1887

Abstract

Antimicrobial resistance (AMR) is a global health and economic crisis. With too few antibiotics in development to meet current and anticipated needs, there is a critical need for new therapies to treat Gram-negative infections. One potential approach is the use of living predatory bacteria, such as (small Gram-negative bacteria that naturally invade and kill Gram-negative pathogens of humans, animals and plants). Moving toward the use of as a ‘living antibiotic’ demands the investigation and characterization of these bacterial predators in biologically relevant systems. We review the fundamental science supporting the feasibility of predatory bacteria as alternatives to antibiotics.

Funding
This study was supported by the:
  • Wellcome Trust (Award 209437/Z/17/Z)
    • Principle Award Recipient: NotApplicable
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001025
2021-01-19
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/167/1/micro001025.html?itemId=/content/journal/micro/10.1099/mic.0.001025&mimeType=html&fmt=ahah

References

  1. Livermore DM. Has the era of untreatable infections arrived?. J Antimicrob Chemother 2009; 64:i29–36
    [Google Scholar]
  2. CDC Antibiotic resistance threats in the United States. http://www.cdc.gov/DrugResistance/Biggest-Threats.html ; 2019
  3. O’Neill J. The review on antimicrobial resistance. tackling drug-resistant infections globally: final report and recommendations. https://amr-review.org/Publications.html ; 2016
  4. Morehead MS, Scarbrough C. Emergence of global antibiotic resistance. Prim Care 2018; 45:467–484
    [Google Scholar]
  5. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 2018; 18:318–327
    [Google Scholar]
  6. Laxminarayan R, Van Boeckel T, Frost I, Kariuki S, Khan EA et al. The Lancet infectious diseases Commission on antimicrobial resistance: 6 years later. Lancet Infect Dis 2020; 20:e51–e60
    [Google Scholar]
  7. The Pew Charitable Trusts A Scientific Roadmap for Antibiotic Discovery https://www.pewtrusts.org/en/research-and-analysis/reports/2016/05/a-scientific-roadmap-for-antibiotic-discovery ; 2016
  8. Luepke KH, Suda KJ, Boucher H, Russo RL, Bonney MW et al. Iii past, present, and future of antibacterial economics: increasing bacterial resistance, limited antibiotic pipeline, and societal implications. Pharmacotherapy 2017; 37:71–84
    [Google Scholar]
  9. Hesterkamp T. Antibiotics Clinical Development and Pipeline. How to Overcome the Antibiotic Crisis Current Topics in Microbiology and Immunology 398 Cham: Springer; 2015 pp 447–474
    [Google Scholar]
  10. Livermore DM. On behalf of the British Society for antimicrobial chemotherapy Working Party on the urgent need: regenerating antibacterial drug discovery and development B, Martin, Carrs O, Cassell G, fishman N, a Guidos R, et al. discovery research: the scientific challenge of finding new antibiotics. J Antimicrob Chemother 2011; 66:1941–1944
    [Google Scholar]
  11. Ardal C, Balasegaram M, Laxminarayan R, McAdams D, Outterson K et al. Antibiotic development - economic, regulatory and societal challenges. Nat Rev Microbiol. 2019
    [Google Scholar]
  12. Sharland MGS, Huttner B, Moja L, Pulcini C, Zeng M et al. Eml expert Committee and antibiotic Working Group. encouraging AWaRe-ness and discouraging inappropriate antibiotic use-the new 2019 essential medicines list becomes a global antibiotic stewardship tool. Lancet Infect Dis 2019; 19:1278–1280
