1887

Abstract

Fluorescent -amino acids (FDAAs) are molecular probes that are widely used for labelling the peptidoglycan layer of bacteria. When added to growing cells they are incorporated into the stem peptide by a transpeptidase reaction, allowing the timing and localization of peptidoglycan synthesis to be determined by fluorescence microscopy. Herein we describe the chemical synthesis of an OregonGreen488-labelled FDAA (OGDA). We also demonstrate that OGDA can be efficiently incorporated into the PG of Gram-positive and some Gram-negative bacteria, and imaged by super-resolution stimulated emission depletion (STED) nanoscopy at a resolution well below 100 nm.

Funding
This study was supported by the:
  • Knut och Alice Wallenbergs Stiftelse
    • Principle Award Recipient: GöranWidmalm
  • Vetenskapsrådet (Award 2017-03703)
    • Principle Award Recipient: GöranWidmalm
  • Japan Society for the Promotion of Science (Award JP17K15694)
    • Principle Award Recipient: BillSöderström
  • Vetenskapsrådet
    • Principle Award Recipient: DanielDaley
  • Carl Tryggers Stiftelse för Vetenskaplig Forskning (SE)
    • Principle Award Recipient: DanielDaley
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000996
2020-11-25
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/166/12/1129.html?itemId=/content/journal/micro/10.1099/mic.0.000996&mimeType=html&fmt=ahah

