1887

Abstract

Last year ActinoBase, a Wiki-style initiative supported by the UK Microbiology Society, published a review highlighting the research of particular interest to the actinomycete community. Here, we present the second ActinoBase review showcasing selected reports published in 2020 and early 2021, integrating perspectives in the actinomycete field. Actinomycetes are well-known for their unsurpassed ability to produce specialised metabolites, of which many are used as therapeutic agents with antibacterial, antifungal, or immunosuppressive activities. Much research is carried out to understand the purpose of these metabolites in the environment, either within communities or in host interactions. Moreover, many efforts have been placed in developing computational tools to handle big data, simplify experimental design, and find new biosynthetic gene cluster prioritisation strategies. Alongside, synthetic biology has provided advances in tools to elucidate the biosynthesis of these metabolites. Additionally, there are still mysteries to be uncovered in understanding the fundamentals of filamentous actinomycetes' developmental cycle and regulation of their metabolism. This review focuses on research using integrative methodologies and approaches to understand the bigger picture of actinomycete biology, covering four research areas: ) technology and methodology; ) specialised metabolites; ) development and regulation; and ) ecology and host interactions.

Funding
This study was supported by the:
  • Biotechnology and Biological Sciences Research Council (Award BB/S016651/1)
    • Principle Award Recipient: Katharina SchnieteJana
  • H2020 Marie Skłodowska-Curie Actions (Award 765147)
    • Principle Award Recipient: VindKristiina
  • Programa de Innovacion y Capital Humano para la Competitividad (PINN) (Award 2-1-4-17-1-037)
    • Principle Award Recipient: ParraJonathan
  • National Center for Genetic Engineering and Biotechnology
    • Principle Award Recipient: KruasuwanWorarat
  • Conselho Nacional de Desenvolvimento Científico e Tecnológico (Award 143700/2018-9)
    • Principle Award Recipient: F PereiraCamila
  • Fapesp (Award 2018/17502-2)
    • Principle Award Recipient: F PereiraCamila
  • Fondo Nacional de Desarrollo Científico y Tecnológico (Award 3180399)
    • Principle Award Recipient: UndabarrenaAgustina
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001084
2021-09-13
2021-09-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/167/9/mic001084.html?itemId=/content/journal/micro/10.1099/mic.0.001084&mimeType=html&fmt=ahah

References

  1. Prudence SMM, Addington E, Castaño-Espriu L, Mark DR, Pintor-Escobar L et al. Advances in actinomycete research: An Actinobase review of 2019. Microbiology (Reading) 2020; 166:683–694 [View Article] [PubMed]
    [Google Scholar]
  2. Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C et al. Taxonomy, physiology, and natural products of actinobacteria. Microbiol Mol Biol Rev 2016; 80:1–43 [View Article]
    [Google Scholar]
  3. van der Meij A, Worsley SF, Hutchings MI, van Wezel GP. Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiol Rev 2017; 41:392–416 [View Article] [PubMed]
    [Google Scholar]
  4. Medema Marnix H. Computational genomics of specialized metabolism: from natural product discovery to microbiome ecology. mSystems 2018; 3: [View Article]
    [Google Scholar]
  5. Markus N, Haruo I, Moore Bradley S. Genomic basis for natura product biosynthetic diversity in the actinomycetes. Nat Prod Rep 2009; 26:1362–1384 [View Article] [PubMed]
    [Google Scholar]
  6. Matt H, Andrew T, Barrie W. Antibiotics: past, present and future. Curr Opin Microbiol 2019; 51:72–80 [View Article] [PubMed]
    [Google Scholar]
  7. Arryn C, Salman A, Justin N. Towards a new science of secondary metabolism. J Antibiot 2013; 66:387–400 [View Article]
    [Google Scholar]
