1887

Abstract

The compound 17α-ethinylestradiol (EE2) is a synthetic oestrogen which is classified as a group 1 carcinogen by the World Health Organization. Together with other endocrine disruptor compounds, EE2 has been included in the surface water Watch List by the European Commission, since it causes severe adverse effects in ecosystems. Thus, it became a high priority to find or improve processes such as biodegradation of EE2 to completely remove this drug from the wastewater treatment plants (WWTPs). The present study aimed at the isolation of bacteria capable of degrading EE2 using environmental samples, namely a sludge from the Faro Northwest WWTP. Four isolates with ability to grow in the presence of 50 mg l EE2 were obtained. The analysis of 16SrRNA gene sequences identified the isolated bacteria as and . The results of biodegradation assays showed that , , and were able to degrade 47±4 %, 55±3 %, 64±4% and 35±4 %, respectively of 13 mg l EE2 after 168 h at 28 °C. To the best of our knowledge, these bacterial isolates were identified as EE2 degraders for the first time. In a preliminary experiment on the identification of metabolic products resulting from EE2 degradation products such as estrone (E1), γ-lactone compounds, 2-pentanedioic acid and 2-butenedioic acid an intermediate metabolite of the TCA cycle, were detected.

Funding
This study was supported by the:
  • Erasmus+
    • Principle Award Recipient: AnastasiiaShylova
  • Fundação para a Ciência e a Tecnologia (Award SFRH/BD/95075/2013)
    • Principle Award Recipient: TâniaL Palma
  • Fundação para a Ciência e a Tecnologia (Award UIDB/04326/2020)
    • Principle Award Recipient: MariaClara Costa
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001038
2021-04-19
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/167/4/mic001038.html?itemId=/content/journal/micro/10.1099/mic.0.001038&mimeType=html&fmt=ahah

References

  1. Stanczyk FZ, Archer DF, Bhavnani BR. Ethinyl estradiol and 17β-estradiol in combined oral contraceptives: pharmacokinetics, pharmacodynamics and risk assessment. Contraception 2013; 87:706–727 [View Article][PubMed]
    [Google Scholar]
  2. Aris AZ, Shamsuddin AS, Praveena SM. Occurrence of 17α-ethynylestradiol (EE2) in the environment and effect on exposed biota: a review. Environ Int 2014; 69:104–119 [View Article][PubMed]
    [Google Scholar]
  3. National Center for Biotechnology Information PubChem Database. Ethinyl estradiol, CID=5991, https://pubchem.ncbi.nlm.nih.gov/compound/Ethinyl-estradiol (accessed on A Amuelian, Johnhs and Johnps. 2009. Exposure assessment of 17 a -ethinylestradiol in surface waters of the United States and Europe. Environ Toxicol Chem 2009; 28:2725–2732
    [Google Scholar]
  4. Diamanti-Kandarakis E, Bourguignon J-P, Giudice LC, Hauser R, Prins GS et al. Endocrine-disrupting chemicals: an endocrine society scientific statement. Endocr Rev 2009; 30:293–342 [View Article][PubMed]
    [Google Scholar]
  5. Larsson DGJ, Adolfsson-Erici M, Parkkonen J, Pettersson M, Berg AH et al. Förlina L Ethinyloestradiol - an undesired fish contraceptive?. Aquat Toxicol 1999; 45:91–97
    [Google Scholar]
  6. Thorpe KL, Cummings RI, Hutchinson TH, Scholze M, Brighty G et al. Relative potencies and combination effects of steroidal estrogens in fish. Environ Sci Technol 2003; 37:1142–1149 [View Article][PubMed]
    [Google Scholar]
