1887

Abstract

Arid plant communities provide variable diets that can affect digestive microbial communities of free-foraging ruminants. Thus, we used next-generation sequencing of 16S and 18S rDNA to characterize microbial communities in the rumen (regurgitated digesta) and large intestine (faeces) and diet composition of lactating creole goats from five flocks grazing in native plant communities in the Sonoran Desert in the rainy season. The bacterial communities in the rumen and large intestine of the five flocks had similar alpha diversity (Chao1, Shannon, and Simpson indices). However, bacterial community compositions were different: a bacterial community dominated by in the rumen transitioned to a community dominated by in the large intestine. Bacterial communities of rumen were similar across flocks; similarly occurred with large-intestine communities. had a minimum presence in the goat digestive tract. We detected phylum , , and as the main fungi and protozoa. Analyses suggested different diet compositions; forbs and grasses composed the bulk of plants in the rumen and forbs and shrubs in faeces. Therefore, lactating goats consuming different diets in the Sonoran Desert in the rainy season share a similar core bacterial community in the rumen and another in the large intestine and present low archaeal communities.

Funding
This study was supported by the:
  • CONACYT-CIBNOR (Award NONE)
    • Principle Award Recipient: NotApplicable
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001092
2021-10-18
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/167/10/mic001092.html?itemId=/content/journal/micro/10.1099/mic.0.001092&mimeType=html&fmt=ahah

References

  1. Van Soest PJ. Nutritional Ecology of the Ruminant, 2nd ed. Ithaca: Cornell University; 1994 [View Article]
    [Google Scholar]
  2. Morgavi DP, Kelly WJ, Janssen PH, Attwood GT. Rumen microbial (meta)genomics and its application to ruminant production. Animal 2013; 7 Suppl 1:184–201 [View Article] [PubMed]
    [Google Scholar]
  3. Han X, Yang Y, Yan H, Wang X, Qu L et al. Rumen bacterial diversity of 80 to 110-day-old goats using 16S rrna sequencing. PLoS One 2015; 10:e0117811 [View Article]
    [Google Scholar]
  4. Do TH, Dao TK, Nguyen KHV, Le NG, Nguyen TNP. Metagenomic analysis of bacterial community structure and diversity of lignocellulolytic bacteria in Vietnamese native goat rumen. Asian-Australas J Anim Sci 2018; 31:738–747 [View Article] [PubMed]
    [Google Scholar]
  5. Lei Y, Zhang K, Guo M, Li G, Li C et al. Exploring the spatial-temporal microbiota of compound stomachs in a pre-weaned goat model. Front Microbiol 2018; 9:1846 [View Article] [PubMed]
    [Google Scholar]
  6. Lei Z, Zhang K, Li C, Jiao T, Wu J. Ruminal metagenomic analyses of goat data reveals potential functional microbiota by supplementation with essential oil-cobalt complexes. BMC Microbiol 2019; 19:30 [View Article] [PubMed]
    [Google Scholar]
  7. Li B, Zhang K, Li C, Wang X, Chen Y et al. Characterization and comparison of microbiota in the gastrointestinal tracts of the goat (Capra hircus) during preweaning development. Front Microbiol 2019; 10:2125 [View Article]
    [Google Scholar]
  8. Gruninger RJ, Sensen CW, McAllister TA, Forster RJ. Diversity of rumen bacteria in Canadian cervids. PLoS One 2014; 9:e89683 [View Article]
    [Google Scholar]
  9. Henderson G, Cox F, Ganesh S, Jonker A, Young W. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep 2015; 5:14567 [View Article] [PubMed]