References

  1. Vollmer W, Blanot D, de Pedro MA. Peptidoglycan structure and architecture. FEMS Microbiol Rev 2008; 32:149–167 [View Article][PubMed]
    [Google Scholar]
  2. Pasquina-Lemonche L, Burns J, Turner RD, Kumar S, Tank R et al. The architecture of the Gram-positive bacterial cell wall. Nature 2020; 582:294–297 [View Article][PubMed]
    [Google Scholar]
  3. Xiao J, Goley ED. Redefining the roles of the FtsZ-ring in bacterial cytokinesis. Curr Opin Microbiol 2016; 34:90–96 [View Article][PubMed]
    [Google Scholar]
  4. Egan AJF, Errington J, Vollmer W. Regulation of peptidoglycan synthesis and remodelling. Nat Rev Microbiol 2020; 18:446–460 [View Article][PubMed]
    [Google Scholar]
  5. Pazos M, Peters K, Vollmer W. Robust peptidoglycan growth by dynamic and variable multi-protein complexes. Curr Opin Microbiol 2017; 36:55–61 [View Article][PubMed]
    [Google Scholar]
  6. Chung HS, Yao Z, Goehring NW, Kishony R, Beckwith J et al. Rapid beta-lactam-induced lysis requires successful assembly of the cell division machinery. Proc Natl Acad Sci U S A 2009; 106:21872–21877 [View Article][PubMed]
    [Google Scholar]
  7. Yao Z, Kahne D, Kishony R. Distinct single-cell morphological dynamics under beta-lactam antibiotics. Mol Cell 2012; 48:705–712 [View Article][PubMed]
    [Google Scholar]
  8. Kuru E, Radkov A, Meng X, Egan A, Alvarez L et al. Mechanisms of incorporation for D-amino acid probes that target peptidoglycan biosynthesis. ACS Chem Biol 2019; 14:2745–2756 [View Article][PubMed]
    [Google Scholar]
  9. Kuru E, Hughes HV, Brown PJ, Hall E, Tekkam S et al. In Situ probing of newly synthesized peptidoglycan in live bacteria with fluorescent D-amino acids. Angew Chem Int Ed Engl 2012; 51: pp 12519–12523 [View Article][PubMed]
    [Google Scholar]
  10. Hsu Y-P, Rittichier J, Kuru E, Yablonowski J, Pasciak E et al. Full color palette of fluorescent d-amino acids for in situ labeling of bacterial cell walls. Chem Sci 2017; 8:6313–6321 [View Article][PubMed]
    [Google Scholar]
  11. Hsu Y-P, Hall E, Booher G, Murphy B, Radkov AD et al. Fluorogenic D-amino acids enable real-time monitoring of peptidoglycan biosynthesis and high-throughput transpeptidation assays. Nat Chem 2019; 11:335–341 [View Article][PubMed]
    [Google Scholar]
  12. Hsu Y-P, Booher G, Egan A, Vollmer W, VanNieuwenhze MS. d-Amino acid derivatives as in situ probes for visualizing bacterial peptidoglycan biosynthesis. Acc Chem Res 2019; 52:2713–2722 [View Article][PubMed]
    [Google Scholar]
  13. Sahl SJ, Hell SW, Jakobs S. Fluorescence nanoscopy in cell biology. Nat Rev Mol Cell Biol 2017; 18:685–701 [View Article][PubMed]
    [Google Scholar]
  14. Coltharp C, Xiao J. Superresolution microscopy for microbiology. Cell Microbiol 2012; 14:1808–1818 [View Article][PubMed]
    [Google Scholar]
  15. Xiao J, Dufrêne YF. Optical and force nanoscopy in microbiology. Nat Microbiol 2016; 1:16186 [View Article][PubMed]
    [Google Scholar]
  16. Bisson-Filho AW, Hsu Y-P, Squyres GR, Kuru E, Wu F et al. Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division. Science 2017; 355:739–743 [View Article][PubMed]
    [Google Scholar]
  17. Yang X, Lyu Z, Miguel A, McQuillen R, Huang KC et al. GTPase activity-coupled treadmilling of the bacterial tubulin FtsZ organizes septal cell wall synthesis. Science 2017; 355:744–747 [View Article][PubMed]
    [Google Scholar]
  18. Söderström B, Chan H, Shilling PJ, Skoglund U, Daley DO. Spatial separation of FtsZ and FtsN during cell division. Mol Microbiol 2018; 107:387–401 [View Article][PubMed]
    [Google Scholar]
  19. Beater S, Holzmeister P, Pibiri E, Lalkens B, Tinnefeld P. Choosing dyes for cw-STED nanoscopy using self-assembled nanorulers. Phys Chem Chem Phys 2014; 16:6990–6996 [View Article][PubMed]
    [Google Scholar]
  20. Kuru E, Tekkam S, Hall E, Brun YV, Van Nieuwenhze MS. Synthesis of fluorescent D-amino acids and their use for probing peptidoglycan synthesis and bacterial growth in situ. Nat Protoc 2015; 10:33–52 [View Article][PubMed]
    [Google Scholar]
  21. Vicidomini G, Moneron G, Han KY, Westphal V, Ta H et al. Sharper low-power STED nanoscopy by time gating. Nat Methods 2011; 8:571–573 [View Article][PubMed]
    [Google Scholar]
  22. Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 2003; 67:593–656 [View Article][PubMed]
    [Google Scholar]
  23. Muheim C, Götzke H, Eriksson AU, Lindberg S, Lauritsen I et al. Increasing the permeability of Escherichia coli using MAC13243. Sci Rep 2017; 7:17629 [View Article][PubMed]
    [Google Scholar]
  24. Rosenau CP, Jelier BJ, Gossert AD, Togni A. Exposing the origins of Irreproducibility in fluorine NMR spectroscopy. Angew. Chem. Int. Ed. 2018; 57: pp 9528–9533 [View Article]
    [Google Scholar]
  25. Boersma MJ, Kuru E, Rittichier JT, VanNieuwenhze MS, Brun YV et al. Minimal peptidoglycan (PG) turnover in wild-type and PG hydrolase and cell division mutants of Streptococcus pneumoniae D39 growing Planktonically and in Host-Relevant biofilms. J Bacteriol 2015; 197:3472–3485 [View Article][PubMed]
    [Google Scholar]
  26. Söderström B, Badrutdinov A, Chan H, Skoglund U. Cell shape-independent FtsZ dynamics in synthetically remodeled bacterial cells. Nat Commun 2018; 9:4323 [View Article][PubMed]
    [Google Scholar]
  27. Postma M, Goedhart J. PlotsOfData-A web APP for visualizing data together with their summaries. PLoS Biol 2019; 17:e3000202 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000996
Loading
/content/journal/micro/10.1099/mic.0.000996
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error