  7. Van den Belt K, Berckmans P, Vangenechten C, Verheyen R, Witters H. Comparative study on the in vitro/in vivo estrogenic potencies of 17beta-estradiol, estrone, 17alpha-ethynylestradiol and nonylphenol. Aquat Toxicol 2004; 66:183–195 [View Article][PubMed]
    [Google Scholar]
  8. Johnson AC, Williams RJ. A model to estimate influent and effluent concentrations of estradiol, estrone, and ethinylestradiol at sewage treatment works. Environ Sci Technol 2004; 38:3649–3658 [View Article][PubMed]
    [Google Scholar]
  9. Wise A, O’Brien K, Woodruff T. Are oral contraceptives a significant contributor to the estrogenicity of drinking water?. Environ Sci Technol 2011; 45:51–60 [View Article]
    [Google Scholar]
  10. Larcher S, Yargeau V. Biodegradation of 17α-ethinylestradiol by heterotrophic bacteria. Environ Pollut 2013; 173:17–22 [View Article]
    [Google Scholar]
  11. Barreiros L, Queiroz JF, Magalhães LM, Silva AMT, Segundo MA. Analysis of 17-β-estradiol and 17-α-ethinylestradiol in biological and environmental matrices — a review. Microchem J 2016; 126:243–262 [View Article]
    [Google Scholar]
  12. Huang B, Wang B, Ren D, Jin W, Liu J et al. Occurrence, removal and bioaccumulation of steroid estrogens in Dianchi lake catchment, China. Environ Int 2013; 59:262–273 [View Article]
    [Google Scholar]
  13. Ternes TA, Stumpf M, Mueller J, Haberer K, Wilken R-D et al. Behavior and occurrence of estrogens in municipal sewage treatment plants - I. investigations in Germany, Canada and Brazil. Sci Total Environ 1999; 225:81–90 [View Article]
    [Google Scholar]
  14. Schröder P, Helmreich B, Škrbić B, Carballa M, Papa M et al. Status of hormones and painkillers in wastewater effluents across several European states-considerations for the EU watch list concerning estradiols and diclofenac. Environ Sci Pollut Res Int 2016; 23:12835–12866 [View Article][PubMed]
    [Google Scholar]
  15. Zuo Y, Zhang K, Zhou S. Determination of estrogenic steroids and microbial and photochemical degradation of 17α-ethinylestradiol (EE2) in lake surface water, a case study. Environ Sci Process Impacts 2013; 15:1529–1535 [View Article]
    [Google Scholar]
  16. Owen R. Jobling S environmental science: the hidden costs of flexible fertility. Nature 2012; 485:441
    [Google Scholar]
  17. Cunha DL, Silva SMC, Bila DM, Oliveira JLM, Sarcinelli PN et al. Regulation of the synthetic estrogen 17α-ethinylestradiol in water bodies in Europe, the United States, and Brazil. Cad de Saúde Pública 2016; 32:e00056715
    [Google Scholar]
  18. Lai KM, Scrimshaw MD, Lester JN. The effects of natural and synthetic steroid estrogens in relation to their environmental occurrence. Crit Rev Toxicol 2002; 32:113–132 [View Article]
    [Google Scholar]
  19. Gilbert N. Drug-pollution law all washed up. Nature 2012; 491:503–504 [View Article][PubMed]
    [Google Scholar]
  20. Avar P, Zrínyi Z, Maász G, Takátsy A, Lovas S et al. β-Estradiol and ethinyl-estradiol contamination in the rivers of the Carpathian Basin. Environ Sci Pollut Res 2016; 23:11630–11638 [View Article]
    [Google Scholar]
  21. Bhandari RK, Deem SL, Holliday DK, Jandegian CM, Kassotis CD et al. Effects of the environmental estrogenic contaminants bisphenol A and 17α-ethinyl estradiol on sexual development and adult behaviors in aquatic wildlife species. Gen Comp Endocrinol 2015; 214:195–219 [View Article]
