1887
Preview this article:

There is no abstract available.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001069
2021-06-08
2024-12-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/167/5/mic001069.html?itemId=/content/journal/micro/10.1099/mic.0.001069&mimeType=html&fmt=ahah

References

  1. Charette SJ. Microbe profile: Aeromonas salmonicida: an opportunistic pathogen with multiple personalities. Microbiology 2021; 167:001052 [View Article]
    [Google Scholar]
  2. Dacanay A, Knickle L, Solanky KS, Boyd JM, Walter JA et al. Contribution of the type III secretion system (TTSS) to virulence of Aeromonas salmonicida subsp. salmonicida. Microbiology (Reading) 2006; 152:1847–1856 [View Article][PubMed]
    [Google Scholar]
  3. Park SY, Han JE, Kwon H, Park SC, Kim JH. Recent insights into Aeromonas salmonicida and its bacteriophages in aquaculture: A comprehensive review. J Microbiol Biotechnol 2020; 30:1443–1457 [View Article][PubMed]
    [Google Scholar]
  4. Burmeister AR, Sullivan RM, Gallie J, Lenski RE. Sustained coevolution of phage Lambda and Escherichia coli involves inner- as well as outer-membrane defences and counter-defences. Microbiology 2021; 167:001063 [View Article]
    [Google Scholar]
  5. Meyer JR, Dobias DT, Weitz JS, Barrick JE, Quick RT et al. Repeatability and contingency in the evolution of a key innovation in phage lambda. Science 2012; 335:428–432 [View Article]
    [Google Scholar]
  6. Scandella D, Arber W. An Escherichia coli mutant which inhibits the injection of phage λ DNA. Virology 1974; 58:504–513 [View Article][PubMed]
    [Google Scholar]
  7. Ragunathan PT, Vanderpool CK. Cryptic-prophage-encoded small protein Dicb protects Escherichia coli from phage infection by inhibiting inner membrane receptor proteins. J Bacteriol 2019; 201: [View Article][PubMed]
    [Google Scholar]
  8. Govindarajan S, Elisha Y, Nevo-Dinur K, Amster-Choder O. The general phosphotransferase system proteins localize to sites of strong negative curvature in bacterial cells. mBio 2013; 4:e00443–13 [View Article][PubMed]
    [Google Scholar]
  9. Martins GB, Giacomelli G, Goldbeck O, Seibold GM, Bramkamp M. Substrate‐dependent cluster density dynamics of Corynebacterium glutamicum phosphotransferase system permeases. Mol Microbiol 2019; 111:1335–1354 [View Article][PubMed]
    [Google Scholar]
  10. Joyce LR, Guan Z, Palmer KL. Streptococcus pneumoniae, S. pyogenes and S. agalactiae membrane phospholipid remodelling in response to human serum. Microbiology 2021; 167:001048 [View Article]
    [Google Scholar]
  11. Joyce LR, Guan Z, Palmer KL. Phosphatidylcholine biosynthesis in Mitis group Streptococci via host metabolite scavenging. J Bacteriol 201: [View Article][PubMed]
    [Google Scholar]
  12. Smith H. Pathogenicity and the microbe in vivo. The 1989 fred griffith review lecture. J Gen Microbiol 1990; 136:377–393 [View Article][PubMed]
    [Google Scholar]
  13. Mandrell RE, Lesse AJ, Sugai J, Shero M, Griffiss JM et al. In vitro and in vivo modification of Neisseria Gonorrhoeae lipooligosaccharide epitope structure by sialylation. J Exp Med 1990; 171:1649–1664 [View Article][PubMed]
    [Google Scholar]
  14. Bouchet V, Hood DW, Li J, Brisson JR, Randle GA et al. Host-derived sialic acid is incorporated into Haemophilus influenzae lipopolysaccharide and is a major virulence factor in experimental otitis media. Proc Natl Acad Sci U S A 2003; 100:8898–8903 [View Article][PubMed]
    [Google Scholar]
  15. Severi E, Randle G, Kivlin P, Whitfield K, Young R et al. Sialic acid transport in Haemophilus influenzae is essential for lipopolysaccharide sialylation and serum resistance and is dependent on a novel tripartite ATP-independent periplasmic transporter. Mol Microbiol 2005; 58:1173–1185 [View Article][PubMed]
    [Google Scholar]
  16. Guan Z, Goldfine H. Lipid diversity in Clostridia. Biochim Biophys Acta Mol Cell Biol Lipids 2021158966 [View Article][PubMed]
    [Google Scholar]
  17. Jackson DR, Cassilly CD, Plichta DR, Vlamakis H, Liu H et al. Plasmalogen biosynthesis by anaerobic bacteria: Identification of a two-gene operon responsible for plasmalogen production in Clostridium perfringens. ACS Chem Biol 2021; 16:6–13 [View Article][PubMed]
    [Google Scholar]
  18. Gallego-García A, Monera-Girona AJ, Pajares-Martínez E, Bastida-Martínez E, Pérez-Castaño R et al. A bacterial light response reveals an orphan desaturase for human plasmalogen synthesis. Science 2019; 366:128–132 [View Article]
    [Google Scholar]
  19. Coburn PS, Miller FC, Enty MA, Land C, LaGrow AL et al. The Bacillus virulome in endophthalmitis. Microbiology 2021; 167:001057 [View Article]
    [Google Scholar]
  20. Gohar M, Faegri K, Perchat S, Ravnum S, Økstad OA et al. The PlcR virulence regulon of Bacillus cereus. PLoS One 2008; 3:2793 [View Article]
    [Google Scholar]
  21. Calvelo VY, Crisante D, Elliot M, Nodwell JR. The ARC2 response in Streptomcyes coelicolor requires the global regulatory genes afsR and afsS. Microbiology 2021; 167:001047 [View Article]
    [Google Scholar]
  22. Som NF, Heine D, Holmes N, Knowles F, Chandra G et al. The MtrAB two-component system controls antibiotic production in Streptomyces coelicolor A3(2. Microbiol (United Kingdom) 2017; 163:1415–1419
    [Google Scholar]
  23. Lee PC, Umeyama T, Horinouchi S. afsS is a target of AfsR, a transcriptional factor with ATPase activity that globally controls secondary metabolism in Streptomyces coelicolor A3(2. Mol Microbiol 2002; 43:1413–1430 [View Article][PubMed]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.001069
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error