1887

Abstract

Over the last 70 years, we’ve all gotten used to an -centric view of the microbial world. However, genomics, as well as the development of improved tools for genetic manipulation in other species, is showing us that other bugs do things differently, and that we cannot simply extrapolate from to everything else. A particularly good example of this is encountered when considering the mechanism(s) involved in DNA mismatch repair by the opportunistic human pathogen, (PA). This is a particularly relevant phenotype to examine in PA, since defects in the mismatch repair (MMR) machinery often give rise to the property of hypermutability. This, in turn, is linked with the vertical acquisition of important pathoadaptive traits in the organism, such as antimicrobial resistance. But it turns out that PA lacks some key genes associated with MMR in , and a closer inspection of what is known (or can be inferred) about the MMR enzymology reveals profound differences compared with other, well-characterized organisms. Here, we review these differences and comment on their biological implications.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001120
2021-12-09
2024-09-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/167/12/mic001120.html?itemId=/content/journal/micro/10.1099/mic.0.001120&mimeType=html&fmt=ahah

References

  1. Fijalkowska IJ, Schaaper RM, Jonczyk P. DNA replication fidelity in Escherichia coli: A multi-DNA polymerase affair. FEMS Microbiol Rev 2012; 36:1105–1121 [View Article] [PubMed]
    [Google Scholar]
  2. Abdelhamid Y, Brear P, Greenhalgh J, Chee X, Rahman T et al. Evolutionary plasticity in the allosteric regulator-binding site of pyruvate kinase isoform PykA from Pseudomonas aeruginosa. J Biol Chem 2019; 294:15505–15516 [View Article] [PubMed]
    [Google Scholar]
  3. Wang W, Hellinga HW, Beese LS. Structural evidence for the rare tautomer hypothesis of spontaneous mutagenesis. Proc Natl Acad Sci U S A 2011; 108:17644–17648 [View Article] [PubMed]
    [Google Scholar]
  4. Chung JCS, Becq J, Fraser L, Schulz-Trieglaff O, Bond NJ et al. Genomic variation among contemporary Pseudomonas aeruginosa isolates from chronically infected cystic fibrosis patients. J Bacteriol 2012; 194:4857–4866 [View Article] [PubMed]
    [Google Scholar]
  5. Maciá MD, Blanquer D, Togores B, Sauleda J, Pérez JL et al. Hypermutation is a key factor in development of multiple-antimicrobial resistance in Pseudomonas aeruginosa strains causing chronic lung infections. Antimicrob Agents Chemother 2005; 49:3382–3386 [View Article] [PubMed]
    [Google Scholar]
  6. Kurusu Y, Narita T, Suzuki M, Watanabe T. Genetic analysis of an incomplete mutS gene from Pseudomonas putida. J Bacteriol 2000; 182:5278–5279 [View Article] [PubMed]
    [Google Scholar]
  7. Martinez JL, Baquero F. Mutation frequencies and antibiotic resistance. Antimicrob Agents Chemother 2000; 44:1771–1777 [View Article] [PubMed]
    [Google Scholar]
  8. Tham KC, Kanaar R, Lebbink JHG. Mismatch repair and homeologous recombination. DNA Repair (Amst) 2016; 38:75–83 [View Article] [PubMed]
    [Google Scholar]
  9. Fishel R. Mismatch repair. J Biol Chem 2015; 290:26395–26403 [View Article] [PubMed]
    [Google Scholar]
  10. Kunkel TA, Erie DA. DNA Mismatch repair. Annu Rev Biochem 2005; 74:681–710 [View Article]
    [Google Scholar]
  11. Marinus MG. DNA Mismatch repair. EcoSal Plus 2012; 5: [View Article] [PubMed]
    [Google Scholar]
  12. Crouse GF. Non-canonical actions of mismatch repair. DNA Repair (Amst) 2016; 38:102–109 [View Article] [PubMed]
    [Google Scholar]