    [Google Scholar]
  22. Könemann S, Kase R, Simon E, Swart K, Buchinger S et al. Effect-based and chemical analytical methods to monitor estrogens under the European water framework Directive TrAC trends. Analytical Chemistry 2018; 102:225–235
    [Google Scholar]
  23. Huang B, Sun W, Li X, Liu J, Li Q et al. Effects and bioaccumulation of 17β-estradiol and 17α-ethynylestradiol following long-term exposure in crucian carp. Ecotoxicol Environ Saf 2015; 112:169–176 [View Article]
    [Google Scholar]
  24. Gomes RL, Deacon HE, Lai KM, Birkett JW, Scrimshaw MD et al. An assessment of the bioaccumulation of estrone in Daphnia magna . Environ Toxicol Chem 2004; 23:105–108 [View Article]
    [Google Scholar]
  25. Atkinson SK, Marlatt VL, Kimpe LE, Lean DRS, Trudeau VL et al. Environmental factors affecting ultraviolet photodegradation rates and estrogenicity of estrone and ethinylestradiol in natural waters. Arch Environ Contam Toxicol 2011; 60:1–7 [View Article]
    [Google Scholar]
  26. Yoshimoto T, Nagai F, Fujimoto J, Watanabe K, Mizukoshi H et al. Degradation of estrogens by Rhodococcus zopfii and Rhodococcus equi isolates from activated sludge in wastewater treatment plants. Appl Environ Microbiol 2004; 70:5283–5289 [View Article]
    [Google Scholar]
  27. Haiyan R, Shulan J, ud din Ahmad N, Dao W, Chengwu C. Degradation characteristics and metabolic pathway of 17alpha-ethynylestradiol by Sphingobacterium sp. JCR5. Chemosphere 2007; 66:340–346 [View Article][PubMed]
    [Google Scholar]
  28. CP Y, Deeb RA. Chu KH microbial degradation of steroidal estrogens. Chemosphere 2013; 91:1225–1235
    [Google Scholar]
  29. Yi T, Harper WF. The link between nitrification and biotransformation of 17α-ethinylestradiol. Environ Sci Technol 2007; 41:4311–4316 [View Article]
    [Google Scholar]
  30. Ren H, Ji S, Nud A, Wang D, Cui C. Degradation characteristics and metabolic pathway of 17-ethynylestradiol by Sphingobacterium sp. JCR5. Chemosphere 2007; 66:340–346
    [Google Scholar]
  31. Pauwels B, Wille K, Noppe H, De Brabander H, Van de Wiele T et al. 17α-ethinylestradiol cometabolism by bacteria degrading estrone, 17β-estradiol and estriol. Biodegradation 2008; 19:683–693 [View Article]
    [Google Scholar]
  32. Shi JH, Suzuki Y, Lee BD, Nakai S, Hosomi M. Isolation and characterization of the ethynylestradiol-biodegrading microorganism Fusarium proliferatum strain HNS-1. Water Sci Technol 2002; 45:175–179 [View Article]
    [Google Scholar]
  33. Tchobanoglous G, Franklin LB, Stensel HD, Vader JS et al. Degradation of ethinyl estradiol by nitrifying activated sludge. Chemosphere 2000; 41:1239–1243
    [Google Scholar]
  34. Vader JS, van Ginkel CG, Sperling F, de Jong J, de Boer W et al. Degradation of ethinyl estradiol by nitrifying activated sludge. Chemosphere 2000; 41:1239–1243 [View Article]
    [Google Scholar]
  35. Andersen H, Siegrist H, Halling-Sørensen B, Ternes TA. Fate of estrogens in a municipal sewage treatment plant. Environ Sci Technol 2003; 37:4021–4026 [View Article][PubMed]
    [Google Scholar]
  36. Dytczak MA, Londry KL, Oleszkiewicz JA. Biotransformation of estrogens in nitrifying activated sludge under aerobic and alternating anoxic/aerobic conditions. Water Environ Res 2008; 80:47–52 [View Article]
    [Google Scholar]
