RT Journal Article SR Electronic(1) A1 Harwood, Thomas V. A1 Risser, Douglas D.YR 2021 T1 The primary transcriptome of hormogonia from a filamentous cyanobacterium defined by cappable-seq JF Microbiology, VO 167 IS 11 OP SP 001111 DO https://doi.org/10.1099/mic.0.001111 PB Microbiology Society, SN 1465-2080, AB Hormogonia are motile filaments produced by many filamentous cyanobacteria that function in dispersal, phototaxis and the establishment of nitrogen-fixing symbioses. The gene regulatory network promoting hormogonium development is initiated by the hybrid histidine kinase HrmK, which in turn activates a sigma factor cascade consisting of SigJ, SigC and SigF. In this study, cappable-seq was employed to define the primary transcriptome of developing hormogonia in the model filamentous cyanobacterium Nostoc punctiforme ATCC 29133 in both the wild-type, and sigJ, sigC and sigF mutant strains 6 h post-hormogonium induction. A total of 1544 transcriptional start sites (TSSs) were identified that are associated with protein-coding genes and are expressed at levels likely to lead to biologically relevant transcripts in developing hormogonia. TSS expression among the sigma-factor deletion strains was highly consistent with previously reported gene expression levels from RNAseq experiments, and support the current working model for the role of these genes in hormogonium development. Analysis of SigJ-dependent TSSs corroborated the presence of the previously identified J-Box in the −10 region of SigJ-dependent promoters. Additionally, the data presented provides new insights on sequence conservation within the −10 regions of both SigC- and SigF-dependent promoters, and demonstrates that SigJ and SigC coordinate complex co-regulation not only of hormogonium-specific genes at different loci, but within an individual operon. As progress continues on defining the hormogonium gene regulatory network, this data set will serve as a valuable resource., UL https://www.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.001111