  13. Kunkel TA. Celebrating DNA’s Repair Crew. Cell 2015; 163:1301–1303 [View Article] [PubMed]
    [Google Scholar]
  14. Modrich P. Mechanisms and biological effects of mismatch repair. Annu Rev Genet 1991; 25:229–253 [View Article] [PubMed]
    [Google Scholar]
  15. Lahue RS, Au KG, Modrich P. DNA mismatch correction in a defined system. Science 1989; 245:160–164 [View Article]
    [Google Scholar]
  16. Liu J, Lee R, Britton BM, London JA, Yang K et al. MutL sliding clamps coordinate exonuclease-independent Escherichia coli mismatch repair. Nat Commun 2019; 10:1–155294. [View Article] [PubMed]
    [Google Scholar]
  17. Marinus MG, Morris NR. Isolation of deoxyribonucleic acid methylase mutants of Escherichia coli K-12. J Bacteriol 1973; 114:1143–1150 [View Article] [PubMed]
    [Google Scholar]
  18. Geier GE, Modrich P. Recognition sequence of the dam methylase of Escherichia coli K12 and mode of cleavage of Dpn I endonuclease. Journal of Biological Chemistry 1979; 254:1408–1413 [View Article]
    [Google Scholar]
  19. Schofield MJ, Hsieh P. DNA mismatch repair: molecular mechanisms and biological function. Annu Rev Microbiol 2003; 57:579–608 [View Article] [PubMed]
    [Google Scholar]
  20. López de Saro FJ, O’Donnell M. Interaction of the beta sliding clamp with MutS, ligase, and DNA polymerase I. Proc Natl Acad Sci U S A 2001; 98:8376–8380 [View Article] [PubMed]
    [Google Scholar]
  21. Li F, Liu Q, Chen Y-Y, Yu Z-N, Zhang Z-P et al. Escherichia coli mismatch repair protein MutL interacts with the clamp loader subunits of DNA polymerase III. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2008; 637:101–110 [View Article]
    [Google Scholar]
  22. Oliver A, Mena A. Bacterial hypermutation in cystic fibrosis, not only for antibiotic resistance. Clin Microbiol Infect 2010; 16:798–808 [View Article] [PubMed]
    [Google Scholar]
  23. Namadurai S, Jain D, Kulkarni DS, Tabib CR, Friedhoff P et al. The C-Terminal Domain of the MutL homolog from neisseria gonorrhoeae forms an inverted homodimer. PLoS One 2010; 5:e13726 [View Article] [PubMed]
    [Google Scholar]
  24. Putnam CD. Evolution of the methyl directed mismatch repair system in Escherichia coli. DNA Repair (Amst) 2016; 38:32–41 [View Article] [PubMed]
    [Google Scholar]
  25. Lenhart JS, Pillon MC, Guarné A, Biteen JS, Simmons LA. Mismatch repair in Gram-positive bacteria. Res Microbiol 2016; 167:4–12 [View Article] [PubMed]
    [Google Scholar]
  26. Lenhart JS, Schroeder JW, Walsh BW, Simmons LA. DNA repair and genome maintenance in Bacillus subtilis. Microbiol Mol Biol Rev 2012; 76:530–564 [View Article] [PubMed]
    [Google Scholar]
  27. Eisen JA, Hanawalt PC. A phylogenomic study of DNA repair genes, proteins, and processes. Mutat Res 1999; 435:171–213 [View Article] [PubMed]
    [Google Scholar]
  28. Gross J, Passmore IJ, Chung JCS, Rzhepishevska O, Ramstedt M et al. Universal soldier: Pseudomonas aeruginosa — an opportunistic generalist. Front Biol 2013; 8:387–394 [View Article]
    [Google Scholar]
  29. Gross J, Welch M. Why is Pseudomonas aeruginosa a common cause of infection in individuals with cystic fibrosis?. Future Microbiol 2013; 8:697–699 [View Article] [PubMed]
    [Google Scholar]
  30. López-Causapé C, Oliver A. Insights into the evolution of the mutational resistome of Pseudomonas aeruginosa in cystic fibrosis. Future Microbiol 2017; 12:1445–1448 [View Article] [PubMed]
    [Google Scholar]
  31. Oliver A, Cantón R, Campo P, Baquero F, Blázquez J. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 2000; 288:1251–1254 [View Article] [PubMed]
