1887

Abstract

Many flagellated bacteria possess multiple flagellins, but the roles and the compositions of each flagellin are diverse and poorly understood. In BKN88, there are two active flagellin gene paralogues but their function and composition in its flagellar filaments have not been described. The aim of this study is to find the function and composition of the flagellins by employing mutant strains each of which expresses a single flagellin or a modified flagellin. Two single flagellin-expressing strains were both flagellated while the number of flagella per cell in the single flagellin-expressing derivatives was lower than that in the wild type. Nonetheless, these derivative strains were apparently equally motile as the wild type. This indicates that either flagellin is sufficient for cell motility. The immunological activity via Toll-like receptor 5 of the single flagellin-expressing strains or purified single flagellins was readily detectable but mostly variably weaker than that of the wild type. The flagellar filaments of wild type BKN88 were more acid-/thermo-stable than those of single flagellin-expressing derivatives. Using a combination of immunoprecipitation and flagellin-specific staining, wild type BKN88 appeared to possess heteropolymeric flagellar filaments consisting of both flagellins and each flagellin appeared to be equally distributed throughout the filaments. The results of this study suggest that the two flagellins together form a more robust filament than either alone and are thus functionally complementary.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001020
2021-01-27
2021-03-02
Loading full text...

Full text loading...

References

  1. Galkin VE, Yu X, Bielnicki J, Heuser J, Ewing CP et al. Divergence of quaternary structures among bacterial flagellar filaments. Science 2008; 320:382–385 [CrossRef][PubMed]
    [Google Scholar]
  2. Arkhipov A, Freddolino PL, Imada K, Namba K, Schulten K. Coarse-grained molecular dynamics simulations of a rotating bacterial flagellum. Biophys J 2006; 91:4589–4597 [CrossRef][PubMed]
    [Google Scholar]
  3. Yonekura K, Maki-Yonekura S, Namba K. Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature 2003; 424:643–650 [CrossRef][PubMed]
    [Google Scholar]
  4. Aizawa S-I. The Flagellar World: Electron Microscopic Images of Bacterial Flagella and Related Surface Structures Oxford, UK; Waltham, MA: Academic Press; 2014
    [Google Scholar]
  5. Blattner FR et al. The complete genome sequence of Escherichia coli K-12. Science 1997; 277:1453–1462 [CrossRef]
    [Google Scholar]
  6. Reid SD, Selander RK, Whittam TS. Sequence diversity of flagellin (fliC) alleles in pathogenic Escherichia coli. J Bacteriol 1999; 181:153–160 [CrossRef][PubMed]
    [Google Scholar]
  7. Schoenhals G, Whitfield C. Comparative analysis of flagellin sequences from Escherichia coli strains possessing serologically distinct flagellar filaments with a shared complex surface pattern. J Bacteriol 1993; 175:5395–5402 [CrossRef][PubMed]
    [Google Scholar]
  8. Bonifield HR, Hughes KT. Flagellar phase variation in Salmonella enterica is mediated by a posttranscriptional control mechanism. J Bacteriol 2003; 185:3567–3574 [CrossRef][PubMed]
    [Google Scholar]
  9. Ikeda JS, Schmitt CK, Darnell SC, Watson PR, Bispham J et al. Flagellar phase variation of Salmonella enterica serovar typhimurium contributes to virulence in the murine typhoid infection model but does not influence Salmonella-induced enteropathogenesis. Infect Immun 2001; 69:3021–3030 [CrossRef][PubMed]
    [Google Scholar]
  10. Szekely E, Simon M. DNA sequence adjacent to flagellar genes and evolution of flagellar-phase variation. J Bacteriol 1983; 155:74–81 [CrossRef][PubMed]
    [Google Scholar]
  11. Lederberg J, Iino T. Phase variation in Salmonella. Genetics 1956; 41:743–757 [CrossRef][PubMed]
    [Google Scholar]
