMed]
    [Google Scholar]
  72. Boaretti M, Canepari P, Lleò MM, Satta G. The activity of daptomycin on Enterococcus faecium protoplasts: indirect evidence supporting a novel mode of action on lipoteichoic acid synthesis. J Antimicrob Chemother 1993; 31:227–235 [View Article] [PubMed]
    [Google Scholar]
  73. Mascio CTM, Alder JD, Silverman JA. Bactericidal action of daptomycin against stationary-phase and nondividing Staphylococcus aureus cells. Antimicrob Agents Chemother 2007; 51:4255–4260 [View Article] [PubMed]
    [Google Scholar]
  74. Pormohammad A, Mehdinejadiani K, Gholizadeh P, Nasiri MJ, Mohtavinejad N et al. Global prevalence of colistin resistance in clinical isolates of Acinetobacter baumannii: A systematic review and meta-analysis. Microb Pathog 2020; 139:103887 [View Article] [PubMed]
    [Google Scholar]
  75. Band VI, Satola SW, Smith RD, Hufnagel DA, Bower C et al. Colistin heteroresistance is largely undetected among carbapenem-resistant Enterobacterales in the United States. mBio 2021; 12:e02881-20 [View Article] [PubMed]
    [Google Scholar]
  76. Sampaio JLM, Gales AC. Antimicrobial resistance in Enterobacteriaceae in Brazil: focus on β-lactams and polymyxins. Braz J Microbiol 2016; 47 Suppl 1:31–37 [View Article] [PubMed]
    [Google Scholar]
  77. Bartolleti F, Seco BMS, Capuzzo Dos Santos C, Felipe CB, Lemo MEB et al. Polymyxin B resistance in carbapenem-resistant Klebsiella pneumoniae, São Paulo, Brazil. Emerg Infect Dis 2016; 22:1849–1851 [View Article] [PubMed]
    [Google Scholar]
  78. Li Z, Cao Y, Yi L, Liu JH, Yang Q. Emergent polymyxin resistance: end of an era?. Open Forum Infect Dis 2019; 6:fz368 [View Article] [PubMed]
    [Google Scholar]
  79. Balkan II, Alkan M, Aygün G, Kuşkucu M, Ankaralı H et al. Colistin resistance increases 28-day mortality in bloodstream infections due to carbapenem-resistant Klebsiella pneumoniae . Eur J Clin Microbiol Infect Dis 2021; 40:2161–2170 [View Article] [PubMed]
    [Google Scholar]
  80. Capone A, Giannella M, Fortini D, Giordano A, Meledandri M et al. High rate of colistin resistance among patients with carbapenem-resistant Klebsiella pneumoniae infection accounts for an excess of mortality. Clin Microbiol Infect 2013; 19:E23–E30 [View Article] [PubMed]
    [Google Scholar]
  81. Sader HS, Farrell DJ, Flamm RK, Jones RN. Daptomycin activity tested against 164457 bacterial isolates from hospitalised patients: summary of 8 years of a Worldwide Surveillance Programme (2005-2012). Int J Antimicrob Agents 2014; 43:465–469 [View Article] [PubMed]
    [Google Scholar]
  82. Monaco M, Pimentel de Araujo F, Cruciani M, Coccia EM, Pantosti A. Worldwide epidemiology and antibiotic resistance of Staphylococcus aureus . Curr Top Microbiol Immunol 2017; 409:21–56 [View Article] [PubMed]
    [Google Scholar]
  83. Morrisette T, Alosaimy S, Abdul-Mutakabbir JC, Kebriaei R, Rybak MJ. The evolving reduction of vancomycin and daptomycin susceptibility in MRSA-salvaging the gold standards with combination therapy. Antibiotics (Basel) 2020; 9:762 [View Article] [PubMed]
    [Google Scholar]
  84. Jorgensen SCJ, Zasowski EJ, Trinh TD, Lagnf AM, Bhatia S et al. Daptomycin plus β-Lactam combination therapy for methicillin-resistant Staphylococcus aureus bloodstream infections: a retrospective, comparative cohort study. Clin Infect Dis 2020; 71:1–10 [View Article] [PubMed]
    [Google Scholar]
  85. Satlin MJ, Nicolau DP, Humphries RM, Kuti JL, Campeau SA et al. Development of daptomycin susceptibility breakpoints for Enterococcus faecium and revision of the breakpoints for other enterococcal species by the Clinical and Laboratory Standards Institute. Clin Infect Dis 2020; 70:1240–1246 [View Article] [PubMed]
    [Google Scholar]
  86. Ezadi F, Ardebili A, Mirnejad R. Antimicrobial susceptibility testing for polymyxins: challenges, issues, and recommendations. J Clin Microbiol 2019; 57:e01390-18 [View Article] [PubMed]
    [Google Scholar]
  87. Brennan-Krohn T, Pironti A, Kirby JE. Synergistic activity of colistin-containing combinations against colistin-resistant Enterobacteriaceae. Antimicrob Agents Chemother 2018; 62:e00873-18 [View Article] [PubMed]
    [Google Scholar]
  88. Hamad MA, Di Lorenzo F, Molinaro A, Valvano MA. Aminoarabinose is essential for lipopolysaccharide export and intrinsic antimicrobial peptide resistance in Burkholderia cenocepacia(†). Mol Microbiol 2012; 85:962–974 [View Article] [PubMed]
    [Google Scholar]
  89. Simpson BW, Trent MS. Pushing the envelope: LPS modifications and their consequences. Nat Rev Microbiol 2019; 17:403–416 [View Article] [PubMed]
    [Google Scholar]
  90. Ito-Kagawa M, Koyama Y. Selective cleavage of a peptide antibiotic, colistin by colistinase. J Antibiot (Tokyo) 1980; 33:1551–1555 [View Article] [PubMed]
    [Google Scholar]
