Adaptive laboratory evolution of and to enhance anthranilate tolerance Free

Abstract

Microbial bioproduction of the aromatic acid anthranilate (-aminobenzoate) has the potential to replace its current, environmentally demanding production process. The host organism employed for such a process needs to fulfil certain demands to achieve industrially relevant product levels. As anthranilate is toxic for microorganisms, the use of particularly robust production hosts can overcome issues from product inhibition. The microorganisms and are known for high tolerance towards a variety of chemicals and could serve as promising platform strains. In this study, the resistance of both wild-type strains towards anthranilate was assessed. To further enhance their native tolerance, adaptive laboratory evolution (ALE) was applied. Sequential batch fermentation processes were developed, adapted to the cultivation demands for and to enable long-term cultivation in the presence of anthranilate. Isolation and analysis of single mutants revealed phenotypes with improved growth behaviour in the presence of anthranilate for both strains. The characterization and improvement of both potential hosts provide an important basis for further process optimization and will aid the establishment of an industrially competitive method for microbial synthesis of anthranilate.

Funding
This study was supported by the:
  • Deutsche Forschungsgemeinschaft (Award WI 4255/1-1)
    • Principle Award Recipient: Nick Wierckx
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000982
2020-10-23
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/166/11/1025.html?itemId=/content/journal/micro/10.1099/mic.0.000982&mimeType=html&fmt=ahah