    [Google Scholar]
  10. Li ZP, Liu HL, Li GY, Bao K, Wang KY. Molecular diversity of rumen bacterial communities from tannin-rich and fiber-rich forage fed domestic Sika deer (Cervus nippon) in China. BMC Microbiol 2013; 13:151 [View Article] [PubMed]
    [Google Scholar]
  11. Tapio I, Shingfield KJ, McKain N, Bonin A, Fischer D. Oral sample as non-invasive proxies for assessing the composition of the rumen microbial community. PLoS ONE 2016; 11:e0151220 [View Article] [PubMed]
    [Google Scholar]
  12. Mu Y, Lin X, Wang Z, Hou Q, Wang Y et al. High-production dairy cattle exhibit different rumen and fecal bacterial community and rumen metabolite profile than low-production cattle. Microbiologyopen 2019; 8:e00673 [View Article]
    [Google Scholar]
  13. Wang L, Wu D, Yan T, Wang L. The impact of rumen cannulation on the microbial community of goat rumens as measured using 16S rRNA high-throughput sequencing. J Anim Physiol Anim Nutr (Berl) 2018; 102:175–183 [View Article] [PubMed]
    [Google Scholar]
  14. Herrero M, Havlík P, Valin H, Notenbaert A, Rufino MC. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc Natl Acad Sci U S A 2013; 110:20888–20893 [View Article] [PubMed]
    [Google Scholar]
  15. Ramírez-Orduña R, Ramírez RG, Romero-Vadillo E, González-Rodríguez H, Armenta-Quintana JA. Diet and nutrition of range goats on a sarcocaulescent shrubland from Baja California Sur, Mexico. Small Rumin Res 2008; 76:166–176 [View Article]
    [Google Scholar]
  16. Armenta-Quintana JA, Ramírez-Orduña R, Ramírez RG, Hernández CHE, Ramírez-Orduña JM et al. Similarity indices of a sarcocaulescent scrubland and browsing goats diet in Northwest Mexico. Trop Subtrop Agroecosyst 2009; 11:81–86
    [Google Scholar]
  17. Patra AK, Saxena J. Dietary phytochemicals as rumen modifiers: a review of the effect on microbial populations. Antonie van Leeuwenhoek 2009; 96:363–375 [View Article] [PubMed]
    [Google Scholar]
  18. Estell RE. Coping with shrubs secondary metabolites by ruminants. Small Rumin Res 2010; 94:1–9 [View Article]
    [Google Scholar]
  19. Mellado M. Dietary selection by goats and the implications for range management in the Chihuahuan Desert: a review. Rangel J 2016; 38:331–341 [View Article]
    [Google Scholar]
  20. Animut G, Puchala R, Goetch AL, Patra AK, Sahlu T. Methane emission by goats consuming diets with different levels of condensed tannins form lespedeza. Anim Feed Sci Technol 2008; 144:212–227 [View Article]
    [Google Scholar]
  21. Bhatta R, Uyeno U, Tajima K, Takenaka A, Yabumoto Y. Difference in the nature of tannins on in vitro ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal populations. J Dairy Sci 2009; 92:5512–5522 [View Article] [PubMed]
    [Google Scholar]
  22. Rebman JP, Gibson J, Rich K. Annotated Checklist of the Vascular Plant of Baja California, Mexico San Diego: Proceedings of the San Diego Society of Natural History Found 1984/San Diego Natural History Museum; 2016
    [Google Scholar]
  23. Rebman JP, Roberts NC. Baja California Plant Field Guide, 3rd ed. San Diego: San Diego Natural History Museum Publication/Sunbelt Publications Inc; 2012
    [Google Scholar]
  24. SMN Servicio Metereológico Nacional. Información estadística climatológica; 2019 https://smn.conagua.gob.mx/es/climatologia/informacion-climatologica/informacion-estadistica-climatologica accessed 13 Dec 2019
