1887

Abstract

Non-coding regulatory RNAs mediate post-transcriptional gene expression control by a variety of mechanisms relying mostly on base-pairing interactions with a target mRNA. Though a plethora of putative non-coding regulatory RNAs have been identified by global transcriptome analysis, knowledge about riboregulation in the pathogenic is still limited. Here we report the initial characterization of a pair of sRNAs of , TfpR1 and TfpR2, which exhibit a similar secondary structure and identical single-stranded seed regions, and therefore might be considered as sibling sRNAs. By combination of target prediction and sRNA pulse expression followed by differential RNA sequencing we identified target genes of TfpR1 which are involved in type IV pilus biogenesis and DNA damage repair. We provide evidence that members of the TfpR1 regulon can also be targeted by the sibling TfpR2.

Funding
This study was supported by the:
  • deutsche forschungsgemeinschaft (Award RU 631/12-1)
    • Principle Award Recipient: ThomasRudel
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001080
2021-09-13
2021-09-23
Loading full text...

Full text loading...

References

  1. Rowley J, Vander Hoorn S, Korenromp E, Low N, Unemo M et al. Chlamydia, gonorrhoea, trichomoniasis and syphilis: global prevalence and incidence estimates, 2016. Bull World Health Organ 2019; 97:548–562 [View Article]
    [Google Scholar]
  2. United States Centers for Disease Control and Prevention Antibiotic resistance threats in the United States; 20131–114
  3. Poncin T, Fouere S, Braille A, Camelena F, Agsous M et al. Multidrug-resistant Neisseria gonorrhoeae failing treatment with ceftriaxone and doxycycline in France, November 2017. Euro Surveill 2018; 23:1800264 [View Article]
    [Google Scholar]
  4. Rice PA, Shafer WM, Ram S, Jerse AE. Neisseria gonorrhoeae: drug resistance, mouse models, and vaccine development. Annu Rev Microbiol 2017; 71:665–686 [View Article]
    [Google Scholar]
  5. Bobrovskyy M, Vanderpool CK. Regulation of bacterial metabolism by small RNAs using diverse mechanisms. Annu Rev Genet 2013; 47:209–232 [View Article]
    [Google Scholar]
  6. Gripenland J, Netterling S, Loh E, Tiensuu T, Toledo-Arana A et al. RNAs: regulators of bacterial virulence. Nat Rev Microbiol 2010; 8:857–866 [View Article]
    [Google Scholar]
  7. Romeo T, Babitzke P. Global regulation by CsrA and its RNA antagonists. Microbiol Spectr 2018; 6:1128 [View Article]
    [Google Scholar]
  8. Georg J, Hess WR. cis-antisense RNA, another level of gene regulation in bacteria. Microbiol Mol Biol Rev 2011; 75:286–300 [View Article]
    [Google Scholar]
  9. Vogel J, Luisi BF. Hfq and its constellation of RNA. Nat Rev Microbiol 2011; 9:578–589 [View Article]
    [Google Scholar]
  10. Holmqvist E, Berggren S, Rizvanovic A. RNA-binding activity and regulatory functions of the emerging sRNA-binding protein ProQ. Biochim Biophys Acta Gene Regul Mech 2020; 1863:194596 [View Article]
    [Google Scholar]
  11. Storz G, Vogel J, Wassarman KM. Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell 2011; 43:880–891 [View Article]
    [Google Scholar]
  12. Quereda JJ, Ortega AD, Pucciarelli MG, García-Del Portillo F. The Listeria small RNA Rli27 regulates a cell wall protein inside eukaryotic cells by targeting a long 5’-UTR variant. PLoS Genet 2014; 10:e1004765 [View Article]
    [Google Scholar]
  13. Azam MS, Vanderpool CK. Translation inhibition from a distance: The small RNA SgrS silences a ribosomal protein S1-dependent enhancer. Mol Microbiol 2020; 114:391–408 [View Article]