  8. Kautsar Satria A, van der Hooft Justin JJ, Dick de R, Medema Marnix H. BiG-SLiCE: A highly scalable tool maps the diversity of 1.2 million biosynthetic gene clusters. Gigascience 2021; 10:1–17
    [Google Scholar]
  9. Doroghazi James R, Metcalf William W. Comparative genomics of actinomycetes with a focus on natural product biosynthetic genes. BMC Genomics 2013; 14:611 [View Article] [PubMed]
    [Google Scholar]
  10. Chater Keith F. Recent advances in understanding Streptomyces. F1000Res 2016; 5:1–16
    [Google Scholar]
  11. van Bergeijk Doris A, Terlouw Barbara R, Medema Marnix H, van Wezel Gilles P. Ecology and genomics of Actinobacteria: new concepts for natural product discovery. Nat Rev Microbiol 2020; 18:546–558 [View Article] [PubMed]
    [Google Scholar]
  12. Baltz Richard H. Gifted microbes for genome mining and natural product discovery. J Ind Microbiol Biotechnol 2017; 44:573–588 [View Article] [PubMed]
    [Google Scholar]
  13. Emma K, Marion H, Michael M, Pidot Sacha J. Natural product discovery through microbial genome mining. Curr Opin Chem Biol 2021; 60:47–54 [View Article] [PubMed]
    [Google Scholar]
  14. Nadine Z, Mohammad A, Tilmann W. The evolution of genome mining in microbes-a review. Nat Prod Rep 2016; 33:988–1005 [View Article] [PubMed]
    [Google Scholar]
  15. Boddy Christopher N. Bioinformatics tools for genome mining of polyketide and non-ribosomal peptides. J Ind Microbiol Biotechnol 2014; 41:443–450 [View Article] [PubMed]
    [Google Scholar]
  16. Amoutzias Grigoris D, Anargyros C, Dimitris M. Discovery Strategies of bioactive compounds synthesized by nonribosomal peptide synthetases and type-I polyketide synthases derived from marine microbiomes. Marine Drugs 2016; 14:80 [View Article]
    [Google Scholar]
  17. Nils G, Yuriy R, Constanze P, Josef Z, Andriy L. Targeted genome mining—from compound discovery to biosynthetic pathway elucidation. Microorganisms 2020; 8:1–17
    [Google Scholar]
  18. Luciana T, Norman R, Carla CH, Vicente Ana CP, Paul D. Biotechnological potential of streptomyces siderophores as new antibiotics. Curr Med Chem 2020; 28:1407–1421
    [Google Scholar]
  19. Eshani A, Srishti C, Dipti S. Thiopeptides encoding biosynthetic gene clusters mined from bacterial genomes. J Biosci 2021; 46: [View Article]
    [Google Scholar]
  20. Arnison Paul G, Bibb Mervyn J, Van Der Donk Wilfred A. Ribosomally synthesized and post-translationally modified peptide natural products: Overview and recommendations for a universal nomenclature. Nat Prod Rep 2013; 30:108–160 [View Article] [PubMed]
    [Google Scholar]
  21. Kittrell Caroline G, Shah Shailey C, Halbert Matthew E, Scott Dylan H, Limbrick Emilianne M. Genomic analysis suggests Salinispora is a rich source of novel lanthipeptides. Mol Genet Genomics 2020; 295:1529–1535 [View Article] [PubMed]
    [Google Scholar]
  22. Mallory C, Sam R, Matthew G, Detlev H, Noah F. A phylogenetic and functional perspective on volatile organic compound production by actinobacteria. mSystems 2019; 4: [View Article]
    [Google Scholar]
  23. Laure W, Stefan S, Paolina G. Microbial volatile organic compounds in intra-kingdom and inter-kingdom interactions. Nat Rev Microbiol 2021; 19:391–404 [View Article] [PubMed]
    [Google Scholar]
  24. Quinn Gerry A, Banat Aiya M, Abdelhameed Alyaa M, Banat Ibrahim M. Streptomyces from traditional medicine: sources of new innovations in antibiotic discovery. J Med Microbiol 2020; 69:1040–1048 [View Article] [PubMed]
    [Google Scholar]
  25. Ramesh S, Detmer S. Marine rare actinomycetes: A promising source of structurally diverse and unique novel natural products. Mar Drugs 2019; 17: [View Article] [PubMed]
    [Google Scholar]
  26. Hozzein Wael N, Mohamed M, Alhawsawi Sana MM, Zaky Mohamed Y, Al-Rejaie Salim S et al. Flavonoids from marine-derived actinobacteria as anticancer drugs. Curr Pharm Des 2021; 27:505–512 [View Article] [PubMed]
    [Google Scholar]