  91. Janssen AB, van Schaik W. Harder, better, faster, stronger: Colistin resistance mechanisms in Escherichia coli . PLoS Genet 2021; 17:e1009262 [View Article] [PubMed]
    [Google Scholar]
  92. Janssen AB, Bartholomew TL, Marciszewska NP, Bonten MJM, Willems RJL et al. Nonclonal emergence of colistin resistance associated with mutations in the BasRS two-component system in Escherichia coli bloodstream isolates. mSphere 2020; 5:e00143-20 [View Article] [PubMed]
    [Google Scholar]
  93. Janssen AB, van Hout D, Bonten MJM, Willems RJL, van Schaik W. Microevolution of acquired colistin resistance in Enterobacteriaceae from ICU patients receiving selective decontamination of the digestive tract. J Antimicrob Chemother 2020; 75:3135–3143 [View Article] [PubMed]
    [Google Scholar]
  94. Lenzi MH. A new mutation in MGRB mediating polymyxin resistance in Klebsiella variicola: polymyxin-resistant Klebsiella variicola . Int J Antimicrob Agents 2021; 58:106424
    [Google Scholar]
  95. Poirel L, Jayol A, Nordmann P. Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin Microbiol Rev 2017; 30:557–596 [View Article] [PubMed]
    [Google Scholar]
  96. Fernández L, Gooderham WJ, Bains M, McPhee JB, Wiegand I et al. Adaptive Resistance to the “Last Hope” Antibiotics Polymyxin B and Colistin in Pseudomonas aeruginosa Is Mediated by the Novel Two-Component Regulatory System ParR-ParS. Antimicrob Agents Chemother 2010; 54:3372–3382 [View Article] [PubMed]
    [Google Scholar]
  97. Ben Jeddou F, Falconnet L, Luscher A, Siriwardena T, Reymond J-L et al. Adaptive and mutational responses to peptide dendrimer antimicrobials in Pseudomonas aeruginosa . Antimicrob Agents Chemother 2020; 64:e02040–19 [View Article] [PubMed]
    [Google Scholar]
  98. Moffatt JH, Harper M, Adler B, Nation RL, Li J et al. Insertion sequence ISAba11 is involved in colistin resistance and loss of lipopolysaccharide in Acinetobacter baumannii . Antimicrob Agents Chemother 2011; 55:3022–3024 [View Article] [PubMed]
    [Google Scholar]
  99. Boll JM, Crofts AA, Peters K, Cattoir V, Vollmer W et al. A penicillin-binding protein inhibits selection of colistin-resistant, lipooligosaccharide-deficient Acinetobacter baumannii . Proc Natl Acad Sci U S A 2016; 113:E6228–E6237 [View Article] [PubMed]
    [Google Scholar]
  100. Puja H, Bolard A, Noguès A, Plésiat P, Jeannot K. The efflux pump MexXY/OprM contributes to the tolerance and acquired resistance of Pseudomonas aeruginosa to colistin. Antimicrob Agents Chemother 2020; 64:e02033–19 [View Article] [PubMed]
    [Google Scholar]
  101. Young ML, Bains M, Bell A, Hancock REW. Role of Pseudomonas aeruginosa outer membrane protein OprH in polymyxin and gentamicin resistance: isolation of an OprH-deficient mutant by gene replacement techniques. Antimicrob Agents Chemother 1992; 36:2566–2568 [View Article] [PubMed]
    [Google Scholar]
  102. Naha S, Sands K, Mukherjee S, Roy C, Rameez MJ et al. KPC-2-producing Klebsiella pneumoniae ST147 in a neonatal unit: Clonal isolates with differences in colistin susceptibility attributed to AcrAB-TolC pump. Int J Antimicrob Agents 2020; 55:105903 [View Article] [PubMed]
    [Google Scholar]
  103. Srinivasan VB, Rajamohan G. KpnEF, a new member of the Klebsiella pneumoniae cell envelope stress response regulon, is an SMR-type efflux pump involved in broad-spectrum antimicrobial resistance. Antimicrob Agents Chemother 2013; 57:4449–4462 [View Article] [PubMed]
    [Google Scholar]
  104. Baron SA, Rolain JM. Efflux pump inhibitor CCCP to rescue colistin susceptibility in mcr-1 plasmid-mediated colistin-resistant strains and Gram-negative bacteria. J Antimicrob Chemother 2018; 73:1862–1871 [View Article] [PubMed]
    [Google Scholar]
  105. Park YK, Ko KS. Effect of carbonyl cyanide 3-chlorophenylhydrazone (CCCP) on killing Acinetobacter baumannii by colistin. J Microbiol 2015; 53:53–59 [View Article] [PubMed]
    [Google Scholar]
  106. Ni W, Li Y, Guan J, Zhao J, Cui J et al. Effects of efflux pump inhibitors on colistin resistance in multidrug-resistant gram-negative bacteria. Antimicrob Agents Chemother 2016; 60:3215–3218 [View Article] [PubMed]
    [Google Scholar]
  107. Du D, Wang-Kan X, Neuberger A, van Veen HW, Pos KM et al. Multidrug efflux pumps: structure, function and regulation. Nat Rev Microbiol 2018; 16:523–539 [View Article] [PubMed]
    [Google Scholar]
  108. Hussein NH, Al-Kadmy IMS, Taha BM, Hussein JD. Mobilized colistin resistance (mcr) genes from 1 to 10: a comprehensive review. Mol Biol Rep 2021; 48:2897–2907 [View Article] [PubMed]
    [Google Scholar]
  109. Gogry FA, Siddiqui MT, Sultan I, Haq QMR. Current Update on Intrinsic and Acquired Colistin Resistance Mechanisms in Bacteria. Front Med (Lausanne) 2021; 8:677720 [View Article] [PubMed]
    [Google Scholar]
  110. Liu Y-Y, Wang Y, Walsh TR, Yi L-X, Zhang R et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 2016; 16:161–168 [View Article] [PubMed]