    [Google Scholar]
  14. Yang Q, Figueroa-Bossi N, Bossi L. Translation enhancing ACA motifs and their silencing by a bacterial small regulatory RNA. PLoS Genet 2014; 10:e1004026 [View Article]
    [Google Scholar]
  15. Darfeuille F, Unoson C, Vogel J, Wagner EG. An antisense RNA inhibits translation by competing with standby ribosomes. Mol Cell 2007; 26:381–392 [View Article]
    [Google Scholar]
  16. Papenfort K, Vanderpool CK. Target activation by regulatory RNAs in bacteria. FEMS Microbiol Rev 2015; 39:362–378 [View Article]
    [Google Scholar]
  17. Sedlyarova N, Shamovsky I, Bharati BK, Epshtein V, Chen J et al. sRNA-mediated control of transcription termination in E. coli. Cell 2016; 167:111–121 [View Article]
    [Google Scholar]
  18. Remmele CW, Xian Y, Albrecht M, Faulstich M, Fraunholz M et al. Transcriptional landscape and essential genes of Neisseria gonorrhoeae. Nucleic Acids Res 2014; 42:10579–10595 [View Article]
    [Google Scholar]
  19. McClure R, Tjaden B, Genco C. Identification of sRNAs expressed by the human pathogen Neisseria gonorrhoeae under disparate growth conditions. Front Microbiol 2014; 5:456 [View Article]
    [Google Scholar]
  20. Cahoon LA, Seifert HS. Transcription of a cis-acting, noncoding, small RNA is required for pilin antigenic variation in Neisseria gonorrhoeae. PLoS Pathog 2013; 9:e1003074 [View Article]
    [Google Scholar]
  21. Prister LL, Ozer EA, Cahoon LA, Seifert HS. Transcriptional initiation of a small RNA, not R-loop stability, dictates the frequency of pilin antigenic variation in Neisseria gonorrhoeae. Mol Microbiol 2019; 112:1219–1234 [View Article]
    [Google Scholar]
  22. Mellin JR, Goswami S, Grogan S, Tjaden B, Genco CA. A novel fur- and iron-regulated small RNA, NrrF, is required for indirect fur-mediated regulation of the sdhA and sdhC genes in Neisseria meningitidis. J Bacteriol 2007; 189:3686–3694 [View Article]
    [Google Scholar]
  23. Ducey TF, Jackson L, Orvis J, Dyer DW. Transcript analysis of nrrF, a Fur repressed sRNA of Neisseria gonorrhoeae. Microb Pathog 2009; 46:166–170 [View Article]
    [Google Scholar]
  24. Metruccio MM, Fantappiè L, Serruto D, Muzzi A, Roncarati D et al. The Hfq-dependent small noncoding RNA NrrF directly mediates Fur-dependent positive regulation of succinate dehydrogenase in Neisseria meningitidis. J Bacteriol 2009; 191:1330–1342 [View Article]
    [Google Scholar]
  25. Jackson LA, Pan JC, Day MW, Dyer DW. Control of RNA stability by NrrF, an iron-regulated small RNA in Neisseria gonorrhoeae. J Bacteriol 2013; 195:5166–5173 [View Article]
    [Google Scholar]
  26. Jackson LA, Day M, Allen J, Scott E, Dyer DW. Iron-regulated small RNA expression as Neisseria gonorrhoeae FA 1090 transitions into stationary phase growth. BMC Genomics 2017; 18:317 [View Article]
    [Google Scholar]
  27. Whitehead RN, Overton TW, Snyder LA, McGowan SJ, Smith H et al. The small FNR regulon of Neisseria gonorrhoeae: comparison with the larger Escherichia coli FNR regulon and interaction with the NarQ-NarP regulon. BMC Genomics 2007; 8:35 [View Article]
    [Google Scholar]
  28. Isabella VM, Clark VL. Deep sequencing-based analysis of the anaerobic stimulon in Neisseria gonorrhoeae. BMC Genomics 2011; 12:51 [View Article]
    [Google Scholar]
  29. Fantappiè L, Oriente F, Muzzi A, Serruto D, Scarlato V et al. A novel Hfq-dependent sRNA that is under FNR control and is synthesized in oxygen limitation in Neisseria meningitidis. Mol Microbiol 2011; 80:507–523 [View Article]
    [Google Scholar]