    [Google Scholar]
  13. Lukacik P, Barnard TJ, Keller PW, Chaturvedi KS, Seddiki N et al. Structural engineering of a phage lysin that targets gram-negative pathogens. Proc Natl Acad Sci U S A 2012; 109:9857–9862
    [Google Scholar]
  14. Allen HK, Trachsel J, Looft T, Casey TA. Finding alternatives to antibiotics. In Bush K. editor Antimicrobial Therapeutics Reviews: Infectious Diseases of Current and Emerging Concern 13232014 Annals of the New York Academy of Sciences; pp 91–100
    [Google Scholar]
  15. Ghosh C, Sarkar P, Issa R, Haldar J. Alternatives to conventional antibiotics in the era of antimicrobial resistance. Trends in Microbiology 2019; 27:323–338
    [Google Scholar]
  16. Duke-Margolis Center for Health Policy Understanding development challenges associated emerging non-traditional-antibiotics. https://healthpolicy.duke.edu/events/understandingdevelopment-challenges-associated-emerging-non-traditional-antibiotics ; 2018
  17. Czaplewski L, Bax R, Clokie M, Dawson M, Fairhead H et al. Alternatives to antibiotics-a pipeline Portfolio review. Lancet Infect Dis 2016; 16:239–251
    [Google Scholar]
  18. Tse BN, Adalja AA, Houchens C, Larsen J, Inglesby TV et al. Challenges and opportunities of nontraditional approaches to treating bacterial infections. Cli Infect Dis 2017; 65:495–500
    [Google Scholar]
  19. Rello J, Parisella FR, Perez A. Alternatives to antibiotics in an era of difficult-to-treat resistance: new insights. Expert Rev Clin Pharmacol 2019; 12:635–642
    [Google Scholar]
  20. Theuretzbacher U, Piddock LJV. Non-traditional antibacterial therapeutic options and challenges. Cell Host Microbe 2019; 26:61–72
    [Google Scholar]
  21. Rex JH, Fernandez Lynch H, Cohen IG, Darrow JJ, Outterson K. Designing development programs for non-traditional antibacterial agents. Nat Commun 2019; 10:3416
    [Google Scholar]
  22. Theuretzbacher U, Outterson K, Engel A, Karlén A. The global preclinical antibacterial pipeline. Nat Rev Microbiol 2020; 18:275–285
    [Google Scholar]
  23. DARPA Pathogen predators program. https://www.darpa.mil/program/pathogenpredators ; 2015
  24. Pérez J, Moraleda-Muñoz A, Marcos-Torres FJ, Muñoz-Dorado J. Bacterial predation: 75 years and counting!. Environ Microbiol 2016; 18:766–779
    [Google Scholar]
  25. Negus D, Moore C, Baker M, Raghunathan D, Tyson J et al. Predator versus pathogen: how does predatory Bdellovibrio bacteriovorus interface with the challenges of killing gram-negative pathogens in a host setting?. Annu Rev Microbiol 2017; 71:441–457
    [Google Scholar]
  26. Laloux G. Shedding light on the cell biology of the predatory bacterium Bdellovibrio bacteriovorus . Front Microbiol 2020; 10:3136
    [Google Scholar]
  27. Sockett RE. Predatory lifestyle of Bdellovibrio bacteriovorus. Annu Rev Microbiol 2009; 63:523–539
    [Google Scholar]
  28. Milner DS, Ray LJ, Saxon EB, Lambert C, Till R et al. DivIVA controls progeny morphology and diverse para proteins regulate cell division or gliding motility in Bdellovibrio bacteriovorus. Front Microbiol 2020; 11:542
    [Google Scholar]
  29. Meek RW, Cadby IT, Moynihan PJ, Lovering AL. Structural basis for activation of a diguanylate cyclase required for bacterial predation in Bdellovibrio. Nat Commun. 2019; 10:4086
    [Google Scholar]
  30. Bratanis E, Andersson T, Lood R, Bukowska-Faniband E. Biotechnological potential of Bdellovibrio and like organisms and their secreted enzymes. Front Microbiol 2020; 11:662