  27. Law JW-F, Law LN-S, Letchumanan V, Tan LT-H, Wong SH et al. Anticancer drug discovery from microbial sources: The unique mangrove streptomycetes. Molecules 2020; 25: [View Article] [PubMed]
    [Google Scholar]
  28. Aehtesham H, Parvaiz HQ, Shouche Yogesh S. New approaches for antituberculosis leads from Actinobacteria. Drug Discov Today 2020; 25:2335–2342 [View Article] [PubMed]
    [Google Scholar]
  29. Silver Lynn L. Challenges of antibacterial discovery. Clin Microbiol Rev 2011; 24:71–109 [View Article] [PubMed]
    [Google Scholar]
  30. Kirstin S, Christian H. Mining and unearthing hidden biosynthetic potential. Nat Commun 2021; 12:1–12
    [Google Scholar]
  31. Navarro-Muñoz Jorge C, Nelly S-M, Mullowney Michael W, Kautsar Satria A, Tryon James H et al. A computational framework to explore large-scale biosynthetic diversity. Nat Chem Biol 2020; 16:60–68 [View Article] [PubMed]
    [Google Scholar]
  32. Max C, Larson Charles B, Alexey M, Floros Dimitrios J, Da Silva Ricardo R et al. Prioritizing Natural Product Diversity in a Collection of 146 Bacterial Strains Based on Growth and Extraction Protocols. J Nat Prod 2017; 80:588–597 [View Article] [PubMed]
    [Google Scholar]
  33. Medema Marnix H et al. Minimum Information about a Biosynthetic Gene cluster HHS Public Access Author manuscript. Nat Chem Biol 2015; 11:625–631
    [Google Scholar]
  34. Kautsar Satria A, Kai B, Simon S, Navarro-Muñoz Jorge C, Terlouw Barbara R et al. MIBiG 2.0: A repository for biosynthetic gene clusters of known function. Nucleic Acids Res 2020; 48:D454–D458 [View Article] [PubMed]
    [Google Scholar]
  35. Khorshed A, Jinfang H, Youming Z, Aiying L. Synthetic biology-inspired strategies and tools for engineering of microbial natural product biosynthetic pathways. Biotechnology Advances 2021; 49:107759 [View Article]
    [Google Scholar]
  36. Lin YW, Elena H, Ling TL, Wee LY, Hwee LY et al. Characterization of Cas proteins for CRISPR-Cas editing in streptomycetes. Biotechnol Bioeng 2019; 116:2330–2338 [View Article] [PubMed]
    [Google Scholar]
  37. Rainer B, Martina A, Oksana B, Del CF, Alessandro F et al. Synthetic biology approaches to actinomycete strain improvement. FEMS Microbiol Lett 2021; 368: [View Article] [PubMed]
    [Google Scholar]
  38. Hoskisson Paul A, Seipke Ryan F. Cryptic or silent? The known unknowns, unknown knowns, and unknown unknowns of secondary metabolism. MBio 2020; 11:1–5
    [Google Scholar]
  39. Kai B, Simon S, Katharina S, Rasmus V, Nadine Z et al. AntiSMASH 5.0: Updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [View Article] [PubMed]
    [Google Scholar]
  40. Skinnider Michael A, Dejong Chris A, Rees Philip N, Johnston Chad W, Haoxin L et al. Genomes to natural products PRediction Informatics for Secondary Metabolomes (PRISM. Nucleic Acids Res 2015; 43:9645–9662 [View Article] [PubMed]
    [Google Scholar]
  41. de Jong A, van Hijum SAFT, Bijlsma JJE, Kok J, Kuipers OP. BAGEL: A web-based bacteriocin genome mining tool. Nucleic Acids Res 2006; 34:W273–9 [View Article] [PubMed]
    [Google Scholar]
  42. Priyesh A, Shradha K, Money G, Neetu S, Debasisa M. RiPPMiner: A bioinformatics resource for deciphering chemical structures of RiPPs based on prediction of cleavage and cross-links. Nucleic Acids Res 2017; 45:W80–W88 [View Article] [PubMed]
    [Google Scholar]
  43. Navarro-muñoz Jorge C, Mullowney Michael W, Satria A, Tryon James H et al. A computational framework to explore large-scale biosynthetic diversity. Nat Chem Biol 2020; 16:60–68 [View Article] [PubMed]
    [Google Scholar]
  44. Mingxun W, Carver Jeremy J, Nuno B. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotechnol 2016; 34:828–837 [View Article] [PubMed]
    [Google Scholar]
  45. Kautsar Satria A, Kai B, Simon S, Tilmann W, BiG-FAM MMH. The biosynthetic gene cluster families database. Nucleic Acids Res 2021; 49:D490–D497 [View Article] [PubMed]
    [Google Scholar]