  37. Brown LD, Cologgi DL, Gee KF. Ulrich AC bioremediation of oil spills on land. In Fingas M. editor Oil Spill Science and Technology, 2nd ed. Edmonton, Canada: Gulf Professional Publishing; 2017 pp 699–729
    [Google Scholar]
  38. Koh YK, Chiu TY, Boobis A, Cartmell E, Scrimshaw MD et al. Treatment and removal strategies for estrogens from wastewater. Environ Technol 2008; 29:245–267 [View Article]
    [Google Scholar]
  39. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 2007; 73:5261–5267 [View Article]
    [Google Scholar]
  40. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. mega X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article]
    [Google Scholar]
  41. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526
    [Google Scholar]
  42. Carr EL, Kämpfer P, Patel BK, Gürtler V, Seviour RJ. Seven novel species of Acinetobacter isolated from activated sludge. Int J Syst Evol Microbiol 2003; 53:953–963 [View Article]
    [Google Scholar]
  43. Gavini F, Mergaert J, Bej A, Mielcarek C, Izard D et al. Transfer of Enterobacter agglomerans (Beijerinck 1888) Ewing and Fife 1972 to Pantoea gen. nov. as Pantoea comb. nov. and description of Pantoea dispersa sp. nov. Int J Syst Bacteriol 1989; 39:337–345 [View Article]
    [Google Scholar]
  44. DS A, WT I, Yang HC, Lee ST. Shinella granuli gen. nov., sp. nov., and proposal of the reclassification of Zoogloea ramigera ATCC 19623 as Shinella zoogloeoides sp. nov. Int J Syst Evol Microbiol 2006; 56:443–448
    [Google Scholar]
  45. Liu Z, Xie W, Li D, Peng Y, Li Z et al. Biodegradation of phenol by bacteria strain Acinetobacter calcoaceticus PA isolated from phenolic wastewater. Int J Environ Res Public Health 2016; 13:300 [View Article]
    [Google Scholar]
  46. Briganti F, Pessione E, Giunta C, Scozzafava A, Enrica P. Purification, biochemical properties and substrate specificity of a catechol 1,2-dioxygenase from a phenol degrading Acinetobacter radioresistens . FEBS Lett 1997; 416:61–64 [View Article][PubMed]
    [Google Scholar]
  47. Wenthur CJ. Classics in chemical neuroscience: methylphenidate. ACS Chem Neurosci 2016; 7:1030–1040 [View Article]
    [Google Scholar]
  48. Shields MS, Hooper SW, Sayler GS. Plasmid-mediated mineralization of 4-chlorobiphenyl. J Bacteriol 1985; 163:882–889 [View Article]
    [Google Scholar]
  49. Abdel-el-haleem D. Acinetobacter : environmental and biotechnological applications. Afr J Biotechnol 2003; 2:71–75
    [Google Scholar]
  50. Buchan A, Neidle EL, Moran MA. Diversity of the ring-cleaving dioxygenase GenepcaH in a salt marsh bacterial community. Appl Environ Microbiol 2001; 67:5801–5809 [View Article]
    [Google Scholar]
  51. Kahng H-Y, Cho K, Song S-Y, Kim S-J, Leem S-H et al. Enhanced detection and characterization of protocatechuate 3,4-dioxygenase in Acinetobacter lwoffii K24 by proteomics using a column separation. Biochem Biophys Res Commun 2002; 295:903–909 [View Article]
    [Google Scholar]
  52. Haleyur N, Shahsavari E, Taha M, Khudur LS, Koshlaf E et al. Assessing the degradation efficacy of native PAH-degrading bacteria from aged, weathered soils in an Australian former gasworks site. Geoderma 2018; 321:110–117 [View Article]
    [Google Scholar]
  53. Seo J-S, Keum Y-S, Li Q. Bacterial degradation of aromatic compounds. Int J Environ Res Public Health 2009; 6:278–309 [View Article]
    [Google Scholar]
  54. Zhao G. Effects of interfaces of goethite and humic acid-goethite complex on microbial degradation of methyl parathion. Front Microbiol 1748; 2018:9