  30. Tanwer P, Bauer S, Heinrichs E, Panda G, Saluja D et al. Post-transcriptional regulation of target genes by the sRNA FnrS in Neisseria gonorrhoeae. Microbiology (Reading) 2017; 163:1081–1092 [View Article]
    [Google Scholar]
  31. Bauer S, Helmreich J, Zachary M, Kaethner M, Heinrichs E et al. The sibling sRNAs NgncR_162 and NgncR_163 of Neisseria gonorrhoeae participate in the expression control of metabolic, transport and regulatory proteins. Microbiology (Reading 2017; 163:1720–1734 [View Article]
    [Google Scholar]
  32. Heidrich N, Bauriedl S, Barquist L, Li L, Schoen C et al. The primary transcriptome of Neisseria meningitidis and its interaction with the RNA chaperone Hfq. Nucleic Acids Res 2017; 45:6147–6167 [View Article]
    [Google Scholar]
  33. Pannekoek Y, Schipper K, Bovenkerk S, Kramer G et al. Neisseria meningitidis uses sibling small regulatory RNAs to switch from cataplerotic to anaplerotic metabolism. mBio 2017; 8:e02293-16 [View Article]
    [Google Scholar]
  34. Del Tordello E, Bottini S, Muzzi A, Serruto D. Analysis of the regulated transcriptome of Neisseria meningitidis in human blood using a tiling array. J Bacteriol 2012; 194:6217–6232 [View Article]
    [Google Scholar]
  35. Fagnocchi L, Bottini S, Golfieri G, Fantappiè L, Ferlicca F et al. Global transcriptome analysis reveals small RNAs affecting Neisseria meningitidis bacteremia. PLoS One 2015; 10:e0126325 [View Article]
    [Google Scholar]
  36. Dyer DW, West EP, Sparling PF. Effects of serum carrier proteins on the growth of pathogenic neisseriae with heme-bound iron. Infect Immun 1987; 55:2171–2175 [View Article]
    [Google Scholar]
  37. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol 1983; 166:557–580 [View Article]
    [Google Scholar]
  38. Reimer A, Seufert F, Weiwad M, Ebert J, Bzdyl NM et al. Inhibitors of macrophage infectivity potentiator-like PPIases affect neisserial and chlamydial pathogenicity. Int J Antimicrob Agents 2016; 48:401–408 [View Article]
    [Google Scholar]
  39. Ramsey ME, Hackett KT, Kotha C, Dillard JP. New complementation constructs for inducible and constitutive gene expression in Neisseria gonorrhoeae and Neisseria meningitidis. Appl Environ Microbiol 2012; 78:3068–3078 [View Article]
    [Google Scholar]
  40. Brosius J. Superpolylinkers in cloning and expression vectors. DNA 1989; 8:759–777 [View Article]
    [Google Scholar]
  41. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 2011; 17:10–12 [View Article]
    [Google Scholar]
  42. Ribeiro FJ, Przybylski D, Yin S, Sharpe T, Gnerre S et al. Finished bacterial genomes from shotgun sequence data. Genome Res 2012; 22:2270–2277 [View Article]
    [Google Scholar]
  43. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9:357–359 [View Article]
    [Google Scholar]
  44. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014; 30:923–930 [View Article]
    [Google Scholar]
  45. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014; 15:550 [View Article]
    [Google Scholar]
  46. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25:402–408 [View Article]
    [Google Scholar]
  47. Urban JH, Vogel J. Translational control and target recognition by Escherichia coli small RNAs in vivo. Nucleic Acids Res 2007; 35:1018–1037 [View Article]
    [Google Scholar]
  48. Corcoran CP, Podkaminski D, Papenfort K, Urban JH, Hinton JC et al. Superfolder GFP reporters validate diverse new mRNA targets of the classic porin regulator, MicF RNA. Mol Microbiol 2012; 84:428–445 [View Article]
    [Google Scholar]