    [Google Scholar]
  111. Schwarz S, Johnson AP. Transferable resistance to colistin: a new but old threat. J Antimicrob Chemother 2016; 71:2066–2070 [View Article] [PubMed]
    [Google Scholar]
  112. Cherak Z, Loucif L, Moussi A, Rolain JM. Epidemiology of mobile colistin resistance (mcr) genes in aquatic environments. J Glob Antimicrob Resist 2021; 27:51–62 [View Article] [PubMed]
    [Google Scholar]
  113. Zhang S, Abbas M, Rehman MU, Wang M, Jia R et al. Updates on the global dissemination of colistin-resistant Escherichia coli: An emerging threat to public health. Sci Total Environ 2021; 799:149280 [View Article] [PubMed]
    [Google Scholar]
  114. Anyanwu MU, Okpala COR, Chah KF, Shoyinka VS. Prevalence and traits of mobile colistin resistance gene harbouring isolates from different ecosystems in Africa. Biomed Res Int 2021; 2021:6630379 [View Article] [PubMed]
    [Google Scholar]
  115. Olaitan AO, Dandachi I, Baron SA, Daoud Z, Morand S et al. Banning colistin in feed additives: a small step in the right direction. Lancet Infect Dis 2021; 21:29–30 [View Article] [PubMed]
    [Google Scholar]
  116. Kieffer N, Nordmann P, Poirel L. Moraxella species as potential sources of MCR-like polymyxin resistance determinants. Antimicrob Agents Chemother 2017; 61:e00129-17 [View Article] [PubMed]
    [Google Scholar]
  117. Khedher MB, Baron SA, Riziki T, Ruimy R, Raoult D et al. Massive analysis of 64,628 bacterial genomes to decipher water reservoir and origin of mobile colistin resistance genes: is there another role for these enzymes?. Sci Rep 2020; 10:5970 [View Article] [PubMed]
    [Google Scholar]
  118. Hu M, Guo J, Cheng Q, Yang Z, Chan EWC et al. Crystal Structure of Escherichia coli originated MCR-1, a phosphoethanolamine transferase for Colistin Resistance. Sci Rep 2016; 6:38793 [View Article] [PubMed]
    [Google Scholar]
  119. Carroll LM, Gaballa A, Guldimann C, Sullivan G, Henderson LO et al. Identification of Novel Mobilized Colistin Resistance Gene mcr-9 in a Multidrug-Resistant, Colistin-Susceptible Salmonella enterica Serotype Typhimurium Isolate. mBio 2019; 10:e00853-19 [View Article] [PubMed]
    [Google Scholar]
  120. Tyso GH et al. The mcr-9 gene of salmonella and escherichia coli is not associated with colistin resistance in the united states. Agents and Chemother 2020; 64:e00573–20
    [Google Scholar]
  121. Kieffer N, Royer G, Decousser J-W, Bourrel A-S, Palmieri M et al. Erratum for Kieffer et al., “mcr-9, an Inducible Gene Encoding an Acquired Phosphoethanolamine Transferase in Escherichia coli, and Its Origin.”. Antimicrob Agents Chemother 2019; 63:e00965–19 [View Article] [PubMed]
    [Google Scholar]
  122. Börjesson S, Greko C, Myrenås M, Landén A, Nilsson O et al. A link between the newly described colistin resistance gene mcr-9 and clinical Enterobacteriaceae isolates carrying blaSHV-12 from horses in Sweden. J Glob Antimicrob Resist 2020; 20:285–289 [View Article] [PubMed]
    [Google Scholar]
  123. Gallardo A, Iglesias M-R, Ugarte-Ruiz M, Hernández M, Miguela-Villoldo P et al. The Plasmid-Mediated Kluyvera -Like arnBCADTEF Operon Confers Colistin (Hetero)Resistance to Escherichia coli. Antimicrob Agents Chemother 2021; 65:e00091–21 [View Article]
    [Google Scholar]
  124. MacNair CR, Stokes JM, Carfrae LA, Fiebig-Comyn AA, Coombes BK et al. Overcoming mcr-1 mediated colistin resistance with colistin in combination with other antibiotics. Nat Commun 2018; 9:458 [View Article] [PubMed]
    [Google Scholar]
  125. Zong Z, Feng Y, McNally A. Carbapenem and Colistin Resistance in Enterobacter: Determinants and Clones. Trends Microbiol 2021; 29:473–476 [View Article] [PubMed]
    [Google Scholar]
  126. Andersson DI, Nicoloff H, Hjort K. Mechanisms and clinical relevance of bacterial heteroresistance. Nat Rev Microbiol 2019; 17:479–496 [View Article] [PubMed]
    [Google Scholar]
  127. Band VI, Satola SW, Burd EM, Farley MM, Jacob JT et al. Carbapenem-Resistant Klebsiella pneumoniae Exhibiting Clinically Undetected Colistin Heteroresistance Leads to Treatment Failure in a Murine Model of Infection. mBio 2018; 9:e02448-17 [View Article] [PubMed]
    [Google Scholar]
  128. Band VI, Crispell EK, Napier BA, Herrera CM, Tharp GK et al. Antibiotic failure mediated by a resistant subpopulation in Enterobacter cloacae. Nat Microbiol 2016; 1:16053 [View Article] [PubMed]
    [Google Scholar]
  129. Band VI, Weiss DS. Heteroresistance to beta-lactam antibiotics may often be a stage in the progression to antibiotic resistance. PLoS Biol 2021; 19:e3001346 [View Article] [PubMed]
    [Google Scholar]
  130. Halaby T, Kucukkose E, Janssen AB, Rogers MRC, Doorduijn DJ et al. Genomic Characterization of Colistin Heteroresistance in Klebsiella pneumoniae during a Nosocomial Outbreak. Antimicrob Agents Chemother 2016; 60:6837–6843 [View Article] [PubMed]