    [Google Scholar]
  32. Colque CA, Albarracín Orio AG, Feliziani S, Marvig RL, Tobares AR et al. Hypermutator Pseudomonas aeruginosa exploits multiple genetic pathways to develop multidrug resistance during long-term infections in the airways of cystic fibrosis patients. Antimicrob Agents Chemother 2020; 64:e02142-19. [View Article] [PubMed]
    [Google Scholar]
  33. Workentine ML, Sibley CD, Glezerson B, Purighalla S, Norgaard-Gron JC et al. Phenotypic heterogeneity of Pseudomonas aeruginosa populations in a cystic fibrosis patient. PLoS One 2013; 8:e60225 [View Article] [PubMed]
    [Google Scholar]
  34. Grekov I, Thöming JG, Kordes A, Häussler S. Evolution of Pseudomonas aeruginosa toward higher fitness under standard laboratory conditions. ISME J 2021; 15:1165–1177 [View Article] [PubMed]
    [Google Scholar]
  35. Rees VE, Deveson Lucas DS, López-Causapé C, Huang Y, Kotsimbos T et al. Characterization of hypermutator Pseudomonas aeruginosa isolates from patients with cystic fibrosis in Australia. Antimicrob Agents Chemother 2019; 63: [View Article]
    [Google Scholar]
  36. Monti MR, Morero NR, Miguel V, Argaraña CE. nfxB as a novel target for analysis of mutation spectra in Pseudomonas aeruginosa. PLoS One 2013; 8:e66236. [View Article] [PubMed]
    [Google Scholar]
  37. Stickland HG, Davenport PW, Lilley KS, Griffin JL, Welch M. Mutation of nfxB causes global changes in the physiology and metabolism of Pseudomonas aeruginosa. J Proteome Res 2010; 9:2957–2967 [View Article] [PubMed]
    [Google Scholar]
  38. Doberenz S, Eckweiler D, Reichert O, Jensen V, Bunk B et al. Identification of a Pseudomonas aeruginosa PAO1 DNA methyltransferase, its targets, and physiological roles. MBio 2017; 8:e02312-16. [View Article] [PubMed]
    [Google Scholar]
  39. Valot B, Guyeux C, Rolland JY, Mazouzi K, Bertrand X et al. What it takes to be a Pseudomonas aeruginosa? The core genome of the opportunistic pathogen updated. PLoS One 2015; 10:e0126468. [View Article] [PubMed]
    [Google Scholar]
  40. Kolodner RD. A personal historical view of DNA mismatch repair with an emphasis on eukaryotic DNA mismatch repair. DNA Repair (Amst) 2016; 38:3–13 [View Article] [PubMed]
    [Google Scholar]
  41. Schmidt TT, Hombauer H. Visualization of mismatch repair complexes using fluorescence microscopy. DNA Repair (Amst) 2016; 38:58–67 [View Article] [PubMed]
    [Google Scholar]
  42. Pavlov YI, Mian IM, Kunkel TA. Evidence for preferential mismatch repair of lagging strand DNA replication errors in yeast. Curr Biol 2003; 13:744–748 [View Article] [PubMed]
    [Google Scholar]
  43. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 2000; 406:959–964 [View Article] [PubMed]
    [Google Scholar]
  44. Ghodgaonkar MM, Lazzaro F, Olivera-Pimentel M, Artola-Borán M, Cejka P et al. Ribonucleotides misincorporated into DNA act as strand-discrimination signals in eukaryotic mismatch repair. Mol Cell 2013; 50:323–332 [View Article] [PubMed]
    [Google Scholar]
  45. Lujan SA, Williams JS, Clausen AR, Clark AB, Kunkel TA. Ribonucleotides are signals for mismatch repair of leading-strand replication errors. Mol Cell 2013; 50:437–443 [View Article] [PubMed]
    [Google Scholar]
  46. Repmann S, Olivera-Harris M, Jiricny J. Influence of oxidized purine processing on strand directionality of mismatch repair. J Biol Chem 2015; 290:9986–9999 [View Article] [PubMed]
    [Google Scholar]
  47. Pluciennik A, Dzantiev L, Iyer RR, Constantin N, Kadyrov FA et al. PCNA function in the activation and strand direction of MutLα endonuclease in mismatch repair. Proc Natl Acad Sci U S A 2010; 107:16066–16071 [View Article] [PubMed]