  49. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 2012; 9:671–675 [View Article]
    [Google Scholar]
  50. Kery MB, Feldman M, Livny J, Tjaden B. TargetRNA2: identifying targets of small regulatory RNAs in bacteria. Nucleic Acids Res 2014; 42:W124–149 [View Article]
    [Google Scholar]
  51. Wright PR, Georg J, Mann M, Sorescu DA, Richter AS et al. CopraRNA and IntaRNA: predicting small RNA targets, networks and interaction domains. Nucleic Acids Res 2014; 42:W119–123 [View Article]
    [Google Scholar]
  52. Hu LI, Yin S, Ozer EA, Sewell L, Rehman S et al. Discovery of a new Neisseria gonorrhoeae Type IV Pilus Assembly Factor. mBio 2020; 11:e02528-20 [View Article]
    [Google Scholar]
  53. Jamet A, Jousset AB, Euphrasie D, Mukorako P, Boucharlat A et al. A new family of secreted toxins in pathogenic Neisseria species. PLoS Pathog 2015; 11:e1004592 [View Article]
    [Google Scholar]
  54. Mann M, Wright PR, Backofen R. IntaRNA 2.0: enhanced and customizable prediction of RNA-RNA interactions. Nucleic Acids Res 2017; 45:W435–W439 [View Article]
    [Google Scholar]
  55. Sittka A, Pfeiffer V, Tedin K, Vogel J. The RNA chaperone Hfq is essential for the virulence of Salmonella typhimurium. Mol Microbiol 2007; 63:193–217 [View Article]
    [Google Scholar]
  56. Caswell CC, Oglesby-Sherrouse AG, Murphy ER. Sibling rivalry: related bacterial small RNAs and their redundant and non-redundant roles. Front Cell Infect Microbiol 2014; 4:151 [View Article]
    [Google Scholar]
  57. Sievers S, Sternkopf Lillebaek EM, Jacobsen K, Lund A, Mollerup MS et al. A multi-copy sRNA of Listeria monocytogenes regulates expression of the virulence adhesin LapB. Nucleic Acids Res 2014; 42:9383–9398 [View Article]
    [Google Scholar]
  58. Mollerup MS, Ross JA, Helfer AC, Meistrup K, Romby P et al. Two novel members of the LhrC family of small RNAs in Listeria monocytogenes with overlapping regulatory functions but distinctive expression profiles. RNA Biol 2016; 13:895–915 [View Article]
    [Google Scholar]
  59. Wilderman PJ, Sowa NA, FitzGerald DJ, FitzGerald PC, Gottesman S et al. Identification of tandem duplicate regulatory small RNAs in Pseudomonas aeruginosa involved in iron homeostasis. Proc Natl Acad Sci U S A 2004; 101:9792–9797 [View Article]
    [Google Scholar]
  60. Djapgne L, Panja S, Brewer LK, Gans JH, Kane MA et al. The Pseudomonas aeruginosa PrrF1 and PrrF2 small regulatory RNAs promote 2-alkyl-4-quinolone production trough redundant regulation of the antR mRNA. J Bacteriol 2018; 200:e00704-00717 [View Article]
    [Google Scholar]
  61. Sheehan LM, Caswell CC. A 6-nucleotide regulatory motif within the AbcR small RNAs of Brucella abortus mediates host-pathogen interactions. mBio 2017; 8:e00473-17 [View Article]
    [Google Scholar]
  62. KC T, Bassler BL. Multiple small RNAs act additively to integrate sensory information and control quorum sensing in Vibrio harveyi. Genes Dev 2007; 21:221–233 [View Article]
    [Google Scholar]
  63. Torres-Quesada O, Millán V, Nisa-Martínez R, Bardou F, Crespi M et al. Independent activity of the homologous small regulatory RNAs AbcR1 and AbcR2 in the legume symbiont Sinorhizobium meliloti. PLoS One 2013; 8:e68147 [View Article]
    [Google Scholar]
  64. Padalon-Brauch G, Hershberg R, Elgrably-Weiss M, Baruch K, Rosenshine I et al. Small RNAs encoded within genetic islands of Salmonella typhimurium show host-induced expression and role in virulence. Nucleic Acids Res 2008; 36:1913–1927 [View Article]
    [Google Scholar]