  25. León JL, Cancino J, Arriaga L. Asociaciones fisonómico-florístico y flora. Ortega A, Arriaga L. eds In La Reserva de la Biosfera El Vizcaíno en la Peninsula de Baja California Baja California Sur, Mexico: Centro de Investigaciones Biológicas de Baja California Sur AC; 1991 pp 145–176
    [Google Scholar]
  26. Montes-Sánchez JJ, Orduño-Cruz A, López-Amador R. Browse species trends in sarcocaulescent shrublands used by creole goats and other domestic herbivores. J Arid Environ 2021; 193:104592 [View Article]
    [Google Scholar]
  27. Montes-Sánchez JJ, López R, Orduño A, Real MA. Implementación del Proyecto Piloto. Servicio de consultoría para implementar un Plan Piloto de Buenas Prácticas en Caprinocultura Dentro de la Reserva de la Biosfera El Vizcaíno; 2018 https://docplayer.es/97049073-Servicio-de-consultoria-para-implementar-un-plan-piloto-de-buenas-practicas-en-caprinocultura-dentro-de-la-reserva-de-la-biosfera-el-vizcaino.html accessed 07 Nov 2018
  28. Malmuthuge N, Griebel PJ, Guan LL. Taxonomic identification of commensal bacteria associated with the mucosa and digesta throughout the gastrointestinal tracts of preweaned calves. Appl Environ Microbiol 2014; 80:2021–2028 [View Article] [PubMed]
    [Google Scholar]
  29. SAGARPA. Secretaria de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación Norma Oficial Mexicana nom-062-ZOO-1999, Especificaciones Técnicas para La Producción, Cuidado y Uso de Los Animales de Laboratorio; 2018 http://dof.gob.mx/nota_detalle.php?codigo=764738&fecha=18/06/2001 accessed 09 Jul 2018
  30. Caamal-Chan MG, Loera-Muro A, Castellanos T, Aguilar-Martínez C, Marfil-Santana MD et al. Analysis of the bacterial communities and endosymbionts of natural populations of Bemisia tabaci in several crop fields from Mexico semi-arid zone. Annals Microbiol 2019; 69:909–922 [View Article]
    [Google Scholar]
  31. Ewing B, Green P. Base-calling of automated sequences traces using phred II. Genome Res 1998; 8:186–194
    [Google Scholar]
  32. Ewing B, Hillier L, Wendl MC, Green P. Base-calling of automated sequencer traces using phred I: accuracy assessment. Genome Res 1998; 8:175–185 [View Article] [PubMed]
    [Google Scholar]
  33. Bushnell B, Rood J, Singer E. BBmerge: accurate paired shotgun read merging via overlap. PLoS ONE 2017; 12:e0185056 [View Article] [PubMed]
    [Google Scholar]
  34. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012; 28:1647–1649 [View Article] [PubMed]
    [Google Scholar]
  35. Randle-Boggis RJ, Helgason T, Sapp M, Ashton PD. Evaluating techniques for metagenome annotation using simulated sequence data. FEMS Microbiol Ecol 2016; 92:fiw095 [View Article] [PubMed]
    [Google Scholar]
  36. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR et al. Vegan: Community Ecology Package. R package version 2.2-0; 2014 http://CRAN.Rproject.org/package=vegan
  37. Hsieh TC, KH M, Chao A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol Evol 2016; 7:1451–1456 [View Article]
    [Google Scholar]
  38. Junqueira ACM, Ratan A, Acerbi E, Drautz-Moses DI, Premkrishnan BNV. The microbiomes of blowflies and houseflies as bacterial transmission reservoirs. Sci Rep 2017; 7:16324 [View Article] [PubMed]
    [Google Scholar]
  39. Pavloudi C, Kristoffersen JB, Oulas A, De Troch M, Arvanitidis C. Sediment microbial taxonomic and functional diversity in a natural salinity gradient challenge Remane’s species minimum concept. PeerJ 2017; 5:e3687 [View Article] [PubMed]
    [Google Scholar]