    [Google Scholar]
  131. Humphries RM. The new, new daptomycin breakpoint for Enterococcus spp. J Clin Microbiol 2019; 57:e00600
    [Google Scholar]
  132. Turnidge J, Kahlmeter G, Cantón R, MacGowan A, Giske CG et al. Daptomycin in the treatment of enterococcal bloodstream infections and endocarditis: a EUCAST position paper. Clin Microbiol Infect 2020; 26:1039–1043 [View Article] [PubMed]
    [Google Scholar]
  133. Bender JK, Cattoir V, Hegstad K, Sadowy E, Coque TM et al. Update on prevalence and mechanisms of resistance to linezolid, tigecycline and daptomycin in enterococci in Europe: Towards a common nomenclature. Drug Resist Updat 2018; 40:25–39 [View Article] [PubMed]
    [Google Scholar]
  134. Tran TT, Munita JM, Arias CA et al. Mechanisms of drug resistance: daptomycin resistance. Ann N Y Acad Sci 2015; 1354:32–53 [View Article] [PubMed]
    [Google Scholar]
  135. Uppal P, LaPlante KL, Gaitanis MM, Jankowich MD, Ward KE. Daptomycin-induced eosinophilic pneumonia - a systematic review. Antimicrob Resist Infect Control 2016; 5:55 [View Article] [PubMed]
    [Google Scholar]
  136. Echevarria K, Datta P, Cadena J, Lewis JS. Severe myopathy and possible hepatotoxicity related to daptomycin. J Antimicrob Chemother 2005; 55:599–600 [View Article]
    [Google Scholar]
  137. Dare RK, Tewell C, Harris B, Wright PW, Van Driest SL et al. Effect of statin coadministration on the risk of daptomycin-associated myopathy. Clin Infect Dis 2018; 67:1356–1363 [View Article]
    [Google Scholar]
  138. Peleg AY, Miyakis S, Ward DV, Earl AM, Rubio A et al. Whole Genome Characterization of the Mechanisms of Daptomycin Resistance in Clinical and Laboratory Derived Isolates of Staphylococcus aureus. PLoS ONE 2012; 7:e28316 [View Article]
    [Google Scholar]
  139. Mishra NN, Yang S-J, Sawa A, Rubio A, Nast CC et al. Analysis of cell membrane characteristics of in vitro-selected daptomycin-resistant strains of methicillin-resistant Staphylococcus aureus . Antimicrob Agents Chemother 2009; 53:2312–2318 [View Article]
    [Google Scholar]
  140. Tran TT, Panesso D, Mishra NN, Mileykovskaya E, Guan Z et al. Daptomycin-resistant Enterococcus faecalis diverts the antibiotic molecule from the division septum and remodels cell membrane phospholipids. mBio 2013; 4:e00281-13 [View Article]
    [Google Scholar]
  141. Arias CA, Panesso D, McGrath DM, Qin X, Mojica MF et al. Genetic basis for in vivo daptomycin resistance in enterococci. N Engl J Med 2011; 365:892–900 [View Article] [PubMed]
    [Google Scholar]
  142. Goldner NK et al. Mechanism of high-level daptomycin resistance in corynebacterium striatum. mSphere 2018; 3:1–16 [View Article]
    [Google Scholar]
  143. Mishra NN, Tran TT, Seepersaud R, Garcia-de-la-Maria C, Faull K et al. Perturbations of phosphatidate cytidylyltransferase (CdsA) mediate daptomycin resistance in Streptococcus mitis/oralis by a novel mechanism. Antimicrob Agents Chemother 2017; 61:1–13 [View Article]
    [Google Scholar]
  144. Ernst CM, Slavetinsky CJ, Kuhn S, Hauser JN, Nega M et al. Gain-of-Function Mutations in the Phospholipid Flippase MprF Confer Specific Daptomycin Resistance. mBio 2018; 9:e01659-18 [View Article]
    [Google Scholar]
  145. Ma Z, Lasek-Nesselquist E, Lu J, Schneider R, Shah R et al. Characterization of genetic changes associated with daptomycin nonsusceptibility in Staphylococcus aureus . PLoS One 2018; 13:1–22 [View Article]
    [Google Scholar]
  146. Friedman L, Alder JD, Silverman JA. Genetic changes that correlate with reduced susceptibility to daptomycin in Staphylococcus aureus. Antimicrob Agents Chemother 2006; 50:2137–2145 [View Article] [PubMed]
    [Google Scholar]
  147. Bayer AS, Mishra NN, Sakoulas G, Nonejuie P, Nast CC et al. Heterogeneity of mprF sequences in methicillin-resistant Staphylococcus aureus clinical isolates: role in cross-resistance between daptomycin and host defense antimicrobial peptides. Antimicrob Agents Chemother 2014; 58:7462–7467 [View Article] [PubMed]
    [Google Scholar]
  148. Yang SJ, Mishra NN, Rubio A, Bayer AS. Causal role of single nucleotide polymorphisms within the mprF gene of Staphylococcus aureus in daptomycin resistance. Antimicrob Agents Chemother 2013; 57:5658–5664 [View Article] [PubMed]
    [Google Scholar]
  149. Jones T, Yeaman MR, Sakoulas G, Yang S-J, Proctor RA et al. Failures in clinical treatment of Staphylococcus aureus Infection with daptomycin are associated with alterations in surface charge, membrane phospholipid asymmetry, and drug binding. Antimicrob Agents Chemother 2008; 52:269–278 [View Article] [PubMed]
    [Google Scholar]
  150. Pader V, Edwards AM. Daptomycin: new insights into an antibiotic of last resort. Future Microbiol 2017; 12:461–464 [View Article] [PubMed]
    [Google Scholar]