    [Google Scholar]
  48. Pillon MC, Miller JH, Guarné A. The endonuclease domain of MutL interacts with the β sliding clamp. DNA Repair (Amst) 2011; 10:87–93 [View Article] [PubMed]
    [Google Scholar]
  49. Pillon MC, Lorenowicz JJ, Uckelmann M, Klocko AD, Mitchell RR et al. Structure of the Endonuclease Domain of MutL: Unlicensed to Cut. Mol Cell 2010; 39:145–151 [View Article] [PubMed]
    [Google Scholar]
  50. van den Broek D, Chin-A-Woeng TFC, Bloemberg GV, Lugtenberg BJJ. Role of RpoS and MutS in phase variation of Pseudomonas sp. PCL1171. Microbiology (Reading) 2005; 151:1403–1408 [View Article] [PubMed]
    [Google Scholar]
  51. Gutierrez A, Laureti L, Crussard S, Abida H, Rodríguez-Rojas A et al. β-lactam antibiotics promote bacterial mutagenesis via an RpoS-mediated reduction in replication fidelity. Nat Commun 2013; 4:1–91610. [View Article] [PubMed]
    [Google Scholar]
  52. Pezza RJ, Smania AM, Barra JL, Argaraña CE. Nucleotides and heteroduplex DNA preserve the active conformation of Pseudomonas aeruginosa MutS by preventing protein oligomerization. Biochem J 2002; 361:87–95 [View Article] [PubMed]
    [Google Scholar]
  53. Mendillo ML, Putnam CD, Kolodner RD. Escherichia coli MutS tetramerization domain structure reveals that stable dimers but not tetramers are essential for DNA mismatch repair in vivo. J Biol Chem 2007; 282:16345–16354 [View Article] [PubMed]
    [Google Scholar]
  54. Miguel V, Monti MR, Argaraña CE. The role of MutS oligomers on Pseudomonas aeruginosa mismatch repair system activity. DNA Repair (Amst) 2008; 7:1799–1808 [View Article] [PubMed]
    [Google Scholar]
  55. Margara LM, Fernández MM, Malchiodi EL, Argaraña CE, Monti MR. MutS regulates access of the error-prone DNA polymerase Pol IV to replication sites: A novel mechanism for maintaining replication fidelity. Nucleic Acids Res 2016; 44:7700–7713 [View Article] [PubMed]
    [Google Scholar]
  56. Oliver A, Baquero F, Blázquez J. The mismatch repair system (mutS, mutL and uvrD genes) in Pseudomonas aeruginosa: molecular characterization of naturally occurring mutants. Mol Microbiol 2002; 43:1641–1650 [View Article] [PubMed]
    [Google Scholar]
  57. McGrath AE, Martyn AP, Whittell LR, Dawes FE, Beck JL et al. Crystal structures and biochemical characterization of DNA sliding clamps from three Gram-negative bacterial pathogens. J Struct Biol 2018; 204:396–405 [View Article] [PubMed]
    [Google Scholar]
  58. Dalrymple BP, Kongsuwan K, Wijffels G, Dixon NE, Jennings PA. A universal protein-protein interaction motif in the eubacterial DNA replication and repair systems. Proc Natl Acad Sci U S A 2001; 98:11627–11632 [View Article] [PubMed]
    [Google Scholar]
  59. Simmons LA, Davies BW, Grossman AD, Walker GC. Beta clamp directs localization of mismatch repair in Bacillus subtilis. Mol Cell 2008; 29:291–301 [View Article] [PubMed]
    [Google Scholar]
  60. Monti MR, Miguel V, Borgogno MV, Argaraña CE. Functional analysis of the interaction between the mismatch repair protein MutS and the replication processivity factor β clamp in Pseudomonas aeruginosa. DNA Repair (Amst) 2012; 11:463–469 [View Article] [PubMed]
    [Google Scholar]
  61. López de Saro FJ, Marinus MG, Modrich P, O’Donnell M. The beta sliding clamp binds to multiple sites within MutL and MutS. J Biol Chem 2006; 281:14340–14349 [View Article] [PubMed]
    [Google Scholar]
  62. Tessmer I, Yang Y, Zhai J, Du C, Hsieh P et al. Mechanism of MutS searching for DNA mismatches and signaling repair. J Biol Chem 2008; 283:36646–36654 [View Article] [PubMed]