    [Google Scholar]
  55. Qiu J, Wei Y, Ma Y, Wen R, Wen Y et al. A Novel (S)-6-hydroxynicotine oxidase gene from Shinella sp. strain HZN7. Appl Environ Microbiol 2014; 80:5552–5560 [View Article]
    [Google Scholar]
  56. Qiu J, Yang Y, Zhang J, Wang H, Ma Y et al. The complete genome sequence of the nicotine-degrading bacterium Shinella sp. HZN7. Front Microbiol 2016; 7:1348 [View Article]
    [Google Scholar]
  57. Fioravante IA, Albergaria B, Teodoro TS, Starling Magalhães SM, Barbosa F et al. Removal of 17α-ethinylestradiol from a sterile WC medium by the cyanobacteria Microcystis novacekii . J Environ Monit 2012; 14:2362–2366 [View Article][PubMed]
    [Google Scholar]
  58. Buffing MF, Link H, Christodoulou D, Sauer U. Capacity for instantaneous catabolism of preferred and non-preferred carbon sources in Escherichia coli and Bacillus subtilis . Sci Rep 2018; 8:11760 [View Article]
    [Google Scholar]
  59. Shi JH, Suzuki Y, Nakai S, Hosomi M. Microbial degradation of estrogens using activated sludge and night soil-composting microorganisms. Water Sci Technol 2004; 50:153–159 [View Article]
    [Google Scholar]
  60. Lee HB, Liu D. Degradation of 17β-estradiol and its metabolites by sewage bacteria. Water Air Soil Pollut 2002; 134:351–366 [View Article]
    [Google Scholar]
  61. Kurisu F, Ogura M, Saitoh S, Yamazoe A, Yagi O. Degradation of natural estrogen and identification of the metabolites produced by soil isolates of sp. and Sphingomonas sp. J Biosci Bioeng 2010; 109:576–582 [View Article]
    [Google Scholar]
  62. Li Z, Nandakumar R, Madayiputhiya N, Li X. Proteomic analysis of 17β-estradiol degradation by Stenotrophomonas maltophilia . Environ Sci Technol 2012; 46:5947–5955 [View Article]
    [Google Scholar]
  63. O’Grady D, Evangelista S, Yargeau V. Removal of aqueous 17 alpha-ethinylestradiol by Rhodococcus species. Environ Eng Sci 2009; 26:1393–1400
    [Google Scholar]
  64. Yi T, Harper WF, Holbrook RD, Love NG. Role of particle size and ammonium oxidation in removal of 17α-Ethinyl estradiol in bioreactors. J Environ Eng 2006; 132:1527–1529 [View Article]
    [Google Scholar]
  65. Lust MJ. Fate and transformation model of 17α-Ethinylestradiol in activated sludge treatment processes. Dissertation thesis for Doctor of Philosophy University of Washington: 2014
    [Google Scholar]
  66. Joss A, Andersen H, Ternes T, Richle PR, Siegrist H. Removal of estrogens in municipal wastewater treatment under aerobic and anaerobic conditions: consequences for plant optimization. Environ Sci Technol 2004; 38:3047–3055 [View Article]
    [Google Scholar]
  67. Weber S, Leuschner P, Dott W, Hollender J. Degradation of estradiol and ethinyl estradiol by activated sludge and by a defined mixed culture. Appl Microbiol Biotechnol 2005; 67:106–112 [View Article]
    [Google Scholar]
  68. Della Greca M, Pinto G, Pistillo P, Pollio A, Previtera L et al. Biotransformation of ethinylestradiol by microalgae. Chemosphere 2008; 70:2047–2053 [View Article]
    [Google Scholar]
  69. Coombre RG, Tsong YY, Hamilton PB, Sih CJ. Mechanisms of steroid oxidation by microorganisms. X. oxidative cleavage of estrone. J Biol Chem 1966; 241:1587–1595[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001038
Loading
/content/journal/micro/10.1099/mic.0.001038
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error