  46. Anupriya T, Yoshiki V-B, Gauglitz Julia M, Mingxun W, Kai D et al. Chemically informed analyses of metabolomics mass spectrometry data with Qemistree. Nat Chem Biol 2020; 17:146–151 [View Article] [PubMed]
    [Google Scholar]
  47. Medema Marnix H. The year 2020 in natural product bioinformatics: an overview of the latest tools and databases. Nat Prod Rep 2021; 38:301–306 [View Article]
    [Google Scholar]
  48. Namil L, Soonkyu H, Yongjae L, Suhyung C, Bernhard P et al. Synthetic biology tools for novel secondary metabolite discovery in Streptomyces. J Microbiol Biotechnol 2019; 29:667–686 [View Article] [PubMed]
    [Google Scholar]
  49. Bertholt G, Govind C, Dagmara J, Tian Y, Bruton Celia J et al. REDIRECT technology: PCR-targeting system in Streptomyces coelicolor. In Advances in Applied Microbiology pp 107–126
    [Google Scholar]
  50. Fernández-Martínez Lorena T, Bibb Mervyn J. Use of the Meganuclease I-SceI of Saccharomyces cerevisiae to select for gene deletions in actinomycetes. Sci Rep 2014; 4:1–6
    [Google Scholar]
  51. Yaojun T, Whitford Christopher M, Robertsen Helene L, Kai B, Jørgensen Tue S et al. Highly efficient DSB-free base editing for streptomycetes with CRISPR-BEST. Proc Natl Acad Sci U S A 2019; 116:20366–20375 [View Article] [PubMed]
    [Google Scholar]
  52. Medema Marnix H, Rainer B, Eriko T. Synthetic Biology in Streptomyces Bacteria, 1st ed. Elsevier Inc; 2011 [View Article]
    [Google Scholar]
  53. Jaina M, Sara C, Lowri W, Matloob Q, Salazar Gustavo A et al. Pfam: The protein families database in 2021. Nucleic Acids Res 2021; 49:D412–D419 [View Article] [PubMed]
    [Google Scholar]
  54. Jinzhong T, Gaohua Y, Yang G, Xinqiang S, Yinhua L et al. Developing an endogenous quorum-sensing based CRISPRi circuit for autonomous and tunable dynamic regulation of multiple targets in Streptomyces. Nucleic Acids Res 2020; 48:8188–8202 [View Article] [PubMed]
    [Google Scholar]
  55. Tian Z, Raghu R, Miron L. BIRCH: An Efficient Data Clustering Method for Very Large Databases 1996 [View Article]
    [Google Scholar]
  56. Jain Anil K. Data clustering: 50 years beyond K-means. Pattern Recognit Lett 2010; 31:651–666 [View Article]
    [Google Scholar]
  57. Kai B, Simon S, Kautsar Satria A, Medema Marnix H, Tilmann W. The antiSMASH database version 3: Increased taxonomic coverage and new query features for modular enzymes. Nucleic Acids Res 2021; 49:D639–D643 [View Article] [PubMed]
    [Google Scholar]
  58. Palaniappan K, Chen I-MA, Chu K, Ratner A, Seshadri R et al. IMG-ABC v.5.0: An update to the Img/atlas of biosynthetic gene clusters knowledgeBase. Nucleic Acids Res 2020; 48:D422–D430 [View Article] [PubMed]
    [Google Scholar]
  59. Peter W. Similarity-based virtual screening using 2D fingerprints. Drug Discov Today 2006; 11:1046–1053 [View Article] [PubMed]
    [Google Scholar]
  60. Kai D, Kerstin S, Sebastian B. Molecular formula identification with SIRIUS. Metabolites 2013; 3:506–516 [View Article] [PubMed]
    [Google Scholar]
  61. Kai D, Markus F, Marcus L, Aksenov Alexander A, Alexey M et al. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat Methods 2019; 16:299–302 [View Article] [PubMed]
    [Google Scholar]
  62. Kai D, Huibin S, Marvin M, Juho R, Sebastian B. Searching molecular structure databases with tandem mass spectra using CSI:FingerID. Proc Natl Acad Sci U S A 2015; 112:12580–12585 [View Article] [PubMed]
    [Google Scholar]
  63. Yannick DF, Roman E, Craig K, Leonid C, Janna H et al. ClassyFire: automated chemical classification with a comprehensive, computable taxonomy. J Cheminform 2016; 8:1–20
    [Google Scholar]
  64. Ivica L, Peer B. Gmbh Biobyte Solutions Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation; 20211–4
  65. Evan B, Ram RJ, Gregory CJ. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 2019; 37:852–857 [View Article] [PubMed]
    [Google Scholar]