    [Google Scholar]
  31. Harding CJ, Huwiler SG, Somers H, Lambert C, Ray LJ et al. A lysozyme with altered substrate specificity facilitates prey cell exit by the periplasmic predator Bdellovibrio bacteriovorus. Nat Commun 2020; 11:4817
    [Google Scholar]
  32. Caulton SG, Lovering AL. Bacterial invasion and killing by predatory Bdellovibrio primed by predator prey cell recognition and self protection. Curr Opin Microbiol 2020; 56:74–80
    [Google Scholar]
  33. Evans KJ, Lambert C, Sockett RE. Predation by Bdellovibrio bacteriovorus HD100 requires type IV pili. J Bacteriol Res 2007; 189:4850–4859
    [Google Scholar]
  34. Kuru E, Lambert C, Rittichier J, Till R, Ducret A et al. Fluorescent D-amino-acids reveal bi-cellular cell wall modifications important for Bdellovibrio bacteriovorus predation. Nat Microbiol 2017; 2:1648–1657
    [Google Scholar]
  35. Im H, Kim D, Ghim C-M, Mitchell RJ. Shedding light on microbial Predator–Prey population dynamics using a quantitative bioluminescence assay. Microbial Ecology 2014; 67:167–176
    [Google Scholar]
  36. Rendulic S, Jagtap P, Rosinus A, Eppinger M, Baar C et al. A predator unmasked: life cycle of Bdellovibrio bacteriovorus from a genomic perspective. Science 2004; 303:689–692
    [Google Scholar]
  37. Fenton AK, Kanna M, Woods RD, Aizawa SI, Sockett RE. Shadowing the actions of a predator: backlit fluorescent microscopy reveals synchronous nonbinary septation of predatory Bdellovibrio inside prey and exit through discrete bdelloplast pores. J Bacteriol 2010; 192:6329–6335
    [Google Scholar]
  38. Roschanski N, Klages S, Reinhardt R, Linscheid M, Strauch E. Identification of genes essential for prey-independent growth of Bdellovibrio bacteriovorus HD100. J Bacteriol 2011; 193:1745–1756
    [Google Scholar]
  39. Rittenberg SC, Shilo M. Early host damage in the infection cycle of Bdellovibrio bacteriovorus . J Bacteriol 1970; 102:149–160
    [Google Scholar]
  40. Lambert C, Ivanov P, Sockett RE. A transcriptional "Scream" early response of E. coli prey to predatory invasion by Bdellovibrio. Curr Microbiol 2010; 60:419–427
    [Google Scholar]
  41. Wolf AJ, Liu GY, Underhill DM. Inflammatory properties of antibiotic-treated bacteria. J Leukoc Biol 2017; 101:127–134
    [Google Scholar]
  42. Lambert C, Chang CY, Capeness MJ, Sockett RE. The first bite-profiling the predatosome in the bacterial pathogen Bdellovibrio. PLoS One 2010; 5:e8599
    [Google Scholar]
  43. Duncan MC, Gillette RK, Maglasang MA, Corn EA, Tai AK et al. High-Throughput analysis of gene function in the bacterial predator Bdellovibrio bacteriovorus. mBio 2019; 10:
    [Google Scholar]
  44. Schwudke D, Linscheid M, Strauch E, Appel B, Zahringer U et al. The obligate predatory Bdellovibrio bacteriovorus possesses a neutral lipid A containing alpha-D-Mannoses that replace phosphate residues: similarities and differences between the lipid as and the lipopolysaccharides of the wild type strain B. bacteriovorus HD100 and its host-independent derivative HI100. J Biol Chem 2003; 278:27502–27512
    [Google Scholar]
  45. Shanks RMQ, Davra VR, Romanowski EG, Brothers KM, Stella NA et al. An eye to a kill: using predatory bacteria to control gram-negative pathogens associated with ocular infections. PLoS ONE 2013; 8:e66723
    [Google Scholar]