  151. Short SA, White DC. Biosynthesis of cardiolipin from phosphatidylglycerol in Staphylococcus aureus. J Bacteriol 1972; 109:820–826 [View Article] [PubMed]
    [Google Scholar]
  152. Jiang J-H, Bhuiyan MS, Shen H-H, Cameron DR, Rupasinghe TWT et al. Antibiotic resistance and host immune evasion in Staphylococcus aureus mediated by a metabolic adaptation. Proc Natl Acad Sci U S A 2019; 116:3722–3727 [View Article] [PubMed]
    [Google Scholar]
  153. Hines KM, Shen T, Ashford NK, Waalkes A, Penewit K et al. Occurrence of cross-resistance and β-lactam seesaw effect in glycopeptide-, lipopeptide- and lipoglycopeptide-resistant MRSA correlates with membrane phosphatidylglycerol levels. J Antimicrob Chemother 2020; 75:1182–1186 [View Article] [PubMed]
    [Google Scholar]
  154. Zhang T, Muraih JK, Tishbi N, Herskowitz J, Victor RL et al. Cardiolipin prevents membrane translocation and permeabilization by daptomycin. J Biol Chem 2014; 289:11584–11591 [View Article] [PubMed]
    [Google Scholar]
  155. Hines KM, Waalkes A, Penewit K, Holmes EA, Salipante SJ et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2017; 2:e00492 [View Article] [PubMed]
    [Google Scholar]
  156. Tran TT, Munita JM, Arias CA. Mechanisms of drug resistance: daptomycin resistance. Ann N Y Acad Sci 2015; 1354:32–53 [View Article] [PubMed]
    [Google Scholar]
  157. Prater AG, Mehta HH, Kosgei AJ, Miller WR, Tran TT et al. Environment Shapes the Accessible Daptomycin Resistance Mechanisms in Enterococcus faecium. Antimicrob Agents Chemother 2019; 63:e00790-19 [View Article] [PubMed]
    [Google Scholar]
  158. Mishra NN, Rubio A, Nast CC, Bayer AS. Differential Adaptations of Methicillin-Resistant Staphylococcus aureus to Serial In Vitro Passage in Daptomycin: Evolution of Daptomycin Resistance and Role of Membrane Carotenoid Content and Fluidity. Int J Microbiol 2012; 2012:683450 [View Article] [PubMed]
    [Google Scholar]
  159. Mishra NN, McKinnell J, Yeaman MR, Rubio A, Nast CC et al. In vitro cross-resistance to daptomycin and host defense cationic antimicrobial peptides in clinical methicillin-resistant Staphylococcus aureus isolates. Antimicrob Agents Chemother 2011; 55:4012–4018 [View Article] [PubMed]
    [Google Scholar]
  160. Mishra NN, Bayer AS, Tran TT, Shamoo Y, Mileykovskaya E et al. Daptomycin resistance in enterococci is associated with distinct alterations of cell membrane phospholipid content. PLoS One 2012; 7:e43958 [View Article] [PubMed]
    [Google Scholar]
  161. Sen S, Sirobhushanam S, Johnson SR, Song Y, Tefft R et al. Growth-Environment Dependent Modulation of Staphylococcus aureus Branched-Chain to Straight-Chain Fatty Acid Ratio and Incorporation of Unsaturated Fatty Acids. PLoS ONE 2016; 11:e0165300 [View Article]
    [Google Scholar]
  162. Tiwari KB, Gatto C, Wilkinson BJ. Interrelationships between Fatty Acid Composition, Staphyloxanthin Content, Fluidity, and Carbon Flow in the Staphylococcus aureus Membrane. Molecules 2018; 23:1201 [View Article]
    [Google Scholar]
  163. Fozo EM, Rucks EA. The Making and Taking of Lipids: The Role of Bacterial Lipid Synthesis and the Harnessing of Host Lipids in Bacterial Pathogenesis. Adv Microb Physiol 2016; 69:51–155 [View Article] [PubMed]
    [Google Scholar]
  164. Boudjemaa R, Cabriel C, Dubois-Brissonnet F, Bourg N, Dupuis G et al. Impact of Bacterial Membrane Fatty Acid Composition on the Failure of Daptomycin To Kill Staphylococcus aureus. Antimicrob Agents Chemother 2018; 62:e00023-18 [View Article] [PubMed]
    [Google Scholar]
  165. Pelz A, Wieland K-P, Putzbach K, Hentschel P, Albert K et al. Structure and biosynthesis of staphyloxanthin from Staphylococcus aureus. J Biol Chem 2005; 280:32493–32498 [View Article] [PubMed]
    [Google Scholar]
  166. Liu GY, Essex A, Buchanan JT, Datta V, Hoffman HM et al. Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. J Exp Med 2005; 202:209–215 [View Article] [PubMed]
    [Google Scholar]
  167. Mishra NN, Bayer AS. Correlation of Cell Membrane Lipid Profiles with Daptomycin Resistance in Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy 2012; 57:1082–1085 [View Article] [PubMed]
    [Google Scholar]
  168. Silhavy TJ, Kahne D, Walker S. The bacterial cell envelope. Cold Spring Harb Perspect Biol 2010; 2:a000414 [View Article] [PubMed]
    [Google Scholar]
  169. Neuhaus FC, Baddiley J. A continuum of anionic charge: structures and functions of. Microbiol Mol Biol Rev 2003; 67:686–723
    [Google Scholar]
  170. Bayer AS, Mishra NN, Cheung AL, Rubio A, Yang SJ. Dysregulation of mprF and dltABCD expression among daptomycin-non-susceptible MRSA clinical isolates. J Antimicrob Chemother 2016; 71:2100–2104 [View Article]
    [Google Scholar]
  171. Kang K-M, Mishra NN, Park KT, Lee G-Y, Park YH et al. Phenotypic and genotypic correlates of daptomycin-resistant methicillin-susceptible Staphylococcus aureus clinical isolates. J Microbiol 2017; 55:153–159 [View Article] [PubMed]