  66. Aron Allegra T, Gentry Emily C, McPhail Kerry L, Félix NL, Mélissa N-E et al. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat Protoc 2020; 15:1954–1991 [View Article] [PubMed]
    [Google Scholar]
  67. Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 2017; 551:457–463 [View Article] [PubMed]
    [Google Scholar]
  68. Moore Simon J, Hung-En L, Soo-Mei C, Ming T, Seth C et al. A Streptomyces venezuelae cell-free toolkit for synthetic biology. ACS Synth Biol 2021; 10:402–411 [View Article] [PubMed]
    [Google Scholar]
  69. Yuan L. Cell-free synthetic biology: Engineering in an open world. Synth Syst Biotechnol 2017; 2:23–27 [View Article] [PubMed]
    [Google Scholar]
  70. Filippo C, Vincent N. Synthesis of 2.3 mg/ml of protein with an all Escherichia coli cell-free transcription-translation system. Biochimie 2014; 99:162–168 [View Article] [PubMed]
    [Google Scholar]
  71. Yutetsu K, Takuya U. The PURE system for the cell-free synthesis of membrane proteins. Nat Protoc 2015; 10:1328–1344 [View Article] [PubMed]
    [Google Scholar]
  72. Barbora L, Maerkl Sebastian J. A simple, robust, and low-cost method to produce the PURE cell-free system. ACS Synth Biol 2019; 8:455–462 [View Article] [PubMed]
    [Google Scholar]
  73. Rutledge Peter J, Challis Gregory L. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat Rev Microbiol 2015; 13:509–523 [View Article] [PubMed]
    [Google Scholar]
  74. Cress Brady F, Trantas Emmanouil A, Filippos V, Linhardt Robert J, Koffas Mattheos AG. Sensitive cells: Enabling tools for static and dynamic control of microbial metabolic pathways. Curr Opin Biotechnol 2015; 36:205–214 [View Article] [PubMed]
    [Google Scholar]
  75. Hartline Christopher J, Schmitz Alexander C, Yichao H, Fuzhong Z. Dynamic control in metabolic engineering: Theories, tools, and applications. Metab Eng 2021; 63:126–140 [View Article] [PubMed]
    [Google Scholar]
  76. Takano E. Gamma-butyrolactones: Streptomyces signalling molecules regulating antibiotic production and differentiation. Curr Opin Microbiol 2006; 9:287–294 [View Article] [PubMed]
    [Google Scholar]
  77. Hiromi N, Yasuo O, Teruhiko B, Sueharu H. Evolution of γ-butyrolactone synthases and receptors in Streptomyces. Environ Microbiol 2007; 9:1986–1994 [View Article] [PubMed]
    [Google Scholar]
  78. Malpartida F, Hopwood DA. Physical and genetic characterisation of the gene cluster for the antibiotic actinorhodin in Streptomyces coelicolor A3(2. Mol Gen Genet 1986; 205:66–73 [View Article] [PubMed]
    [Google Scholar]
  79. Kavita T, Gupta Rajinder K. Diversity and isolation of rare actinomycetes: An overview. Crit Rev Microbiol 2013; 39:256–294 [View Article] [PubMed]
    [Google Scholar]
  80. Ramesh S, Detmer S. Marine rare actinomycetes: A promising source of structurally diverse and unique novel natural products. Mar Drugs 2019; 17:249 [View Article]
    [Google Scholar]
  81. Brenda R-P, Natalie M-A, Dulce G-M, Chase Alexander B, Ginigini Joape GM et al. Six novel species of the obligate marine actinobacterium Salinispora, Salinispora cortesiana sp. nov., Salinispora fenicalii sp. nov., Salinispora goodfellowii sp. nov., Salinispora mooreana sp. nov., Salinispora oceanensis sp. nov. and Salinispora vitien. Int J Syst Evol Microbiol 2020; 70:4668–4682 [View Article] [PubMed]
    [Google Scholar]
  82. Haerin K, Sohee K, Minju K, Chaeyoung L, Inho Y et al. Bioactive natural products from the genus Salinospora: a review. Arch Pharm Res 2020; 43:1230–1258 [View Article] [PubMed]
    [Google Scholar]
  83. Natalie M-A, Sylvia S, Sarah B, Munnoch John T, John H et al. Awakening ancient polar actinobacteria: Diversity, evolution and specialized metabolite potential. Microbiol 2019; 165:1169–1180 [View Article]
    [Google Scholar]
  84. Denis A-G, Irina V, Tokovenko Bogdan T, Protasov Eugeniy S, Stanislav G et al. Actinobacteria isolated from an underground lake and moonmilk speleothem from the biggest conglomeratic karstic cave in Siberia as sources of novel biologically active compounds. PLoS One 2016; 11:1–12