  40. Dearing MD, Kohl KD. Beyond fermentation: other important services provided to endothermic herbivores by their microbiota. Integr Comp Biol 2017; 57:723–731 [View Article] [PubMed]
    [Google Scholar]
  41. Chimera C, Coleman MC, Parkes JP. Diet of feral goats and feral pigs on Auckland Island. New Zealand N Z J Ecology 1995; 19:203–207
    [Google Scholar]
  42. Haenlein GFW, Ramirez RG. Potential mineral deficiencies on arid rangelands for small ruminants with special reference to Mexico. Small Rumin Res 2007; 68:35–41 [View Article]
    [Google Scholar]
  43. Garnick S, Barboza PS, Walker JW. Assessment of animal-based methods used for estimating and monitoring rangeland herbivore diet composition. Rangel Ecol Manag 2018; 71:449–457 [View Article]
    [Google Scholar]
  44. León Género Chara. Natutalista; 2020 https://www.naturalista.mx/observations/38345198 accessed 06 Nov 2020
  45. Pfister JA, Provenza FD, Manners GD, Gardner DR, Ralphs MH. Tall larkspur ingestion: can cattle regulate intake below toxic levels. J Chem Ecol 1997; 23:759–777 [View Article]
    [Google Scholar]
  46. Cunha IS, Barreto CC, Costa OYA, Bomfim MA, Castro AP. Bacteria and Archaea community structure in the rumen microbiome of goats (Capra hircus) from the semiarid region of Brazil. Anaerobe 2011; 17:118–124 [View Article] [PubMed]
    [Google Scholar]
  47. Suryawanshi PR, Badapanda C, Singh KM, Rathore A. Exploration of the rumen microbial diversity and carbohydrate active enzyme profile of black Bengal goat using metagenomic approach. Anim Biotechnol 2019; 12:1–14 [View Article]
    [Google Scholar]
  48. Denman SE, Martinez Fernandez G, Shinkai T, Mitsumori M. Metagenomic analysis of the rumen microbial community following inhibition of methane formation by a halogenated methane analog. Front Microbiol 2015; 6:1087 [View Article] [PubMed]
    [Google Scholar]
  49. Cremonesi P, Conte G, Severgnini M, Turri F, Monni A. Evaluation of the effects of different diets on microbiome diversity and fatty acid composition of rumen liquor in dairy goat. Animal 2018; 12:1856–1866 [View Article] [PubMed]
    [Google Scholar]
  50. Shen J, Zheng L, Chen X, Han X, Cao Y et al. Metagenomic analyses of microbial and carbohydrate-active enzymes in the rumen of dairy goats fed different rumen degradable starch. Front Microbiol 2020; 11:1003
    [Google Scholar]
  51. Li Z, Zhang Z, Xu C, Zhao J, Liu H et al. Bacteria and methanogens differ along the gastrointestinal tract of chinese Rie deer (Capreolus pygargus). PLOS ONE 2014; 9:1–120 [View Article]
    [Google Scholar]
  52. Li RW, Giarrizzo JG, Wu S, Li W, Duringer JM et al. Metagenomic insights into the rdx-degrading potential of the ovine rumen microbiome. PLoS One 2014; 9:e110505 [View Article]
    [Google Scholar]
  53. Clemmons BA, Campbel MA, Schneider LG, Grant RJ, Dann HM. Effect of stocking density and effective fiber on the ruminal bacterial communities in lactating Holstein cows. PeerJ 2020; 8:e9079 [View Article] [PubMed]
    [Google Scholar]
  54. Lv F, Wang X, Pang X, Liu G. Effects of supplementary feeding on the rumen morphology and bacterial diversity in lambs. PeerJ 2020; 8:e9353 [View Article]
    [Google Scholar]
  55. Estell RE, Havstand KM, Cibils AF, Fredrickson EL, Anderson DM. Increasing shrub use by livestock in the world with less grass. Rangel Ecol Manag 2012; 65:553–562 [View Article]
    [Google Scholar]