    [Google Scholar]
  63. Groothuizen FS, Sixma TK. The conserved molecular machinery in DNA mismatch repair enzyme structures. DNA Repair (Amst) 2016; 38:14–23 [View Article] [PubMed]
    [Google Scholar]
  64. Lebbink JHG, Georgijevic D, Natrajan G, Fish A, Winterwerp HHK et al. Dual role of MutS glutamate 38 in DNA mismatch discrimination and in the authorization of repair. EMBO J 2006; 25:409–419 [View Article] [PubMed]
    [Google Scholar]
  65. Fukui K. DNA mismatch repair in eukaryotes and bacteria. J Nucleic Acids 2010; 2010:16260512. [View Article] [PubMed]
    [Google Scholar]
  66. Lamers MH, Perrakis A, Enzlin JH, Winterwerp HH, de Wind N et al. The crystal structure of DNA mismatch repair protein MutS binding to a G x T mismatch. Nature 2000; 407:711–717 [View Article] [PubMed]
    [Google Scholar]
  67. Hingorani MM. Mismatch binding, ADP-ATP exchange and intramolecular signaling during mismatch repair. DNA Repair (Amst) 2016; 38:24–31 [View Article] [PubMed]
    [Google Scholar]
  68. Allen DJ, Makhov A, Grilley M, Taylor J, Thresher R et al. MutS mediates heteroduplex loop formation by a translocation mechanism. EMBO J 1997; 16:4467–4476 [View Article] [PubMed]
    [Google Scholar]
  69. Bjornson KP, Allen DJ, Modrich P. Modulation of MutS ATP hydrolysis by DNA cofactors. Biochemistry 2000; 39:3176–3183 [View Article] [PubMed]
    [Google Scholar]
  70. Junop MS, Obmolova G, Rausch K, Hsieh P, Yang W. Composite active site of an ABC ATPase: MutS uses ATP to verify mismatch recognition and authorize DNA repair. Mol Cell 2001; 7:1–12 [View Article] [PubMed]
    [Google Scholar]
  71. Sanders LH, Devadoss B, Raja GV, O’Connor J, Su S et al. Epistatic roles for Pseudomonas aeruginosa MutS and DinB (DNA Pol IV) in coping with reactive oxygen species-induced DNA damage. PLoS One 2011; 6:e18824 [View Article] [PubMed]
    [Google Scholar]
  72. Kath JE, Jergic S, Heltzel JMH, Jacob DT, Dixon NE et al. Polymerase exchange on single DNA molecules reveals processivity clamp control of translesion synthesis. Proc Natl Acad Sci U S A 2014; 111:7647–7652 [View Article] [PubMed]
    [Google Scholar]
  73. Heltzel JMH, Maul RW, Scouten Ponticelli SK, Sutton MD. A model for DNA polymerase switching involving a single cleft and the rim of the sliding clamp. Proc Natl Acad Sci U S A 2009; 106:12664–12669 [View Article] [PubMed]
    [Google Scholar]
  74. Indiani C, McInerney P, Georgescu R, Goodman MF, O’Donnell M. A sliding-clamp toolbelt binds high- and low-fidelity DNA polymerases simultaneously. Mol Cell 2005; 19:805–815 [View Article] [PubMed]
    [Google Scholar]
  75. Ikeda M, Furukohri A, Philippin G, Loechler E, Akiyama MT et al. DNA polymerase IV mediates efficient and quick recovery of replication forks stalled at N2-dG adducts. Nucleic Acids Res 2014; 42:8461–8472 [View Article] [PubMed]
    [Google Scholar]
  76. Indiani C, Langston LD, Yurieva O, Goodman MF, O’Donnell M. Translesion DNA polymerases remodel the replisome and alter the speed of the replicative helicase. Proc Natl Acad Sci U S A 2009; 106:6031–6038 [View Article] [PubMed]
    [Google Scholar]
  77. López de Saro FJ. Regulation of interactions with sliding clamps during DNA replication and repair. Curr Genomics 2009; 10:206–215 [View Article] [PubMed]
    [Google Scholar]
  78. Grenga L, Gervasi F, Paolozzi L, Scortichini M, Ghelardini P. Characterisation of the MutS and MutL Proteins from the Pseudomonas avellanae Mismatch Repair (MMR) System. Open Microbiol J 2012; 6:45–52 [View Article] [PubMed]
    [Google Scholar]
