1887
Preview this article:
Zoom in
Zoomout

Microbial Musings – December 2020, Page 1 of 1

| /docserver/preview/fulltext/micro/166/12/1107_micro001019-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001019
2020-12-23
2021-01-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/166/12/1107.html?itemId=/content/journal/micro/10.1099/mic.0.001019&mimeType=html&fmt=ahah

References

  1. Mullins AJ, Li Y, Qin L, Hu X, Xie L et al. Reclassification of the biocontrol agents Bacillus subtilis BY-2 and Tu-100 as Bacillus velezensis and insights into the genomic and specialized metabolite diversity of the species. Microbiology 2020 17 Nov 2020 [CrossRef][PubMed]
    [Google Scholar]
  2. Rabbee MF, Ali MS, Choi J, Hwang BS, Jeong SC et al. Bacillus velezensis: A Valuable Member of Bioactive Molecules within Plant Microbiomes. Molecules 2019; 24:1046–13 [CrossRef][PubMed]
    [Google Scholar]
  3. Das S, Chourashi R, Mukherjee P, Gope A, Koley H et al. Multifunctional transcription factor CytR of Vibrio cholerae is important for pathogenesis. Microbiology 2020 04 Nov 2020 [CrossRef][PubMed]
    [Google Scholar]
  4. Cutugno L, Mc Cafferty J, Pané-Farré J, O'Byrne C, Boyd A. rpoB mutations conferring rifampicin-resistance affect growth, stress response and motility in Vibrio vulnificus . Microbiology 2020 13 Nov 2020 [CrossRef][PubMed]
    [Google Scholar]
  5. Watve SS, Thomas J, Hammer BK. Cytr is a global positive regulator of competence, type VI secretion, and chitinases in Vibrio cholerae. PLoS One 2015; 10:e0138834–18 [CrossRef][PubMed]
    [Google Scholar]
  6. Mondal M, Nag D, Koley H, Saha DR, Chatterjee NS. The Vibrio cholerae extracellular chitinase ChiA2 is important for survival and pathogenesis in the host intestine. PLoS One 2014; 9:e103119 [CrossRef][PubMed]
    [Google Scholar]
  7. Thomas GH, Mullins JG, Merrick M. Membrane topology of the Mep/Amt family of ammonium transporters. Mol Microbiol 2000; 37:331344 [CrossRef][PubMed]
    [Google Scholar]
  8. Heijne G. The distribution of positively charged residues in bacterial inner membrane proteins correlates with the trans-membrane topology. Embo J 1986; 5:3021–3027 [CrossRef][PubMed]
    [Google Scholar]
  9. Khademi S, O'Connell J, Remis J, Robles-Colmenares Y, Miercke LJW et al. Mechanism of ammonia transport by Amt/MEP/Rh: structure of AmtB at 1.35 a. Science 2004; 305:1587–1594 [CrossRef][PubMed]
    [Google Scholar]
  10. Daley DO, Rapp M, Granseth E, Melén K, Drew D et al. Global topology analysis of the Escherichia coli inner membrane proteome. Science 2005; 308:1321–1323 [CrossRef][PubMed]
    [Google Scholar]
  11. Misra RV, Horler RSP, Reindl W, Goryanin II, Thomas GH. EchoBASE: an integrated post-genomic database for Escherichia coli. Nucleic Acids Res 2005; 33:D329–D333 [CrossRef][PubMed]
    [Google Scholar]
  12. Söderström B, Ruda A, Widmalm G, Daley DO. An OregonGreen488-labelled D-amino acid for visualizing peptidoglycan by super-resolution STED nanoscopy. Microbiology 20201–7 [CrossRef][PubMed]
    [Google Scholar]
  13. Söderström B, Chan H, Daley DO. Super-Resolution images of peptidoglycan remodelling enzymes at the division site of Escherichia coli. Curr Genet 2019; 65:99–101 [CrossRef][PubMed]
    [Google Scholar]
  14. Holden ER, Wickham GJ, Webber MA, Thomson NM, Trampari E. Donor plasmids for phenotypically neutral chromosomal gene insertions in Enterobacteriaceae . Microbiology 2020 23 Nov 2020 [CrossRef][PubMed]
    [Google Scholar]
  15. Datsenko KA, Wanner BL. One-Step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 2000; 97:6640–6645 [CrossRef][PubMed]
    [Google Scholar]
  16. Lee DJ, Bingle LEH, Heurlier K, Pallen MJ, Penn CW et al. Gene doctoring: a method for recombineering in laboratory and pathogenic Escherichia coli strains. BMC Microbiol 2009; 9:252–14 [CrossRef][PubMed]
    [Google Scholar]
  17. Sweeney E, Sabnis A, Edwards AM, Harrison F. Effect of host-mimicking medium and biofilm growth on the ability of colistin to kill Pseudomonas aeruginosa . Microbiology 2020 30 Nov 2020 [CrossRef][PubMed]
    [Google Scholar]
  18. Kraszewska E, Drabinska J. Nudix proteins affecting microbial pathogenesis. Microbiology 2020 30 Nov 2020 [CrossRef][PubMed]
    [Google Scholar]
  19. Deana A, Celesnik H, Belasco JG. The bacterial enzyme RppH triggers messenger RNA degradation by 5' pyrophosphate removal. Nature 2008; 451:355–358 [CrossRef][PubMed]
    [Google Scholar]
  20. Sun Y, Li P, Shen D, Wei Q, He J et al. The Ralstonia solanacearum effector RipN suppresses plant PAMP-triggered immunity, localizes to the endoplasmic reticulum and nucleus, and alters the NADH/NAD+ ratio in Arabidopsis. Mol Plant Pathol 2019; 20:533–546 [CrossRef][PubMed]
    [Google Scholar]
  21. Dong S, Yin W, Kong G, Yang X, Qutob D et al. Phytophthora sojae avirulence effector Avr3b is a secreted NADH and ADP-ribose pyrophosphorylase that modulates plant immunity. PLoS Pathog 2011; 7:e1002353 [CrossRef][PubMed]
    [Google Scholar]
  22. Rodionov DA, De Ingeniis J, Mancini C, Cimadamore F, Zhang H et al. Transcriptional regulation of NAD metabolism in bacteria: NrtR family of Nudix-related regulators. Nucleic Acids Res 2008; 36:2047–2059 [CrossRef][PubMed]
    [Google Scholar]
  23. Gao R, Wei W, Hassan BH, Li J, Deng J et al. A single regulator NrtR controls bacterial NAD+ homeostasis via its acetylation. Elife 2019; 8:1–22 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001019
Loading
/content/journal/micro/10.1099/mic.0.001019
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error