    [Google Scholar]
  172. Cafiso V, Bertuccio T, Purrello S, Campanile F, Mammina C et al. dltA overexpression: A strain-independent keystone of daptomycin resistance in methicillin-resistant Staphylococcus aureus. Int J Antimicrob Agents 2014; 43:26–31 [View Article] [PubMed]
    [Google Scholar]
  173. Peschel A, Otto M, Jack RW, Kalbacher H, Jung G et al. Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem 1999; 274:8405–8410 [View Article] [PubMed]
    [Google Scholar]
  174. Bertsche U, Weidenmaier C, Kuehner D, Yang S-J, Baur S et al. Correlation of daptomycin resistance in a clinical Staphylococcus aureus strain with increased cell wall teichoic acid production and D-alanylation. Antimicrob Agents Chemother 2011; 55:3922–3928 [View Article] [PubMed]
    [Google Scholar]
  175. Bertsche U, Yang S-J, Kuehner D, Wanner S, Mishra NN et al. Increased Cell Wall Teichoic Acid Production and D-alanylation Are Common Phenotypes among Daptomycin-Resistant Methicillin-Resistant Staphylococcus aureus (MRSA) Clinical Isolates. PLoS ONE 2013; 8:e67398 [View Article]
    [Google Scholar]
  176. Saar-Dover R, Bitler A, Nezer R, Shmuel-Galia L, Firon A et al. D-alanylation of lipoteichoic acids confers resistance to cationic peptides in group B streptococcus by increasing the cell wall density. PLoS Pathog 2012; 8:e1002891 [View Article] [PubMed]
    [Google Scholar]
  177. Cui L, Tominaga E, Neoh HM, Hiramatsu K. Correlation between Reduced Daptomycin Susceptibility and Vancomycin Resistance in Vancomycin-Intermediate Staphylococcus aureus. Antimicrob Agents Chemother 2006; 50:1079–1082 [View Article] [PubMed]
    [Google Scholar]
  178. Kelley PG, Gao W, Ward PB, Howden BP. Daptomycin non-susceptibility in vancomycin-intermediate Staphylococcus aureus (VISA) and heterogeneous-VISA (hVISA): implications for therapy after vancomycin treatment failure. J Antimicrob Chemother 2011; 66:1057–1060 [View Article] [PubMed]
    [Google Scholar]
  179. Pfeltz RF, Singh VK, Schmidt JL, Batten MA, Baranyk CS et al. Characterization of passage-selected vancomycin-resistant Staphylococcus aureus strains of diverse parental backgrounds. Antimicrob Agents Chemother 2000; 44:294–303 [View Article] [PubMed]
    [Google Scholar]
  180. Sieradzki K, Tomasz A. Alterations of cell wall structure and metabolism accompany reduced susceptibility to vancomycin in an isogenic series of clinical isolates of Staphylococcus aureus. J Bacteriol 2003; 185:7103–7110 [View Article] [PubMed]
    [Google Scholar]
  181. Cui L, Ma X, Sato K, Okuma K, Tenover FC et al. Cell wall thickening is a common feature of vancomycin resistance in Staphylococcus aureus. J Clin Microbiol 2003; 41:5–14 [View Article] [PubMed]
    [Google Scholar]
  182. Yang S-J, Nast CC, Mishra NN, Yeaman MR, Fey PD et al. Cell wall thickening is not a universal accompaniment of the daptomycin nonsusceptibility phenotype in Staphylococcus aureus: evidence for multiple resistance mechanisms. Antimicrob Agents Chemother 2010; 54:3079–3085 [View Article] [PubMed]
    [Google Scholar]
  183. Nakamura M, Kawada H, Uchida H, Takagi Y, Obata S et al. Single nucleotide polymorphism leads to daptomycin resistance causing amino acid substitution-T345I in MprF of clinically isolated MRSA strains. PLoS One 2021; 16:e0245732 [View Article] [PubMed]
    [Google Scholar]
  184. Howden BP, Peleg AY, Stinear TP. The evolution of vancomycin intermediate Staphylococcus aureus (VISA) and heterogenous-VISA. Infect Genet Evol 2014; 21:575–582 [View Article] [PubMed]
    [Google Scholar]
  185. Cui L, Isii T, Fukuda M, Ochiai T, Neoh H-M et al. An RpoB mutation confers dual heteroresistance to daptomycin and vancomycin in Staphylococcus aureus. Antimicrob Agents Chemother 2010; 54:5222–5233 [View Article] [PubMed]
    [Google Scholar]
  186. Bæk KT, Thøgersen L, Mogenssen RG, Mellergaard M, Thomsen LE et al. Stepwise decrease in daptomycin susceptibility in clinical Staphylococcus aureus isolates associated with an initial mutation in rpoB and a compensatory inactivation of the clpX gene. Antimicrob Agents Chemother 2015; 59:6983–6991 [View Article] [PubMed]
    [Google Scholar]
  187. Diekema DJ, Pfaller MA, Shortridge D, Zervos M, Jones RN. Twenty-Year Trends in Antimicrobial Susceptibilities Among Staphylococcus aureus From the SENTRY Antimicrobial Surveillance Program. Open Forum Infect Dis 2019; 6:S47–S53 [View Article] [PubMed]
    [Google Scholar]
  188. Koton Y, Or Z, Bisharat N. Septic Thrombophlebitis with Persistent Methicillin-Resistant Staphylococcus Aureus Bacteremia and de Novo Resistance to Vancomycin and Daptomycin. Infect Dis Rep 2017; 9:7008 [View Article] [PubMed]
    [Google Scholar]