    [Google Scholar]
  85. Adam D, Maciejewska M, Naômé A, Martinet L, Coppieters W et al. Isolation, characterization, and antibacterial activity of hard-to-culture actinobacteria from cave moonmilk deposits. Antibiotics 2018; 7:1–20
    [Google Scholar]
  86. Yunchuan L, Juan J, Xuejun H, Juan Z, Jing H et al. Actinobacterial community in Shuanghe Cave using culture-dependent and -independent approaches. World J Microbiol Biotechnol 2019; 35: [View Article]
    [Google Scholar]
  87. Sayed AM, Hassan MHA, Alhadrami HA, Hassan HM, Goodfellow M et al. Extreme environments: microbiology leading to specialized metabolites. J Appl Microbiol 2020; 128:630–657 [View Article] [PubMed]
    [Google Scholar]
  88. Michael G, Imen N, Roy S, Feiyang X, Bull Alan T. Rare taxa and dark microbial matter: novel bioactive actinobacteria abound in Atacama Desert soils. Antonie van Leeuwenhoek 2018; 111:1315–1332 [View Article]
    [Google Scholar]
  89. Nicole B, Edwards Richard J, Amos Timothy G, D’Agostino Paul M, Carolina G-C et al. Antarctic desert soil bacteria exhibit high novel natural product potential, evaluated through long-read genome sequencing and comparative genomics. Environ Microbiol 2020; 23:3646–3664 [View Article]
    [Google Scholar]
  90. Daniel M, McKinnie Shaun MK, Mantri Shrikant S, Katharina S, Zeyin L et al. Kaysser Leonard. comparative genomics and metabolomics in the genus Nocardia. mSystems 2020; 5:1–19
    [Google Scholar]
  91. Sylvia S, Hjörleifsson EG, Andrew R, van der Hooft Justin JJ, Hughes Alison H et al. Comparative metabologenomics analysis of polar Actinomycetes. Mar Drugs 2021; 19:103 [View Article] [PubMed]
    [Google Scholar]
  92. Culp Elizabeth J, Nicholas W, Wenliang W, Fiebig-Comyn Aline A, Pang HY et al. Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodelling. Nature 2020; 578:582–587 [View Article] [PubMed]
    [Google Scholar]
  93. Zdouc Mitja M, Alanjary Mohammad M, Zarazúa Guadalupe S, Sonia M, Max C et al. A biaryl-linked tripeptide from Planomonospora reveals a widespread class of minimal RiPP gene clusters. Cell Chem Biol 20211–7
    [Google Scholar]
  94. Van Der Hooft Justin JJ, Hosein M, Anelize B, Dorrestein Pieter C, Duncan Katherine R et al. Linking genomics and metabolomics to chart specialized metabolic diversity. Chem Soc Rev 2020; 49:3297–3314 [View Article] [PubMed]
    [Google Scholar]
  95. Hjörleifsson EG, Andrew R, van der Hooft Justin JJ, Duncan Katherine R, Sylvia S et al. Ranking microbial metabolomic and genomic links in the NPLinker framework using complementary scoring functions. bioRxiv 2020; 2020.06.12.148205:
    [Google Scholar]
  96. Madeleine E, Bin KK, Louis-felix N, Joe W, Christopher C et al. MolNetEnhancer: Enhanced molecular networks by integrating metabolome mining and annotation tools. Metabolites 2019; 9:144
    [Google Scholar]
  97. Medema Marnix H, Renzo K, Oliver GF et al. The Minimum Information about a Biosynthetic Gene cluster (MIBiG) specification. Nat Chem Biol 2015; 11:625–631
    [Google Scholar]
  98. Nicholas W, McArthur Andrew G, Wright Gerard D. Phylogenetic reconciliation reveals the natural history of glycopeptide antibiotic biosynthesis and resistance. Nat Microbiol 2019; 4:1862–1871 [View Article] [PubMed]
    [Google Scholar]
  99. Blackman Steve A, Smith Thomas J, Foster Simon J. The role of autolysins during vegetative growth of Bacillus subtilis 168. Microbiology (Reading) 1998; 144:73–82 [View Article] [PubMed]
    [Google Scholar]
  100. Funk MA, van der Donk WA. Ribosomal natural products, tailored to fit. Acc Chem Res 2017; 50:1577–1586 [View Article] [PubMed]
    [Google Scholar]
  101. Zdouc Mitja M, Marianna I, Sonia M, Max C, Stefano D et al. Planomonospora: A metabolomics perspective on an underexplored actinobacteria genus. J Nat Prod 2021