  46. Monnappa AK, Bari W, Choi SY, Mitchell RJ. Investigating the responses of human epithelial cells to predatory bacteria. Scientific Reports 2016; 6:
    [Google Scholar]
  47. Gupta S, Tang C, Tran M, Kadouri DE. Effect of predatory bacteria on human cell lines. Plos One 2016; 11:
    [Google Scholar]
  48. Raghunathan D, Radford PM, Gell C, Negus D, Moore C et al. Engulfment, persistence and fate of Bdellovibrio bacteriovorus predators inside human phagocytic cells informs their future therapeutic potential. Scientific Reports 2019; 9:
    [Google Scholar]
  49. Rossol M, Heine H, Meusch U, Quandt D, Klein C et al. LPS-induced cytokine production in human monocytes and macrophages. Crit Rev Immunol 2011; 31:379–446
    [Google Scholar]
  50. Seidler RJ, Starr MP. Structure of the flagellum of Bdellovibrio bacteriovorus. J Bacteriol 1968; 95:1952–1955
    [Google Scholar]
  51. Findlay JS, Flick-Smith HC, Keyser E, Cooper IA, Williamson ED et al. Predatory bacteria can protect SKH-1 mice from a lethal plague challenge. Scientific Reports 2019; 9:
    [Google Scholar]
  52. Huh H, Wong S, St Jean J, Slavcev R. Bacteriophage interactions with mammalian tissue: therapeutic applications. Adv Drug Deliv Rev 2019; 145:4–17
    [Google Scholar]
  53. Moller-Olsen C, SFS H, Shukla RD, Feher T, Sagona AP. Engineered K1F bacteriophages kill intracellular Escherichia coli K1 in human epithelial cells. Sci Rep 2018; 8:17559
    [Google Scholar]
  54. Zhang L, Sun L, Wei R, Gao Q, He T et al. Intracellular Staphylococcus aureus control by virulent bacteriophages within MAC-T bovine mammary epithelial cells. Antimicrob Agents Chemother 2017; 61:
    [Google Scholar]
  55. Westergaard JM, Kramer TT. Bdellovibrio and the intestinal flora of vertebrates. Appl Environ Microbiol 1977; 34:506–511
    [Google Scholar]
  56. Atterbury RJ, Hobley L, Till R, Lambert C, Capeness MJ et al. Effects of orally administered Bdellovibrio bacteriovorus on the well-being and Salmonella colonization of young chicks. Appl Environ Microbiol 2011; 77:5794–5803
    [Google Scholar]
  57. Romanowski EG, Stella NA, Brothers KM, Yates KA, Funderburgh ML et al. Predatory bacteria are nontoxic to the rabbit ocular surface. Scientific Reports 2016; 6:
    [Google Scholar]
  58. Shatzkes K, Singleton E, Tang C, Zuena M, Shukla S et al. Predatory bacteria attenuate Klebsiella pneumoniae burden in rat lungs. mBio 2016; 7:
    [Google Scholar]
  59. Shatzkes K, Singleton E, Tang C, Zuena M, Shukla S et al. Examining the efficacy of intravenous administration of predatory bacteria in rats. Scientific Reports 2017; 7:
    [Google Scholar]
  60. Shatzkes K, Tang C, Singleton E, Shukla S, Zuena M et al. Effect of predatory bacteria on the gut bacterial microbiota in rats. Scientific Reports 2017; 7:
    [Google Scholar]
  61. Shatzkes K, Chae R, Tang C, Ramirez GC, Mukherjee S et al. Examining the safety of respiratory and intravenous inoculation of Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus in a mouse model. Scientific Reports 2015; 5:
    [Google Scholar]
  62. Willis AR, Moore C, Mazon-Moya M, Krokowski S, Lambert C et al. Injections of predatory bacteria work alongside host immune cells to treat Shigella infection in zebrafish larvae. Curr Biol 2016; 26:3343–3351
    [Google Scholar]
  63. Dashiff A, Junka RA, Libera M, Kadouri DE. Predation of human pathogens by the predatory bacteria Micavibrio aeruginosavorus and Bdellovibrio bacteriovorus. J Appl Microbiol 2011; 110:431–444