  189. Marty FM, Yeh WW, Wennersten CB, Venkataraman L, Albano E et al. Emergence of a clinical daptomycin-resistant Staphylococcus aureus isolate during treatment of methicillin-resistant Staphylococcus aureus bacteremia and osteomyelitis. J Clin Microbiol 2006; 44:595–597 [View Article] [PubMed]
    [Google Scholar]
  190. Hornak JP, Anjum S, Reynoso D. Adjunctive ceftaroline in combination with daptomycin or vancomycin for complicated methicillin-resistant Staphylococcus aureus bacteremia after monotherapy failure. Ther Adv Infect Dis 2019; 6:2049936119886504 [View Article] [PubMed]
    [Google Scholar]
  191. Hagiya H, Hagioka S, Otsuka F. Ineffectiveness of daptomycin in the treatment of septic pulmonary emboli and persistent bacteremia caused by methicillin-resistant Staphylococcus aureus. Intern Med 2013; 52:2577–2582 [View Article] [PubMed]
    [Google Scholar]
  192. Lewis PO, Sevinsky RE, Patel PD, Krolikowski MR, Cluck DB. Vancomycin plus nafcillin salvage for the treatment of persistent methicillin-resistant Staphylococcus aureus bacteremia following daptomycin failure: a case report and literature review. Ther Adv Infect Dis 2019; 6:2049936118797404 [View Article] [PubMed]
    [Google Scholar]
  193. Bigger JW. Treatment of staphylococcal infections with penicillin by intermittent sterilisation. The Lancet 1944; 244:497–500 [View Article]
    [Google Scholar]
  194. Brauner A, Fridman O, Gefen O, Balaban NQ. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat Rev Microbiol 2016; 14:320–330 [View Article] [PubMed]
    [Google Scholar]
  195. Mechler L, Herbig A, Paprotka K, Fraunholz M, Nieselt K et al. A novel point mutation promotes growth phase-dependent daptomycin tolerance in Staphylococcus aureus. Antimicrob Agents Chemother 2015; 59:5366–5376 [View Article] [PubMed]
    [Google Scholar]
  196. Mechler L, Bonetti E-J, Reichert S, Flötenmeyer M, Schrenzel J et al. Daptomycin Tolerance in the Staphylococcus aureus pitA6 Mutant Is Due to Upregulation of the dlt Operon. Antimicrob Agents Chemother 2016; 60:2684–2691 [View Article] [PubMed]
    [Google Scholar]
  197. Berti AD, Shukla N, Rottier AD, McCrone JS, Turner HM et al. Daptomycin selects for genetic and phenotypic adaptations leading to antibiotic tolerance in MRSA. J Antimicrob Chemother 2018; 73:2030–2033 [View Article] [PubMed]
    [Google Scholar]
  198. Barros E et al. Daptomycin resistance and tolerance due to loss of function in Staphylococcus aureus dsp1 and asp23. antimicrob. Agents Chemother 2018; 63:1–12 [View Article]
    [Google Scholar]
  199. Sabnis A, Ledger EVK, Pader V, Edwards AM. Antibiotic interceptors: Creating safe spaces for bacteria. PLoS Pathog 2018; 14:e1006924 [View Article] [PubMed]
    [Google Scholar]
  200. Pader V, Hakim S, Painter KL, Wigneshweraraj S, Clarke TB et al. Staphylococcus aureus inactivates daptomycin by releasing membrane phospholipids. Nat Microbiol 2016; 2:16194 [View Article] [PubMed]
    [Google Scholar]
  201. Ledger EVK, Pader V, Edwards AM. Enterococcus faecalis and pathogenic streptococci inactivate daptomycin by releasing phospholipids. Microbiology (Reading) 2017; 163:1502–1508 [View Article] [PubMed]
    [Google Scholar]
  202. Yokota S-I, Hakamada H, Yamamoto S, Sato T, Shiraishi T et al. Release of large amounts of lipopolysaccharides from Pseudomonas aeruginosa cells reduces their susceptibility to colistin. Int J Antimicrob Agents 2018; 51:888–896 [View Article] [PubMed]
    [Google Scholar]
  203. Park J, Kim M, Shin B, Kang M, Yang J et al. A novel decoy strategy for polymyxin resistance in Acinetobacter baumannii. Elife 2021;10:e66988. 10.7554/eLife.66988 . [PubMed]
  204. Manning AJ, Kuehn MJ. Contribution of bacterial outer membrane vesicles to innate bacterial defense. BMC Microbiol 2011; 11:258 [View Article] [PubMed]
    [Google Scholar]
  205. Pee CJE, Pader V, Ledger EVK, Edwards AM. A FASII inhibitor prevents staphylococcal evasion of daptomycin by inhibiting phospholipid decoy production. Antimicrob Agents Chemother 2019; 63:1–18 [View Article]
    [Google Scholar]
  206. Shen T, Hines KM, Ashford NK, Werth BJ, Xu L. Varied contribution of phospholipid shedding from membrane to daptomycin tolerance in Staphylococcus aureus . Front Mol Biosci 2021; 8:679949 [View Article] [PubMed]
    [Google Scholar]
  207. Scudeller L, Righi E, Chiamenti M, Bragantini D, Menchinelli G et al. Systematic review and meta-analysis of in vitro efficacy of antibiotic combination therapy against carbapenem-resistant Gram-negative bacilli. Int J Antimicrob Agents 2021; 57:106344 [View Article] [PubMed]
    [Google Scholar]
  208. Hindler JA, Wong-Beringer A, Charlton CL, Miller SA, Kelesidis T et al. In vitro activity of daptomycin in combination with β-lactams, gentamicin, rifampin, and tigecycline against daptomycin-nonsusceptible enterococci. Antimicrob Agents Chemother 2015; 59:4279–4288 [View Article] [PubMed]
    [Google Scholar]