References

  1. Ghobadi M, Jafari HR. Environmental impact assessment of petrochemical industry using fuzzy rapid impact assessment matrix. J Pet Environ Biotechnol 2015; 06:127 [View Article]
    [Google Scholar]
  2. Cho C, Choi SY, Luo ZW, Lee SY. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering. Biotechnol Adv 2015; 33:1455–1466 [View Article][PubMed]
    [Google Scholar]
  3. Wynands B, Lenzen C, Otto M, Koch F, Blank LM et al. Metabolic engineering of Pseudomonas taiwanensis VLB120 with minimal genomic modifications for high-yield phenol production. Metab Eng 2018; 47:121–133 [View Article][PubMed]
    [Google Scholar]
  4. Vargas-Tah A, Martínez LM, Hernández-Chávez G, Rocha M, Martínez A et al. Production of cinnamic and p-hydroxycinnamic acid from sugar mixtures with engineered Escherichia coli. Microb Cell Fact 2015; 14:6 [View Article][PubMed]
    [Google Scholar]
  5. Nijkamp K, Westerhof RGM, Ballerstedt H, de Bont JAM, Wery J. Optimization of the solvent-tolerant Pseudomonas putida S12 as host for the production of p-coumarate from glucose. Appl Microbiol Biotechnol 2007; 74:617–624 [View Article][PubMed]
    [Google Scholar]
  6. McKenna R, Nielsen DR. Styrene biosynthesis from glucose by engineered E. coli. Metab Eng 2011; 13:544–554 [View Article][PubMed]
    [Google Scholar]
  7. Kunjapur AM, Tarasova Y, Prather KLJ. Synthesis and accumulation of aromatic aldehydes in an engineered strain of Escherichia coli. J Am Chem Soc 2014; 136:11644–11654 [View Article][PubMed]
    [Google Scholar]
  8. Shafiq M, Zia-Ur-Rehman M, Ullah Khan I, Nadeem Arshad M, Ahmed Khan S. Synthesis of novel anti-bacterial 2,1-benzothiazine 2,2-dioxides derived from methyl anthranilate. J. Chil. Chem. Soc. 2011; 56:527–531 [View Article]
    [Google Scholar]
  9. Sun X, Lin Y, Huang Q, Yuan Q, Yan Y. A novel muconic acid biosynthesis approach by shunting tryptophan biosynthesis via anthranilate. Appl Environ Microbiol 2013; 79:4024–4030 [View Article][PubMed]
    [Google Scholar]
  10. Raffensperger SP, Park P VR. Stabilization of grape flavored soft drink mixes containing methyl anthranilate. Patent US 19613005715 A
    [Google Scholar]
  11. Jaeger G, Magnus J, Moussa AS. Production of aniline via anthranilate. Patent 2015WO2015124686A1
    [Google Scholar]
  12. McCullough WG, Piligian JT, Daniel IJ. Enzymatic decarboxylation of the aminobenzoates. J Am Chem Soc 1957; 79:628–630 [View Article]
    [Google Scholar]
  13. Balderas-Hernández VE, Sabido-Ramos A, Silva P, Cabrera-Valladares N, Hernández-Chávez G et al. Metabolic engineering for improving anthranilate synthesis from glucose in Escherichia coli. Microb Cell Fact 2009; 8:19 [View Article][PubMed]
    [Google Scholar]
  14. Cooper IB, Euler K. Production of anthranilic acid by a strain of Bacillus subtillis resistant to sulfaguanidine and fluorotryptophan. US 1995
    [Google Scholar]
  15. Jaeger G, Magnus J, Moussa AS, Olf G, Lolli G et al. Recombinant strain producing o-aminobenzoate and fermentative production of aniline from renewable resources via 2-aminobenzoic acid. Patent 2015
    [Google Scholar]
  16. Kuepper J, Dickler J, Biggel M, Behnken S, Jäger G et al. Metabolic engineering of Pseudomonas putida KT2440 to produce anthranilate from glucose. Front Microbiol 2015; 6:1–9 [View Article]
    [Google Scholar]
  17. Li XH, Kim SK, Lee JH. Anti-biofilm effects of anthranilate on a broad range of bacteria. Sci Rep 2017; 7:8604 [View Article][PubMed]
    [Google Scholar]
  18. Csonka LN. Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev 1989; 53:121–147 [View Article][PubMed]
    [Google Scholar]
  19. McKenna R, Thompson B, Pugh S, Nielsen DR. Rational and combinatorial approaches to engineering styrene production by Saccharomyces cerevisiae. Microb Cell Fact 2014; 13:123 [View Article][PubMed]
    [Google Scholar]
  20. Schwanemann T, Wynands B, Otto M, Wierckx N. Pseudomonas as versatile aromatics cell factory. Biotechnol. J in press 2020
    [Google Scholar]
  21. Domröse A, Klein AS, Hage-Hülsmann J, Thies S, Svensson V et al. Efficient recombinant production of prodigiosin in Pseudomonas putida. Front Microbiol 2015; 6:1–10 [View Article]
    [Google Scholar]
  22. McKenna R, Moya L, McDaniel M, Nielsen DR. Comparing in situ removal strategies for improving styrene bioproduction. Bioprocess Biosyst Eng 2015; 38:165–174 [View Article][PubMed]
    [Google Scholar]
  23. Eggeling L, Bott M. Handbook of Corynebacterium glutamicum Taylor & Francis; 2005
    [Google Scholar]
  24. Becker J, Gießelmann G, Hoffmann SL, Wittmann C. Corynebacterium glutamicum for sustainable bioproduction: From metabolic physiology to systems metabolic engineering. Adv. Biochem. Eng. Biotechnol 2016; 162:217–263
    [Google Scholar]
  25. Becker J, Wittmann C. Bio-based production of chemicals, materials and fuels – Corynebacterium glutamicum as versatile cell factory. Curr Opin Biotechnol 2012; 23:631–640 [View Article][PubMed]
    [Google Scholar]
  26. Baritugo KA, Kim HT, David Y, Choi JI, Hong SH et al. Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery. Appl Microbiol Biotechnol 2018; 102:3915–3937 [View Article][PubMed]