  79. Joshi A, Rao BJ. ATP hydrolysis induces expansion of MutS contacts on heteroduplex: a case for MutS treadmilling?. Biochemistry 2002; 41:3654–3666 [View Article] [PubMed]
    [Google Scholar]
  80. Wang H, Yang Y, Schofield MJ, Du C, Fridman Y et al. DNA bending and unbending by MutS govern mismatch recognition and specificity. Proc Natl Acad Sci U S A 2003; 100:14822–14827 [View Article] [PubMed]
    [Google Scholar]
  81. Friedhoff P, Li P, Gotthardt J. Protein-protein interactions in DNA mismatch repair. DNA Repair (Amst) 2016; 38:50–57 [View Article] [PubMed]
    [Google Scholar]
  82. Galio L, Bouquet C, Brooks P. ATP hydrolysis-dependent formation of a dynamic ternary nucleoprotein complex with MutS and MutL. Nucleic Acids Res 1999; 27:2325–2331 [View Article] [PubMed]
    [Google Scholar]
  83. Correa EME, Martina MA, De Tullio L, Argaraña CE, Barra JL. Some amino acids of the Pseudomonas aeruginosa MutL D(Q/M)HA(X)(2)E(X)(4)E conserved motif are essential for the in vivo function of the protein but not for the in vitro endonuclease activity. DNA Repair (Amst) 2011; 10:1106–1113 [View Article] [PubMed]
    [Google Scholar]
  84. Correa EME, De Tullio L, Vélez PS, Martina MA, Argaraña CE et al. Analysis of DNA structure and sequence requirements for Pseudomonas aeruginosa MutL endonuclease activity. J Biochem 2013; 154:505–511 [View Article] [PubMed]
    [Google Scholar]
  85. Shen M, Zhang H, Shen W, Zou Z, Lu S et al. Pseudomonas aeruginosa MutL promotes large chromosomal deletions through non-homologous end joining to prevent bacteriophage predation. Nucleic Acids Res 2018; 46:4505–4514 [View Article] [PubMed]
    [Google Scholar]
  86. Dutta R, Inouye M. GHKL, an emergent ATPase/kinase superfamily. Trends Biochem Sci 2000; 25:24–28 [View Article] [PubMed]
    [Google Scholar]
  87. Ban C, Yang W. Crystal structure and ATPase activity of MutL: Implications for DNA repair and mutagenesis. Cell 1998; 95:541–552 [View Article] [PubMed]
    [Google Scholar]
  88. Ban C, Junop M, Yang W. Transformation of MutL by ATP binding and hydrolysis: A switch in DNA mismatch repair. Cell 1999; 97:85–97 [View Article] [PubMed]
    [Google Scholar]
  89. Kim TG, Cha HJ, Lee HJ, Heo S-D, Choi KY et al. Structural insights of the nucleotide-dependent conformational changes of Thermotoga maritima MutL using small-angle X-ray scattering analysis. J Biochem 2009; 145:199–206 [View Article] [PubMed]
    [Google Scholar]
  90. Miguel V, Correa EME, De Tullio L, Barra JL, Argaraña CE et al. Analysis of the interaction interfaces of the N-terminal domain from Pseudomonas aeruginosa MutL. PLoS One 2013; 8:e69907 [View Article] [PubMed]
    [Google Scholar]
  91. Fukui K, Nishida M, Nakagawa N, Masui R, Kuramitsu S. Bound nucleotide controls the endonuclease activity of mismatch repair enzyme MutL. J Biol Chem 2008; 283:12136–12145 [View Article] [PubMed]
    [Google Scholar]
  92. Duppatla V, Bodda C, Urbanke C, Friedhoff P, Rao DN. The C-terminal domain is sufficient for endonuclease activity of Neisseria gonorrhoeae MutL. Biochem J 2009; 423:265–277 [View Article] [PubMed]
    [Google Scholar]
  93. Mauris J, Evans TC. Adenosine triphosphate stimulates Aquifex aeolicus MutL endonuclease activity. PLoS One 2009; 4:e7175. [View Article] [PubMed]
    [Google Scholar]
  94. Kadyrov FA, Dzantiev L, Constantin N, Modrich P. Endonucleolytic function of MutLalpha in human mismatch repair. Cell 2006; 126:297–308 [View Article] [PubMed]
    [Google Scholar]
  95. Kadyrov FA, Holmes SF, Arana ME, Lukianova OA, O’Donnell M et al. Saccharomyces cerevisiae MutLalpha is a mismatch repair endonuclease. J Biol Chem 2007; 282:37181–37190 [View Article] [PubMed]