  12. Zieg J, Silverman M, Hilmen M, Simon M. Recombinational switch for gene expression. Science 1977; 196:170–172 [CrossRef][PubMed]
    [Google Scholar]
  13. Faulds-Pain A, Birchall C, Aldridge C, Smith WD, Grimaldi G et al. Flagellin redundancy in Caulobacter crescentus and its implications for flagellar filament assembly. J Bacteriol 2011; 193:2695–2707 [CrossRef][PubMed]
    [Google Scholar]
  14. Ely B, Ely TW, Crymes WB, Minnich SA. A family of six flagellin genes contributes to the Caulobacter crescentus flagellar filament. J Bacteriol 2000; 182:5001–5004 [CrossRef][PubMed]
    [Google Scholar]
  15. Ankarloo J, Zhang MY, Lövgren A. Regulatory sequences of two flagellin genes in Bacillus thuringiensis subsp. alesti. Microbiology 1996; 142 (Pt 2:315–320 [CrossRef][PubMed]
    [Google Scholar]
  16. Nuijten PJ, van Asten FJ, Gaastra W, van der Zeijst BA. Structural and functional analysis of two Campylobacter jejuni flagellin genes. J Biol Chem 1990; 265:17798–17804 [CrossRef][PubMed]
    [Google Scholar]
  17. Deakin W, Parker V, Wright E, Ashcroft K, Loake GSC. Agrobacterium tumefaciens possesses a fourth flagellin gene located in a large gene cluster concerned with flagellar structure, assembly and motility. J Agric Chem Soiety Japan 1995; 69:219
    [Google Scholar]
  18. Mohari B, Thompson MA, Trinidad JC, Setayeshgar S, Fuqua C. Multiple flagellin proteins have distinct and synergistic roles in Agrobacterium tumefaciens motility. J Bacteriol 2018; 200:e00327–18 [CrossRef][PubMed]
    [Google Scholar]
  19. McGee K, Hörstedt P, Milton DL. Identification and characterization of additional flagellin genes from Vibrio anguillarum. J Bacteriol 1996; 178:5188–5198 [CrossRef][PubMed]
    [Google Scholar]
  20. Kim SY, Thanh XTT, Jeong K, Kim SB, Pan SO et al. Contribution of six flagellin genes to the flagellum biogenesis of Vibrio vulnificus and in vivo invasion. Infect Immun 2014; 82:29–42 [CrossRef][PubMed]
    [Google Scholar]
  21. Milton DL, O'Toole R, Horstedt P, Wolf-Watz H. Flagellin A is essential for the virulence of Vibrio anguillarum. J Bacteriol 1996; 178:1310–1319 [CrossRef][PubMed]
    [Google Scholar]
  22. Lövgren A, Zhang MY, Engström A, Landén R. Identification of two expressed flagellin genes in the insect pathogen Bacillus thuringiensis subsp. alesti. J Gen Microbiol 1993; 139:21–30 [CrossRef][PubMed]
    [Google Scholar]
  23. Sun L, Dong Y, Shi M, Jin M, Zhou Q et al. Two residues predominantly dictate functional difference in motility between Shewanella oneidensis flagellins FlaA and FlaB. J Biol Chem 2014; 289:14547–14559 [CrossRef][PubMed]
    [Google Scholar]
  24. Millikan DS, Ruby EG. Vibrio fischeri flagellin A is essential for normal motility and for symbiotic competence during initial squid light organ colonization. J Bacteriol 2004; 186:4315–4325 [CrossRef][PubMed]
    [Google Scholar]
  25. Wassenaar TM, Bleumink-Pluym NM, van der Zeijst BA. Inactivation of Campylobacter jejuni flagellin genes by homologous recombination demonstrates that flaA but not flaB is required for invasion. Embo J 1991; 10:2055–2061 [CrossRef][PubMed]
    [Google Scholar]
  26. Cousin FJ, Lynch SM, Harris HMB, McCann A, Lynch DB et al. Detection and genomic characterization of motility in Lactobacillus curvatus: confirmation of motility in a species outside the Lactobacillus salivarius clade. Appl Environ Microbiol 2015; 81:1297–1308 [CrossRef][PubMed]
    [Google Scholar]
  27. Neville BA, Forde BM, Claesson MJ, Darby T, Coghlan A et al. Characterization of pro-inflammatory flagellin proteins produced by Lactobacillus ruminis and related motile lactobacilli. PLoS One 2012; 7:e40592 [CrossRef][PubMed]
    [Google Scholar]
  28. Kajikawa A, Midorikawa E, Masuda K, Kondo K, Irisawa T et al. Characterization of flagellins isolated from a highly motile strain of Lactobacillus agilis. BMC Microbiol 2016; 16:49 [CrossRef][PubMed]
    [Google Scholar]