    [Google Scholar]
  102. Chen Carton W, Hung HC, Hsuan LH, Hui TH, Ralph K. Once the circle has been broken: Dynamics and evolution of Streptomyces chromosomes. Trends Genet 2002; 18:522–529 [View Article] [PubMed]
    [Google Scholar]
  103. Zheren Z, Chao D, Frederique de B, Michael L, Apostolos L et al. Antibiotic production in Streptomyces is organized by a division of labour through terminal genomic differentiation. bioRxiv 20191–10
    [Google Scholar]
  104. Kelemen Gabriella H, Viollier Patrick H, Tenor Jennifer L, Laura M, Buttner Mark J et al. A connection between stress and development in the multicellular prokaryote Streptomyces coelicolor A3(2. Mol Microbiol 2001; 40:804–814 [View Article] [PubMed]
    [Google Scholar]
  105. McLean Thomas C, Rebecca L, Natalia T, Hoskisson Paul A, Al Bassam Mahmoud M et al. Sensing and responding to diverse extracellular signals: An updated analysis of the sensor kinases and response regulators of Streptomyces species. Microbiol 2019; 165:929–952 [View Article]
    [Google Scholar]
  106. McCormick Joseph R, Klas F. Signals and regulators that govern Streptomyces development. FEMS Microbiol Rev 2012; 36:206–231 [View Article] [PubMed]
    [Google Scholar]
  107. Matthew H, Hoskisson Paul A, Govind C, Buttner Mark J. Sensing and responding to diverse extracellular signals? Analysis of the sensor kinases and response regulators of Streptomyces coelicolor A3(2. Microbiology (Reading) 2004; 150:2795–2806 [View Article] [PubMed]
    [Google Scholar]
  108. Andreas L, Wörmann Mirka E, Natalia T. Nucleotide second messengers in Streptomyces. Microbiol (United Kingdom) 2019; 165:1153–1165
    [Google Scholar]
  109. Julian H, Alina NS, Al-Bassam Mahmoud M, Sandra L, Elliot Marie A et al. Specialized and shared functions of diguanylate cyclases and phosphodiesterases in Streptomyces development. Mol Microbiol 2020; 114:808–822 [View Article] [PubMed]
    [Google Scholar]
  110. Dyson P, Schrempf H. Genetic instability and DNA amplification in Streptomyces lividans 66. J Bacteriol 1987; 169:4796–4803 [View Article] [PubMed]
    [Google Scholar]
  111. Bush Matthew J, Natalia T, Susan S, Klas F, Buttner Mark J. C-di-GMP signalling and the regulation of developmental transitions in streptomycetes. Nat Rev Microbiol 2015; 13:749–760 [View Article] [PubMed]
    [Google Scholar]
  112. Natalia T, Schumacher Maria A, Susan S, Babu CN, Findlay Kim C et al. Tetrameric c-di-GMP mediates effective transcription factor dimerization to control Streptomyces development. Cell 2014; 158:1136–1147 [View Article] [PubMed]
    [Google Scholar]
  113. Gallagher Kelley A, Schumacher Maria A, Bush Matthew J, Bibb Maureen J, Govind C et al. c-di-GMP arms an anti-σ to control progression of multicellular differentiation in Streptomyces. Mol Cell 2020; 77:586–599 [View Article] [PubMed]
    [Google Scholar]
  114. Al-Bassam Mahmoud M, Julian H, Alina NS, Sandra L, Natalia T. Expression patterns, genomic conservation and input into developmental regulation of the GGDEF/EAL/HD-GYP domain proteins in Streptomyces. Front Microbiol 2018; 9:1–11
    [Google Scholar]
  115. Jenal U, Reinders A, Lori C. Cyclic di-GMP: Second messenger extraordinaire. Nat Rev Microbiol 2017; 15:271–284 [View Article] [PubMed]
    [Google Scholar]
  116. Fernández-Martínez Lorena T, Chiara B, Pablo G-EJ, Bibb Maureen J, Al-Bassam Mahmoud M et al. New insights into chloramphenicol biosynthesis in Streptomyces venezuelae ATCC 10712. Antimicrob Agents Chemother 2014; 58:7441–7450 [View Article] [PubMed]
    [Google Scholar]
  117. Roman M, Olga T, Desirèe N, Thomas P, Zechel David L et al. Secondary nucleotide messenger c-di-GMP exerts a global control on natural product biosynthesis in streptomycetes. Nucleic Acids Res 2020; 48:1583–1598 [View Article] [PubMed]
    [Google Scholar]
  118. Van Wezel Gilles P, McDowall Kenneth J. The regulation of the secondary metabolism of Streptomyces: New links and experimental advances. Nat Prod Rep 2011; 28:1311–1333 [View Article] [PubMed]