    [Google Scholar]
  96. Stephanou NC, Gao F, Bongiorno P, Ehrt S, Schnappinger D et al. Mycobacterial nonhomologous end joining mediates mutagenic repair of chromosomal double-strand DNA breaks. J Bacteriol 2007; 189:5237–5246 [View Article] [PubMed]
    [Google Scholar]
  97. Deriano L, Roth DB. Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage. Annu Rev Genet 2013; 47:433–455 [View Article] [PubMed]
    [Google Scholar]
  98. Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 2010; 79:181–211 [View Article] [PubMed]
    [Google Scholar]
  99. Courcelle J, Wendel BM, Livingstone DD, Courcelle CT. RecBCD is required to complete chromosomal replication: Implications for double-strand break frequencies and repair mechanisms. DNA Repair (Amst) 2015; 32:86–95 [View Article] [PubMed]
    [Google Scholar]
  100. Jasin M, Haber JE. The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair. DNA Repair (Amst) 2016; 44:6–16 [View Article] [PubMed]
    [Google Scholar]
  101. Shen L, Wang Q, Liu R, Chen Z, Zhang X et al. LncRNA lnc-RI regulates homologous recombination repair of DNA double-strand breaks by stabilizing RAD51 mRNA as a competitive endogenous RNA. Nucleic Acids Res 2018; 46:717–729 [View Article] [PubMed]
    [Google Scholar]
  102. Bruni R, Martin D, Jiricny J. D(GATC) sequences influence Escherichia coli mismatch repair in a distance-dependent manner from positions both upstream and downstream of the mismatch. Nucleic Acids Res 1988; 16:4875–4890 [View Article] [PubMed]
    [Google Scholar]
  103. Grilley M, Welsh KM, Su SS, Modrich P. Isolation and characterization of the Escherichia coli mutL gene product. J Biol Chem 1989; 264:1000–1004 [View Article] [PubMed]
    [Google Scholar]
  104. Schofield MJ, Nayak S, Scott TH, Du C, Hsieh P. Interaction of Escherichia coli MutS and MutL at a DNA Mismatch. J Biol Chem 2001; 276:28291–28299 [View Article] [PubMed]
    [Google Scholar]
  105. Fukui K, Baba S, Kumasaka T, Yano T. Structural features and functional dependency on β-Clamp define distinct subfamilies of bacterial mismatch repair endonuclease MutL. J Biol Chem 2016; 291:16990–17000 [View Article] [PubMed]
    [Google Scholar]
  106. Wang YM, Liu SL, Liu GR, Wan YL, Wang X et al. The mutL mutation in Pseudomonas aeruginosa isolates reveals multidrug-resistant traits and possible evolutionary trends. J Int Med Res 2010; 38:2011–2022 [View Article] [PubMed]
    [Google Scholar]
  107. Jacquelín DK, Filiberti A, Argaraña CE, Barra JL. Pseudomonas aeruginosa MutL protein functions in Escherichia coli. Biochem J 2005; 388:879–887 [View Article] [PubMed]
    [Google Scholar]
  108. Dao V, Modrich P. Mismatch-, MutS-, MutL-, and helicase II-dependent unwinding from the single-strand break of an incised heteroduplex. J Biol Chem 1998; 273:9202–9207 [View Article] [PubMed]
    [Google Scholar]
  109. Yamaguchi M, Dao V, Modrich P. MutS and MutL activate DNA helicase II in a mismatch-dependent manner. J Biol Chem 1998; 273:9197–9201 [View Article] [PubMed]
    [Google Scholar]
  110. Guarné A, Ramon-Maiques S, Wolff EM, Ghirlando R, Hu X et al. Structure of the MutL C-terminal domain: a model of intact MutL and its roles in mismatch repair. EMBO J 2004; 23:4134–4145 [View Article] [PubMed]
    [Google Scholar]
  111. Ukkivi K, Kivisaar M. Involvement of transcription-coupled repair factor Mfd and DNA helicase UvrD in mutational processes in Pseudomonas putida. DNA Repair (Amst) 2018; 72:18–27 [View Article] [PubMed]
    [Google Scholar]