  65. Guillier M, Gottesman S. Remodelling of the Escherichia coli outer membrane by two small regulatory RNAs. Mol Microbiol 2006; 59:231–247 [View Article]
    [Google Scholar]
  66. Durand S, Storz G. Reprogramming of anaerobic metabolism by the FnrS small RNA. Mol Microbiol 2010; 75:1215–1231 [View Article]
    [Google Scholar]
  67. Quillin SJ, Seifert HS. Neisseria gonorrhoeae host adaptation and pathogenesis. Nat Rev Microbiol 2018; 16:226–240 [View Article]
    [Google Scholar]
  68. Tønjum T, Freitag NE, Namork E, Koomey M. Identification and characterization of pilG, a highly conserved pilus-assembly gene in pathogenic Neisseria. Mol Microbiol 1995; 16:451–464 [View Article]
    [Google Scholar]
  69. Carbonnelle E, Helaine S, Nassif X, Pelicic V. A systematic genetic analysis in Neisseria meningitidis defines the Pil proteins required for assembly, functionality, stabilization and export of type IV pili. Mol Microbiol 2006; 61:1510–1522 [View Article]
    [Google Scholar]
  70. Frye SA, Lång E, Beyene GT, Balasingham SV, Homberset H et al. The inner membrane protein PilG interacts with DNA and the secretin PilQ in transformation. PLoS One 2015; 10:e0134954 [View Article]
    [Google Scholar]
  71. Beyene GT, Kalayou S, Riaz T, Tonjum T. Comparative proteomic analysis of Neisseria meningitidis wildtype and dprA null mutant strains links DNA processing to pilus biogenesis. BMC Microbiol 2017; 17:96 [View Article]
    [Google Scholar]
  72. Winther-Larsen HC, Hegge FT, Wolfgang M, Hayes SF, van Putten JP et al. Neisseria gonorrhoeae PilV, a type IV pilus-associated protein essential to human epithelial cell adherence. Proc Natl Acad Sci U S A 2001; 98:15276–15281 [View Article]
    [Google Scholar]
  73. Lewis LK, Harlow GR, Gregg-Jolly LA, Mount DW. Identification of high affinity binding sites for LexA which define new DNA damage-inducible genes in Escherichia coli. J Mol Biol 1994; 241:507–523 [View Article]
    [Google Scholar]
  74. Ohmori H, Saito M, Yasuda T, Nagata T, Fujii T et al. The pcsA gene is identical to dinD in Escherichia coli. J Bacteriol 1995; 177:156–165 [View Article]
    [Google Scholar]
  75. Yaguchi K, Mikami T, Igari K, Yoshida Y, Yokoyama K et al. Identification of LexA regulated promoters in Escherichia coli O157:H7. J Gen Appl Microbiol 2011; 57:219–230 [View Article]
    [Google Scholar]
  76. Neher SB, Villén J, Oakes EC, Bakalarski CE, Sauer RT et al. Proteomic profiling of ClpXP substrates after DNA damage reveals extensive instability within SOS regulon. Mol Cell 2006; 22:193–204 [View Article]
    [Google Scholar]
  77. Kenyon CJ, Walker GC. DNA-damaging agents stimulate gene expression at specific loci in Escherichia coli. Proc Natl Acad Sci U S A 1980; 77:2819–2823 [View Article]
    [Google Scholar]
  78. Schook PO, Stohl EA, Criss AK, Seifert HS. The DNA-binding activity of the Neisseria gonorrhoeae LexA orthologue NG1427 is modulated by oxidation. Mol Microbiol 2011; 79:846–860 [View Article]
    [Google Scholar]
  79. Uranga LA, Balise VD, Benally CV, Grey A, Lusetti SL. The Escherichia coli DinD protein modulates RecA activity by inhibiting postsynaptic RecA filaments. J Biol Chem 2011; 286:29480–29491 [View Article]
    [Google Scholar]
  80. Attaiech L, Boughammoura A, Brochier-Armanet C, Allatif O, Peillard-Fiorente F et al. Silencing of natural transformation by an RNA chaperone and a multitarget small RNA. Proc Natl Acad Sci U S A 2016; 113:8813–8818 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001080
Loading
/content/journal/micro/10.1099/mic.0.001080
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error