  209. Durante-Mangoni E, Signoriello G, Andini R, Mattei A, De Cristoforo M et al. Colistin and rifampicin compared with colistin alone for the treatment of serious infections due to extensively drug-resistant Acinetobacter baumannii: a multicenter, randomized clinical trial. Clin Infect Dis 2013; 57:349–358 [View Article] [PubMed]
    [Google Scholar]
  210. Aydemir H, Akduman D, Piskin N, Comert F, Horuz E et al. Colistin vs. the combination of colistin and rifampicin for the treatment of carbapenem-resistant Acinetobacter baumannii ventilator-associated pneumonia. Epidemiol Infect 2013; 141:1214–1222 [View Article] [PubMed]
    [Google Scholar]
  211. Nutman A, Lellouche J, Temkin E, Daikos G, Skiada A et al. Colistin plus meropenem for carbapenem-resistant gram-negative infections: in vitro synergism is not associated with better clinical outcomes. Clin Microbiol Infect 2020; 26:1185–1191 [View Article]
    [Google Scholar]
  212. Berti AD, Sakoulas G, Nizet V, Tewhey R, Rose WE. β-Lactam antibiotics targeting PBP1 selectively enhance daptomycin activity against methicillin-resistant Staphylococcus aureus . Antimicrob Agents Chemother 2013; 57:5005–5012 [View Article]
    [Google Scholar]
  213. Wang C, Ye C, Liao L, Wang Z, Hu Y et al. Adjuvant β-lactam therapy combined with vancomycin or daptomycin for methicillin-resistant Staphylococcus aureus bacteremia: a systematic review and meta-analysis. Antimicrob Agents Chemother 2020; 64:e01377-20 [View Article]
    [Google Scholar]
  214. Amoah J, Klein EY, Chiotos K, Cosgrove SE, Tamma PD et al. Administration of a β-lactam prior to vancomycin as the first dose of antibiotic therapy improves survival in patients with bloodstream infections. Clin Infect Dis 20211–35 [View Article]
    [Google Scholar]
  215. Gallardo-Godoy A, Hansford KA, Muldoon C, Becker B, Elliott AG et al. Structure-function studies of polymyxin B lipononapeptides. Molecules 2019; 24:553 [View Article]
    [Google Scholar]
  216. Vogler K, Studer RO, Lanz P, Lergier W, Böhni E. Total synthesis of the antibiotic polymyxin B-1. Experientia 1964; 20:365–366 [View Article] [PubMed]
    [Google Scholar]
  217. Brown P, Dawson MJ. Development of new polymyxin derivatives for multi-drug resistant Gram-negative infections. J Antibiot (Tokyo) 2017; 70:386–394 [View Article] [PubMed]
    [Google Scholar]
  218. Vaara M. Polymyxins and their potential next generation as therapeutic antibiotics. Front Microbiol 2019; 10:1689 [View Article] [PubMed]
    [Google Scholar]
  219. Lam HY, Zhang Y, Liu H, Xu J, Wong CTT et al. Total synthesis of daptomycin by cyclization via a chemoselective serine ligation. J Am Chem Soc 2013; 135:6272–6279 [View Article] [PubMed]
    [Google Scholar]
  220. Scull EM, Bandari C, Johnson BP, Gardner ED, Tonelli M et al. Chemoenzymatic synthesis of daptomycin analogs active against daptomycin-resistant strains. Appl Microbiol Biotechnol 2020; 104:7853–7865 [View Article] [PubMed]
    [Google Scholar]
  221. Karas JA, Carter GP, Howden BP, Turner AM, Paulin OKA et al. Structure-activity relationships of daptomycin lipopeptides. J Med Chem 2020; 63:13266–13290 [View Article]
    [Google Scholar]
  222. Chow HY, Po KHL, Jin K, Qiao G, Sun Z et al. Establishing the structure-activity relationship of daptomycin. ACS Med Chem Lett 2020; 11:1442–1449 [View Article]
    [Google Scholar]
  223. Wood TM, Martin NI. The calcium-dependent lipopeptide antibiotics: structure, mechanism, & medicinal chemistry. Medchemcomm 2019; 10:634–646 [View Article]
    [Google Scholar]
  224. Hover BM, Kim S-H, Katz M, Charlop-Powers Z, Owen JG et al. Culture-independent discovery of the malacidins as calcium-dependent antibiotics with activity against multidrug-resistant Gram-positive pathogens. Nat Microbiol 2018; 3:415–422 [View Article]
    [Google Scholar]
  225. Schneider T, Gries K, Josten M, Wiedemann I, Pelzer S et al. The lipopeptide antibiotic Friulimicin B inhibits cell wall biosynthesis through complex formation with bactoprenol phosphate. Antimicrob Agents Chemother 2009; 53:1610–1618 [View Article]
    [Google Scholar]
  226. Dubashynskaya NV, Skorik YA. Polymyxin Delivery Systems: Recent Advances and Challenges. Pharmaceuticals 2020; 13:83 [View Article]
    [Google Scholar]
  227. Yuk SA, Kim H, Abutaleb NS, Dieterly AM, Taha MS et al. Nanocapsules modify membrane interaction of polymyxin B to enable safe systemic therapy of Gram-negative sepsis. Sci Adv 2021; 7:1577 [View Article]
    [Google Scholar]
  228. Casadidio C, Butini ME, Trampuz A, Di Luca M, Censi R et al. Daptomycin-loaded biodegradable thermosensitive hydrogels enhance drug stability and foster bactericidal activity against Staphylococcus aureus. Eur J Pharm Biopharm 2018; 130:260–271 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001136
Loading
/content/journal/micro/10.1099/mic.0.001136
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error