  29. Kajikawa A, Suzuki S, Igimi S. The impact of motility on the localization of Lactobacillus agilis in the murine gastrointestinal tract. BMC Microbiol 2018; 18:1–7 [CrossRef]
    [Google Scholar]
  30. Stephenson DP, Moore RJ, Allison GE. Transformation of, and heterologous protein expression in, Lactobacillus agilis and Lactobacillus vaginalis isolates from the chicken gastrointestinal tract. Appl Environ Microbiol 2011; 77:220–228 [CrossRef][PubMed]
    [Google Scholar]
  31. Kühn MJ, Schmidt FK, Farthing NE, Rossmann FM, Helm B et al. Spatial arrangement of several flagellins within bacterial flagella improves motility in different environments. Nat Commun 2018; 9:5369 [CrossRef][PubMed]
    [Google Scholar]
  32. Smith KD, Andersen-Nissen E, Hayashi F, Strobe K, Bergman MA et al. Toll-Like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat Immunol 2003; 4:1247–1253 [CrossRef][PubMed]
    [Google Scholar]
  33. Yoon S-il, Kurnasov O, Natarajan V, Hong M, Gudkov AV et al. Structural basis of TLR5-flagellin recognition and signaling. Science 2012; 335:859–864 [CrossRef][PubMed]
    [Google Scholar]
  34. Lambert C, Evans KJ, Till R, Hobley L, Capeness M et al. Characterizing the flagellar filament and the role of motility in bacterial prey-penetration by Bdellovibrio bacteriovorus. Mol Microbiol 2006; 60:274–286 [CrossRef][PubMed]
    [Google Scholar]
  35. Iida Y, Hobley L, Lambert C, Fenton AK, Sockett RE et al. Roles of multiple flagellins in flagellar formation and flagellar growth post bdelloplast lysis in Bdellovibrio bacteriovorus. J Mol Biol 2009; 394:1011–1021 [CrossRef][PubMed]
    [Google Scholar]
  36. Andersen-Nissen E, Smith KD, Bonneau R, Strong RK, Aderem A. A conserved surface on Toll-like receptor 5 recognizes bacterial flagellin. J Exp Med 2007; 204:393–403 [CrossRef][PubMed]
    [Google Scholar]
  37. Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Yi EC et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 2001; 410:1099–1103 [CrossRef][PubMed]
    [Google Scholar]
  38. Hanuszkiewicz A, Pittock P, Humphries F, Moll H, Rosales AR et al. Identification of the flagellin glycosylation system in Burkholderia cenocepacia and the contribution of glycosylated flagellin to evasion of human innate immune responses. J Biol Chem 2014; 289:19231–19244 [CrossRef][PubMed]
    [Google Scholar]
  39. Logan SM. Flagellar glycosylation - a new component of the motility repertoire?. Microbiology 2006; 152:1249–1262 [CrossRef][PubMed]
    [Google Scholar]
  40. Schirm M, Kalmokoff M, a A, Thibault P, Sandoz M. Flagellin from Listeria monocytogenes is glycosylated with β -O-Linked N flagellin from Listeria monocytogenes is glycosylated with. J Bacteriol 2004; 186:6721–6727
    [Google Scholar]
  41. Janesch B, Schirmeister F, Maresch D, Altmann F, Messner P et al. Flagellin glycosylation in Paenibacillus alvei CCM 2051T. Glycobiology 2016; 26:74–87 [CrossRef][PubMed]
    [Google Scholar]
  42. Twine SM, Paul CJ, Vinogradov E, McNally DJ, Brisson J-R, Mullen JA et al. Flagellar glycosylation in Clostridium botulinum. Febs J 2008; 275:4428–4444 [CrossRef][PubMed]
    [Google Scholar]
  43. Buscaill P, Chandrasekar B, Sanguankiattichai N, Kourelis J, Kaschani F et al. Glycosidase and glycan polymorphism control hydrolytic release of immunogenic flagellin peptides. Science 2019; 364:eaav0748 [CrossRef][PubMed]
    [Google Scholar]
  44. Taguchi F, Suzuki T, Takeuchi K, Inagaki Y, Toyoda K et al. Glycosylation of flagellin from Pseudomonas syringae pv. tabaci 6605 contributes to evasion of host tobacco plant surveillance system. Physiol Mol Plant Pathol 2009; 74:11–17 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001020
Loading
/content/journal/micro/10.1099/mic.0.001020
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

Supplementary material 3

Supplementary material 4

Supplementary material 5

MOVIE
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error