  56. Payne WW, Scora RW, Kumamoto J. The volatile oils of Ambrosia (Compositae: Ambrosieae. Brittonia 1972; 24:189–198 [View Article]
    [Google Scholar]
  57. Ambrósio SR, Arakawa NS, Esperandim VR, de Albuquerque S, Da Costa FB. Trypanocidal activity of pimarane diterpenes from Viguiera arenaria (Asteraceae. Phytother Res 2008; 22:1413–1415 [View Article] [PubMed]
    [Google Scholar]
  58. Mitchell EA. Stable isotope probing of the ovine rumen for RDX degrading microorganism [dissertation on the internet]. Corvallis, OR: Master Oregon State University; 2010 https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/1j92gb11b
  59. Ju K-S, Parales RE. Nitroaromatic compound, from synthetic to biodegradation. Microbiol Mol Biol Revi 2010; 74:250–272 [View Article]
    [Google Scholar]
  60. Pandit PD, Gulhane MK, Khardenavis AA, Purohit HJ. Mining of hemicellulose and lignin degrading genes from differentially enriched methane producing microbial community. Bioresour Technol 2016; 216:923–930 [View Article] [PubMed]
    [Google Scholar]
  61. Tian J-H, Pourcher A-M, Bouchez T, Gelhaye E, Peu P. Occurrence of lignin degradation genotypes and phenotypes among prokaryotes. Appl Microbiol Biotechnol 2014; 98:9527–9544 [View Article] [PubMed]
    [Google Scholar]
  62. Dhakal S, Boath JM, Van TTH, Moore RJ, Macreadie IG. Siccibacter turicensis from kangaroo scats: Possible implication in cellulose digestion. Microorganisms 2020; 8:635 [View Article]
    [Google Scholar]
  63. Waite DW, Dsouza M, Sekiguchi Y, Hugenholtz P, Michael MW. Network-guided genomic and metagenomic analysis of the faecal microbiota of the critically endangered kakapo. Sci Rep 2018; 8:8128 [View Article]
    [Google Scholar]
  64. Stewart RD, Auffret MD, Warr A, Walker AW, Roehe R. Compendium of 4941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery. Nat Biotechnol 2019; 37:953–961 [View Article] [PubMed]
    [Google Scholar]
  65. Ghyselinck J, Pfeiffer S, Heylen K, Sessitsch A, De Vos P. The effect of primer choice and short read sequences on the outcome of 16S r RNA gene based diversity studies. PloS ONE 2013; 8:e71360 [View Article] [PubMed]
    [Google Scholar]
  66. Fouts DE, Szpakowski S, Purushe J, Torralba M, Waterman RC. Next generation sequencing to define prokaryotic and fungal diversity in the bovine rumen. PLoS ONE 2012; 7:e48289 [View Article] [PubMed]
    [Google Scholar]
  67. Iqbal MW, Zhang Q, Yang Y, Zou C, Li L. Ruminal fermentation and microbial community differently influenced by four typical forages in vitro. Anim Nutr 2018; 4:100–108 [View Article] [PubMed]
    [Google Scholar]
  68. Ribeiro GO, Oss DB, Zhixiong H, Gruninger RJ, Chihioke E. Repeated inoculation of cattle rumen with bison rumen contents alter the rumen microbiome and improves nitrogen digestibility in cattle. Sci Rep 2017; 7:1276 [View Article] [PubMed]
    [Google Scholar]
  69. Delgado B, Bach A, Guasch I, González C, Elcoso G et al. Whole Rumen metagenome sequencing allows classifying and predicting feed efficiency and intake levels in cattle. Sci Rep 2019; 9:11 [View Article] [PubMed]
    [Google Scholar]
  70. Xing B-S, Han Y, Cao S, Wen J, Zhang K et al. Cosubstrate strategy for enhancing lignocellulose degradation during rumen fermentation in vitro: characteristics and microorganism composition. Chemosphere 2020; 250:126104 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001092
Loading
/content/journal/micro/10.1099/mic.0.001092
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error