  112. Khan M, Stapleton F, Summers S, Rice SA, Willcox MDP. Antibiotic resistance characteristics of Pseudomonas aeruginosa Isolated from Keratitis in Australia and India. Antibiotics (Basel) 2020; 9:600E600. [View Article] [PubMed]
    [Google Scholar]
  113. Kang J, Blaser MJ. UvrD helicase suppresses recombination and DNA damage-induced deletions. J Bacteriol 2006; 188:5450–5459 [View Article] [PubMed]
    [Google Scholar]
  114. Mandsberg LF, Ciofu O, Kirkby N, Christiansen LE, Poulsen HE et al. Antibiotic resistance in Pseudomonas aeruginosa strains with increased mutation frequency due to inactivation of the DNA oxidative repair system. Antimicrob Agents Chemother 2009; 53:2483–2491 [View Article] [PubMed]
    [Google Scholar]
  115. Oliver A, Sánchez JM, Blázquez J. Characterization of the GO system of Pseudomonas aeruginosa. FEMS Microbiol Lett 2002; 217:31–35 [View Article] [PubMed]
    [Google Scholar]
  116. Sanders LH, Sudhakaran J, Sutton MD. The GO system prevents ROS-induced mutagenesis and killing in Pseudomonas aeruginosa. FEMS Microbiol Lett 2009; 294:89–96 [View Article] [PubMed]
    [Google Scholar]
  117. Rodríguez-Rojas A, Blázquez J. The Pseudomonas aeruginosa PfpI gene plays an antimutator role and provides general stress protection. J Bacteriol 2009; 191:844–850 [View Article] [PubMed]
    [Google Scholar]
  118. Tse ECM, Zwang TJ, Barton JK. The Oxidation State of [4Fe4S] Clusters Modulates the DNA-Binding Affinity of DNA Repair Proteins. J Am Chem Soc 2017; 139:12784–12792 [View Article] [PubMed]
    [Google Scholar]
  119. Banda DM, Nuñez NN, Burnside MA, Bradshaw KM, David SS. Repair of 8-oxoG:A mismatches by the MUTYH glycosylase: Mechanism, metals and medicine. Free Radic Biol Med 2017; 107:202–215 [View Article] [PubMed]
    [Google Scholar]
  120. Boon EM, Livingston AL, Chmiel NH, David SS, Barton JK. DNA-mediated charge transport for DNA repair. Proc Natl Acad Sci U S A 2003; 100:12543–12547 [View Article] [PubMed]
    [Google Scholar]
  121. Boal AK, Yavin E, Barton JK. DNA repair glycosylases with a [4Fe-4S] cluster: A redox cofactor for DNA-mediated charge transport?. J Inorg Biochem 2007; 101:1913–1921 [View Article] [PubMed]
    [Google Scholar]
  122. Boal AK, Yavin E, Lukianova OA, O’Shea VL, David SS et al. DNA-bound redox activity of DNA repair glycosylases containing [4Fe-4S] clusters. Biochemistry 2005; 44:8397–8407 [View Article] [PubMed]
    [Google Scholar]
  123. Boal AK, Genereux JC, Sontz PA, Gralnick JA, Newman DK et al. Redox signaling between DNA repair proteins for efficient lesion detection. Proc Natl Acad Sci U S A 2009; 106:15237–15242 [View Article] [PubMed]
    [Google Scholar]
  124. Lin JC, Singh RRP, Cox DL. Theoretical study of DNA damage recognition via electron transfer from the [4Fe-4S] complex of MutY. Biophys J 2008; 95:3259–3268 [View Article] [PubMed]
    [Google Scholar]
  125. Grodick MA, Muren NB, Barton JK. DNA charge transport within the cell. Biochemistry 2015; 54:962–973 [View Article] [PubMed]
    [Google Scholar]
  126. Genereux JC, Barton JK. Mechanisms for DNA charge transport. Chem Rev 2010; 110:1642–1662 [View Article] [PubMed]
    [Google Scholar]
  127. Aparicio T, Nyerges A, Nagy I, Pal C, Martínez-García E et al. Mismatch repair hierarchy of Pseudomonas putida revealed by mutagenic ssDNA recombineering of the pyrF gene. Environ Microbiol 2020; 22:45–58 [View Article] [PubMed]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.001120
Loading
/content/journal/micro/10.1099/mic.0.001120
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error