1887
Preview this article:

There is no abstract available.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001053
2021-03-31
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/167/3/micro001053.html?itemId=/content/journal/micro/10.1099/mic.0.001053&mimeType=html&fmt=ahah

References

  1. Thomas GH. Microbial Musings-December 2020. Microbiology 2020:1107–1109
    [Google Scholar]
  2. Bowran K, Palmer T. Extreme genetic diversity in the type VII secretion system of Listeria monocytogenes suggests a role in bacterial antagonism. Microbiology 2021 18 Feb 2021 [View Article][PubMed]
    [Google Scholar]
  3. Bunduc CM, Bitter W, Houben ENG. Structure and function of the mycobacterial type VII secretion systems. Annu Rev Microbiol 2020; 74:315–335 [View Article][PubMed]
    [Google Scholar]
  4. Unnikrishnan M, Constantinidou C, Palmer T, Pallen MJ. The enigmatic Esx proteins: looking beyond mycobacteria. Trends Microbiol 2017; 25:192–204 [View Article][PubMed]
    [Google Scholar]
  5. Saha CK, Sanches Pires R, Brolin H, Delannoy M, Atkinson GC. Flags and webFlaGs: discovering novel biology through the analysis of gene neighbourhood conservation. Bioinformatics
    [Google Scholar]
  6. Pears CJ, Gross JD. Microbe Profile : Dictyostelium discoideum : model system for development, chemotaxis and biomedical research. Microbiology 20211–3
    [Google Scholar]
  7. Adhikari N, Kuburich NA, Hadwiger JA. Mitogen-activated protein kinase regulation of the phosphodiesterase regA in early Dictyostelium development. Microbiology 2019micro000868
    [Google Scholar]
  8. Medina JM, Shreenidhi PM, Larsen TJ, Queller DC, Strassmann JE. Cooperation and conflict in the social amoeba Dictyostelium discoideum . Int J Dev Biol 2019; 63:371–382 [View Article]
    [Google Scholar]
  9. Hagedorn M, Rohde KH, Russell DG, Soldati T. Infection by tubercular mycobacteria is spread by nonlytic ejection from their amoeba hosts. Science 2009; 323:1729–1733 [View Article]
    [Google Scholar]
  10. Dunn JD, Bosmani C, Barisch C, Raykov L, Lefrançois LH et al. Eat prey, live: Dictyostelium discoideum as a model for cell-autonomous defenses. Front Immunol 2018; 8:1 [View Article]
    [Google Scholar]
  11. Fry NK. Introducing JMM profiles for the Journal of medical microbiology. J Med Microbiol 2021; 2021:
    [Google Scholar]
  12. Inglis TJJ, Mathee K. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). J Med Microbiol 2021; 001336:
    [Google Scholar]
  13. Dufresne K, Saulnier-Bellemare J, Daigle F. Functional analysis of the chaperone-usher fimbrial gene clusters of Salmonella enterica serovar Typhi. Front Cell Infect Microbiol 2018; 8:26 [View Article]
    [Google Scholar]
  14. Chessa D, Winter MG, Jakomin M, Bäumler AJ. Salmonella enterica serotype Typhimurium Std fimbriae bind terminal α(1,2)fucose residues in the cecal mucosa. Mol Microbiol 2009; 71:864–875 [View Article]
    [Google Scholar]
  15. Dufresne K, Daigle F. Identification of CRP as a novel regulator of the STD fimbrial expression in Salmonella. Microbiology 2021 Epub ahead of print [View Article]
    [Google Scholar]
  16. Jakomin M, Chessa D, Bäumler AJ, Casadesús J. Regulation of the Salmonella enterica STD fimbrial operon by DNA adenine methylation, SeqA, and HdfR. J Bacteriol 2008; 190:7406–7413 [View Article]
    [Google Scholar]
  17. Connolly JPR, O’Boyle N, Turner NCA, Browning DF, Roe AJ. Distinct intraspecies virulence mechanisms regulated by a conserved transcription factor. Proc Natl Acad Sci U S A 2019; 116:19695–19704 [View Article]
    [Google Scholar]
  18. Connolly JPR, O’Boyle N, Roe AJ. Widespread strain-specific distinctions in chromosomal binding dynamics of a highly conserved Escherichia coli transcription factor. mBio 2020; 11:1–6 [View Article]
    [Google Scholar]
  19. An S-qi, Lopes BS, Connolly JPR, Sharp C, Nguyen TKL et al. Going virtual: a report from the sixth Young Microbiologists Symposium on ‘Microbe Signalling, Organisation and Pathogenesis’. Microbiology 2021 [View Article]
    [Google Scholar]
  20. Vázquez‐Boland JA, Meijer WG. The pathogenic actinobacterium Rhodococcus equi : what’s in a name?. Mol Microbiol 2019; 112:1–15 [View Article]
    [Google Scholar]
  21. Holder JW, Ulrich JC, DeBono AC, Godfrey PA, Desjardins CA et al. Comparative and functional genomics of Rhodococcus opacus PD630 for biofuels development. PLoS Genet 2011; 7:e1002219 [View Article]
    [Google Scholar]
  22. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 2000; 97:6640–6645 [View Article]
    [Google Scholar]
  23. Singhi D, Parwin S, Srivastava P. Genomic deletions in Rhodococcus based on transformation of linear heterologous DNA. Microbiology 2021 [View Article]
    [Google Scholar]
  24. Rosa LT, Bianconi ME, Thomas GH, Kelly DJ. Tripartite ATP-independent periplasmic (TRAP) transporters and tripartite tricarboxylate transporters (TTT): from uptake to pathogenicity. Front Cell Infect Microbiol 2018; 8: [View Article]
    [Google Scholar]
  25. Forward J, Behrendt MC, Wyborn NR, Cross R, Kelly DJ. Trap transporters: a new family of periplasmic solute transport systems encoded by the. Microbiology 1997; 179:5482–5493
    [Google Scholar]
  26. Mulligan C, Leech AP, Kelly DJ, Thomas GH. The membrane proteins SiaQ and SiaM form an essential stoichiometric complex in the sialic acid tripartite ATP-independent periplasmic (TRAP) transporter SiaPQM (VC1777–1779) from Vibrio cholerae*. J Biol Chem 2012; 287:3598–3608 [View Article]
    [Google Scholar]
  27. Sánchez-Ortiz VJ, Domenzain C, Poggio S, Dreyfus G, Camarena L. The periplasmic component of the DctPQM TRAP-transporter is part of the DctS/DctR sensory pathway in Rhodobacter sphaeroides. Microbiology 2021; 001037:
    [Google Scholar]
  28. Graf S, Schmieden D, Tschauner K, Hunke S, Unden G. The sensor kinase dcts forms a tripartite sensor unit with dctb and dcta for sensing c4-dicarboxylates in Bacillus subtilis . J Bacteriol 2014; 196:1084–1093 [View Article]
    [Google Scholar]
  29. Abarca JG, Whitfield SM, Zuniga-Chaves I, Alvarado G, Kerby J et al. Genotyping and differential bacterial inhibition of Batrachochytrium dendrobatidis in threatened amphibians in Costa Rica. Microbiology 2021; 17: [View Article]
    [Google Scholar]
  30. Harris RN, Brucker RM, Walke JB, Becker MH, Schwantes CR et al. Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. Isme J 2009; 3:818–824 [View Article]
    [Google Scholar]
  31. McDermott A. Fighting a fungal scourge. Proceedings of the National Academy of Sciences of the United States of America 2019; 116:20245–20249
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001053
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error