1887
Preview this article:

There is no abstract available.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001077
2021-07-16
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/167/6/mic001077.html?itemId=/content/journal/micro/10.1099/mic.0.001077&mimeType=html&fmt=ahah

References

  1. Gordon S, Parish T. Microbe profile: Mycobacterium tuberculosis: Humanity’s deadly microbial foe. Microbiol 2018; 164:437–439 [View Article]
    [Google Scholar]
  2. Serafini A. Interplay between central carbon metabolism and metal homeostasis in mycobacteria and other human pathogens. Microbiology (Reading) 2021167 167: [View Article] [PubMed]
    [Google Scholar]
  3. Banerjee S, Nandyala AK, Raviprasad P, Ahmed N, Hasnain SE. Iron-dependent RNA-binding activity of Mycobacterium tuberculosis aconitase. J Bacteriol 2007; 189:4046–4052 [View Article] [PubMed]
    [Google Scholar]
  4. Tamuhla T, Joubert L, Willemse D, Williams MJ. SufT is required for growth of Mycobacterium smegmatis under iron limiting conditions. Microbiology 2019micro000881
    [Google Scholar]
  5. Machová I, Snášel J, Zimmermann M, Laubitz D, Plocinski P. Mycobacterium tuberculosis phosphoenolpyruvate carboxykinase is regulated by redox mechanisms and interaction with thioredoxin. J Biol Chem 2014; 289:13066–13078 [View Article] [PubMed]
    [Google Scholar]
  6. Alén C, Sonenshein AL. Bacillus subtilis aconitase is an RNA-binding protein. Proc Natl Acad Sci U S A 1999; 96:10412–10417 [View Article] [PubMed]
    [Google Scholar]
  7. Tang Y, Guest JR. Direct evidence for mRNA binding and post-transcriptional regulation by Escherichia coli aconitases. Microbiology (Reading) 1999; 145:3069–3079 [View Article] [PubMed]
    [Google Scholar]
  8. Dušková M, Cmunt D, Papoušková K, Masaryk J, Sychrová H. Minority potassium-uptake system Trk2 has a crucial role in yeast survival of glucose-induced cell death. Microbiology 2021; 167:001065 [View Article]
    [Google Scholar]
  9. Corratgé-Faillie C, Jabnoune M, Zimmermann S, Véry AA, Fizames C. Potassium and sodium transport in non-animal cells: The Trk/Ktr/HKT transporter family. Cell Mol Life Sci 2010; 67:2511–2532 [View Article] [PubMed]
    [Google Scholar]
  10. Petrezsélyová S, Ramos J, Sychrová H. Trk2 transporter is a relevant player in K+ supply and plasma-membrane potential control in Saccharomyces cerevisiae. Folia Microbiol (Praha) 2011; 56:23–28 [View Article] [PubMed]
    [Google Scholar]
  11. Granot D, Levine A, Dor-Hefetz E. Sugar-induced apoptosis in yeast cells. FEMS Yeast Res 2003; 4:7–13 [View Article] [PubMed]
    [Google Scholar]
  12. Sarker I, Moore LR, Tetu SG. Investigating zinc toxicity responses in marine Prochlorococcus and Synechococcus. Microbiology 2021; 167:001064 [View Article]
    [Google Scholar]
  13. Ellwood MJ, Van Den Berg CMG. Zinc speciation in the Northeastern Atlantic Ocean. Mar Chem 2000; 68:295–306 [View Article]
    [Google Scholar]
  14. Moore LR, Coe A, Zinser ER, Saito MA, Sullivan MB. Culturing the marine cyanobacterium Prochlorococcus. Limnol Oceanogr Methods 2007; 5:353–362 [View Article]
    [Google Scholar]
  15. Blindauer CA. Zinc-handling in cyanobacteria: An update. Chem Biodivers 2008; 5:1990–2013 [View Article] [PubMed]
    [Google Scholar]
  16. Knight MA, Morris JJ. Co-culture with Synechococcus facilitates growth of Prochlorococcus under ocean acidification conditions. Environ Microbiol 2020; 22:4876–4889 [View Article] [PubMed]
    [Google Scholar]
  17. Imanishi-Shimizu Y, Kamogawa Y, Shimada Y, Shimizu K. A capsule-associated gene of Cryptococcus neoformans, CAP64, is involved in pH homeostasis. Microbiology (Reading) 2021; 167: [View Article] [PubMed]
    [Google Scholar]
  18. Bahn YS, Sun S, Heitman J, Lin X. Microbe profile: Cryptococcus neoformans species complex. Microbiology 2020; 166:797–799
    [Google Scholar]
  19. Chang YC, Penoyer LA, Kwon-Chung KJ. The second capsule gene of Cryptococcus neoformans, CAP64, is essential for virulence. Infect Immun 1996; 64:1977–1983 [View Article] [PubMed]
    [Google Scholar]
  20. Imanishi Y, Tanaka R, Yaguchi T, Shimizu K. Capsule gene CAP64 is involved in the regulation of vacuole acidification in Cryptococcus neoformans. Mycoscience 2017; 58:45–52 [View Article]
    [Google Scholar]
  21. Rodrigues ML, Nimrichter L, Oliveira DL, Frases S, Miranda K. Vesicular polysaccharide export in Cryptococcus neoformans is a eukaryotic solution to the problem of fungal trans-cell wall transport. Eukaryot Cell 2007; 6:48–59 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001077
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error