    [Google Scholar]
  64. Kadouri DE, To K, Shanks RMQ, Doi Y. Predatory bacteria: a potential ally against multidrug-resistant gram-negative pathogens. PLoS ONE 2013; 8:e63397
    [Google Scholar]
  65. Patini R, Cattani P, Marchetti S, Isola G, Quaranta G et al. Evaluation of predation capability of Periodontopathogens bacteria by Bdellovibrio bacteriovorus HD100. An in vitro study. Materials 2019; 12:E2008
    [Google Scholar]
  66. Russo R, Chae R, Mukherjee S, Singleton EJ, Occi JL et al. Susceptibility of select agents to predation by predatory bacteria. Microorganisms 2015; 3:903–912
    [Google Scholar]
  67. Baker M, Negus D, Raghunathan D, Radford P, Moore C et al. Measuring and modelling the response of Klebsiella pneumoniae KPC prey to Bdellovibrio bacteriovorus predation, in human serum and defined buffer. Scientific Reports 2017; 7:
    [Google Scholar]
  68. Dashiff A, Kadouri DE. Predation of oral pathogens by Bdellovibrio bacteriovorus 109J. Mol Oral Microbiol 2011; 26:19–34
    [Google Scholar]
  69. Sun Y, JZ Y, Hou YB, Chen HL, Cao JM et al. Predation efficacy of Bdellovibrio bacteriovorus on multidrug-resistant clinical pathogens and their corresponding biofilms. Jpn J Infect Dis 2017; 70:485–489
    [Google Scholar]
  70. Kadouri D, O'Toole GA. Susceptibility of biofilms to Bdellovibrio bacteriovorus attack. Appl Environ Microbiol 2005; 71:4044–4051
    [Google Scholar]
  71. Gilbert P, Maira-Litran T, McBain AJ, Rickard AH, Whyte FW. The physiology and collective recalcitrance of microbial biofilm communities. Adv Microb Physiol 2002; 46:202–256
    [Google Scholar]
  72. Im H, Choi SY, Son S, Mitchell RJ. Combined application of bacterial predation and violacein to kill polymicrobial pathogenic communities. Scientific Reports 2017; 7:14415
    [Google Scholar]
  73. Im H, Son S, Mitchell RJ, Ghim C-M. Serum albumin and osmolality inhibit Bdellovibrio bacteriovorus predation in human serum. Scientific Reports 2017; 7:5896
    [Google Scholar]
  74. Dharani S, Kim DH, Shanks RMQ, Doi Y, Kadouri DE. Susceptibility of colistin-resistant pathogens to predatory bacteria. Res Microbiol 2018; 169:52–55
    [Google Scholar]
  75. Bengoechea JA, Sa Pessoa J. Klebsiella pneumoniae infection biology: living to counteract host defences. FEMS Microbiology Review 2019; 43:123–144
    [Google Scholar]
  76. Helaine S, Cheverton AM, Watson KG, Faure LM, Matthews SA et al. Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science 2014; 343:204–208
    [Google Scholar]
  77. Donnenberg MS. Pathogenic strategies of enteric bacteria. Nature 2000; 406:768–774
    [Google Scholar]
  78. Torraca V, Mostowy S. Zebrafish infection: from pathogenesis to cell biology. Trends Cell Biol 2018; 28:143–156
    [Google Scholar]
  79. Gomes MC, Mostowy S. The case for modeling human infection in zebrafish. Trends Microbiol 2020; 28:10–18
    [Google Scholar]
  80. Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 2013; 496:498–503
    [Google Scholar]
  81. Meijer AH, Spaink HP. Host-Pathogen interactions made transparent with the zebrafish model. Curr Drug Targets 2011; 12:1000–1017
    [Google Scholar]
  82. Russo R, Kolesnikova I, Kim T, Gupta S, Pericleous A et al. Susceptibility of virulent Yersinia pestis bacteria to predator bacteria in the lungs of mice. Microorganisms 2019; 7:
    [Google Scholar]