    [Google Scholar]
  119. van der Heul HU, Bilyk BL, McDowall KJ, Seipke RF, van Wezel GP. Regulation of antibiotic production in Actinobacteria: new perspectives from the post-genomic era. Nat Prod Rep 2018; 35:575–604 [View Article] [PubMed]
    [Google Scholar]
  120. Seipke Ryan F, Martin K, Matthew H. Streptomyces as symbionts: An emerging and widespread theme?. FEMS Microbiol Rev 2012; 36:862–876 [View Article] [PubMed]
    [Google Scholar]
  121. Chhun A, Sousoni D, Aguiló-Ferretjans MDM, Song L, Corre C et al. Phytoplankton trigger the production of cryptic metabolites in the marine actinobacterium Salinispora tropica. Microb Biotechnol 2021; 14:291–306 [View Article] [PubMed]
    [Google Scholar]
  122. Becher Paul G, Vasiliki V, Bibb Maureen J, Bush Matthew J, Molnár Béla P et al. Developmentally regulated volatiles geosmin and 2-methylisoborneol attract a soil arthropod to Streptomyces bacteria promoting spore dispersal. Nat Microbiol 2020; 5:821–829 [View Article] [PubMed]
    [Google Scholar]
  123. Martin K. Actinobacteria as mutualists: general healthcare for insects?. Trends Microbiol 2009; 17:529–535 [View Article] [PubMed]
    [Google Scholar]
  124. Tom V, Sarah L, Stien B, Martine M, Sofie G. Rhizobacteria growth-promoting. Streptomyces as a plant’s best friend? 20161–10
    [Google Scholar]
  125. Worsley Sarah F, Jake N, Johannes R, Batey Sibyl FD, Holmes Neil A et al. Streptomyces endophytes promote host health and enhance growth across plant species. Appl Environ Microbiol 2020; 86:1–17
    [Google Scholar]
  126. Nastassia P, Duncan Katherine R, Dorrestein Pieter C, Jensen Paul R. Competitive strategies differentiate closely related species of marine actinobacteria. ISME J 2016; 10:478–490 [View Article] [PubMed]
    [Google Scholar]
  127. Nastassia P, Floros Dimitrios J, Hughes Chambers C, Dorrestein Pieter C, Jensen Paul R. The role of inter-species interactions in Salinispora specialized metabolism. Microbiol 2018; 164:946–955 [View Article]
    [Google Scholar]
  128. Gerber NN, Lechevalier HA. Geosmin, an earthy-smelling substance isolated from Actinomycetes. Appl Microbiol 1965; 13:935–938 [View Article] [PubMed]
    [Google Scholar]
  129. Jiaoyang J, Xiaofei H, David C. Biosynthesis of the earthy odorant geosmin by a bifunctional Streptomyces coelicolor enzyme. Nat Chem Biol 2007; 3:711–715 [View Article] [PubMed]
    [Google Scholar]
  130. Patrick R, Citron Christian A, Dickschat Jeroen S. Volatile terpenes from actinomycetes: A biosynthetic study correlating chemical analyses to genome data. ChemBioChem 2013; 14:2345–2354 [View Article] [PubMed]
    [Google Scholar]
  131. Al-Bassam Mahmoud M, Bibb Maureen J, Bush Matthew J, Govind C, Buttner Mark J. Response regulator heterodimer formation controls a key stage in Streptomyces development. PLoS Genet 2014; 10:e1004554 [View Article] [PubMed]
    [Google Scholar]
  132. Jessica P, Chater Keith F, Klas F. Molecular and cytological analysis of the expression of Streptomyces sporulation regulatory gene whiH. FEMS Microbiol Lett 2013; 341:96–105 [View Article] [PubMed]
    [Google Scholar]
  133. Schrey Silvia D, Tarkka Mika T. Friends and foes: Streptomycetes as modulators of plant disease and symbiosis. Antonie van Leeuwenhoek 2008; 94:11–19 [View Article]
    [Google Scholar]
  134. Bulgarelli D, Rott M, Schlaeppi K, Ver Loren van Themaat E, Ahmadinejad N et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 2012; 488:91–95 [View Article] [PubMed]
    [Google Scholar]
  135. Lundberg Derek S, Lebeis Sarah L, Herrera PS, Scott Y, Jase G et al. Defining the core Arabidopsis thaliana root microbiome. Nature 2012; 488:86–90 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001084
Loading
/content/journal/micro/10.1099/mic.0.001084
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error