  83. Findlay JS, Flick-Smith HC, Keyser E, Cooper IA, Williamson ED et al. Predatory bacteria can protect SKH-1 mice from a lethal plague challenge. Sci Rep 2019; 9:7225
    [Google Scholar]
  84. Boileau MJ, Clinkenbeard KD, Iandolo JJ. Assessment of Bdellovibrio bacteriovorus 109J killing of Moraxella bovis in an in vitro model of infectious bovine keratoconjunctivitis. Can J Vet Res 2011; 75:285–291
    [Google Scholar]
  85. Boileau MJ, Mani R, Breshears MA, Gilmour M, Taylor JD et al. Efficacy of Bdellovibrio bacteriovorus 109J for the treatment of dairy calves with experimentally induced infectious bovine keratoconjunctivitis. Am J Vet Res 2016; 77:1017–1028
    [Google Scholar]
  86. Kutateladze M, Adamia R. Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends Biotechnol 2010; 28:591–595
    [Google Scholar]
  87. Aslam S, Schooley RT. What’s old is new again: bacteriophage therapy in the 21st century. Antimicrob Agents Chemother 2019; 64:
    [Google Scholar]
  88. Schooley RT, Biswas B, Gill JJ, Hernandez-Morales A, Lancaster J et al. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrobial Agents and Chemotherapy 2017; 61:
    [Google Scholar]
  89. Dedrick RM, Guerrero-Bustamante CA, Garlena RA, Russell DA, Ford K et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat Med 2019; 25:730–733
    [Google Scholar]
  90. Alexander M. Why microbial predators and parasites do not eliminate their prey and hosts. Annu Rev Microbiol 1981; 35:113–133
    [Google Scholar]
  91. van den Ende P. Predator-prey interactions in continuous culture. Science 1973; 181:562–564
    [Google Scholar]
  92. Varon M. Selection of predation-resistant bacteria in continuous culture. Nature 1979; 277:386–388
    [Google Scholar]
  93. Bhandare S, Colom J, Baig A, Ritchie JM, Bukhari H et al. Reviving phage therapy for the treatment of cholera. J Infect Dis 2019; 219:786–794
    [Google Scholar]
  94. Hobley L, Summers JK, Till R, Milner DS, Atterbury RJ et al. Dual predation by bacteriophage and Bdellovibrio bacteriovorus can eradicate Escherichia coli prey in situations where single predation cannot. J Bacteriol 2020; 202:
    [Google Scholar]
  95. Merril CR, Biswas B, Carlton R, Jensen NC, Creed GJ et al. Long-circulating bacteriophage as antibacterial agents. Proc Natl Acad Sci U S A 1996; 93:3188–3192
    [Google Scholar]
  96. Garcia R, Latz S, Romero J, Higuera G, Garcia K et al. Bacteriophage production models: an overview. Front Microbiol 2019; 10:1187
    [Google Scholar]
  97. Boileau MJ, Mani R, Clinkenbeard KD. Lyophilization of Bdellovibrio bacteriovorus 109J for long-term storage. Curr Protoc Microbiol 2017; 45:7B 3 1-7B 3 15
    [Google Scholar]
  98. Robson MC, Mannari RJ, Smith PD, Payne WG. Maintenance of wound bacterial balance. Am J Surg 1999; 178:399–402
    [Google Scholar]
  99. Robson MC. Wound infection. A failure of wound healing caused by an imbalance of bacteria. Surg Clin North Am 1997; 77:637–650
    [Google Scholar]
  100. Greenwood DJ, Dos Santos MS, Huang S, Russell MRG, Collinson LM et al. Subcellular antibiotic visualization reveals a dynamic drug reservoir in infected macrophages. Science 2019; 364:1279–1282 [View Article]
    [Google Scholar]
  101. Rex JH, Outterson K. Antibiotic reimbursement in a model delinked from sales: a benchmark-based worldwide approach. Lancet Infect Dis 2016; 16:500–505 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001025
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error