    [Google Scholar]
  27. Kogure T, Inui M. Recent advances in metabolic engineering of Corynebacterium glutamicum for bioproduction of value-added aromatic chemicals and natural products. Appl Microbiol Biotechnol 2018; 102:8685–8705 [View Article][PubMed]
    [Google Scholar]
  28. Kubota T, Watanabe A, Suda M, Kogure T, Hiraga K et al. Production of para-aminobenzoate by genetically engineered Corynebacterium glutamicum and non-biological formation of an N-glucosyl byproduct. Metab Eng 2016; 38:322–330 [View Article][PubMed]
    [Google Scholar]
  29. Kallscheuer N, Classen T, Drepper T, Marienhagen J. Production of plant metabolites with applications in the food industry using engineered microorganisms. Curr Opin Biotechnol 2019; 56:7–17 [View Article][PubMed]
    [Google Scholar]
  30. Jordan S, Hutchings MI, Mascher T. Cell envelope stress response in Gram-positive bacteria. FEMS Microbiol Rev 2008; 32:107–146 [View Article][PubMed]
    [Google Scholar]
  31. Dover LG, Cerdeño-Tárraga AM, Pallen MJ, Parkhill J, Besra GS. Comparative cell wall core biosynthesis in the mycolated pathogens, Mycobacterium tuberculosis and Corynebacterium diphtheriae. FEMS Microbiol Rev 2004; 28:225–250 [View Article][PubMed]
    [Google Scholar]
  32. Liu YB, Long M, Yin YJ, Si MR, Zhang L et al. Physiological roles of mycothiol in detoxification and tolerance to multiple poisonous chemicals in Corynebacterium glutamicum. Arch Microbiol 2013; 195:419–429 [View Article][PubMed]
    [Google Scholar]
  33. Lee SY, Kim BN, Han JH, Chang ST, Choi YW et al. Treatment of phenol-contaminated soil by Corynebacterium glutamicum and toxicity removal evaluation. J Hazard Mater 2010; 182:937–940 [View Article][PubMed]
    [Google Scholar]
  34. Rojas A, Duque E, Schmid A, Hurtado A, Ramos JL et al. Biotransformation in double-phase systems: physiological responses of Pseudomonas putida DOT-T1E to a double phase made of aliphatic alcohols and biosynthesis of substituted catechols. Appl Environ Microbiol 2004; 70:3637–3643 [View Article][PubMed]
    [Google Scholar]
  35. Mukhopadhyay A. Tolerance engineering in bacteria for the production of advanced biofuels and chemicals. Trends Microbiol 2015; 23:498–508 [View Article][PubMed]
    [Google Scholar]
  36. Verhoef S, Wierckx N, Westerhof RGM, de Winde JH, Ruijssenaars HJ. Bioproduction of p-hydroxystyrene from glucose by the solvent-tolerant bacterium Pseudomonas putida S12 in a two-phase water-decanol fermentation. Appl Environ Microbiol 2009; 75:931–936 [View Article][PubMed]
    [Google Scholar]
  37. Isken S, Derks A, Wolffs PF, de Bont JA. Effect of organic solvents on the yield of solvent-tolerant Pseudomonas putida S12. Appl Environ Microbiol 1999; 65:2631–2635 [View Article][PubMed]
    [Google Scholar]
  38. Ramos JL, Duque E, Gallegos M-T, Godoy P, Ramos-Gonzalez MI et al. Mechanisms of solvent tolerance in Gram-negative bacteria. Annu Rev Microbiol 2002; 56:743–768 [View Article][PubMed]
    [Google Scholar]
  39. Isken S, de Bont JA. Bacteria tolerant to organic solvents. Extremophiles 1998; 2:229–238 [View Article][PubMed]
    [Google Scholar]
  40. Belda E, van Heck RGA, José Lopez-Sanchez M, Cruveiller S, Barbe V et al. The revisited genome of Pseudomonas putida KT2440 enlightens its value as a robust metabolic chassis. Environ Microbiol 2016; 18:3403–3424 [View Article][PubMed]
    [Google Scholar]
  41. Kieboom J, Dennis JJ, Zylstra GJ, de Bont JA. Active efflux of organic solvents by Pseudomonas putida S12 is induced by solvents. J Bacteriol 1998; 180:6769–6772 [View Article][PubMed]
    [Google Scholar]
  42. Velasco A, Alonso S, García JL, Perera J, Díaz E. Genetic and functional analysis of the styrene catabolic cluster of Pseudomonas sp. strain Y2. J Bacteriol 1998; 180:1063–1071 [View Article][PubMed]
    [Google Scholar]
  43. Verhoef S, Ballerstedt H, Volkers RJM, de Winde JH, Ruijssenaars HJ. Comparative transcriptomics and proteomics of p-hydroxybenzoate producing Pseudomonas putida S12: novel responses and implications for strain improvement. Appl Microbiol Biotechnol 2010; 87:679–690 [View Article][PubMed]
    [Google Scholar]
  44. Calero P, Jensen SI, Bojanovič K, Lennen RM, Koza A et al. Genome-wide identification of tolerance mechanisms toward p -coumaric acid in Pseudomonas putida. Biotechnol Bioeng 2018; 115:762–774 [View Article]
    [Google Scholar]
  45. Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A et al. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 2011; 7:445–452 [View Article][PubMed]
    [Google Scholar]
  46. Dragosits M, Mattanovich D. Adaptive laboratory evolution – principles and applications for biotechnology. Microb Cell Fact 2013; 12:64 [View Article][PubMed]
    [Google Scholar]
  47. Maughan H, Nicholson WL. Increased fitness and alteration of metabolic pathways during Bacillus subtilis evolution in the laboratory. Appl Environ Microbiol 2011; 77:4105–4118 [View Article][PubMed]
    [Google Scholar]
  48. Kusumawardhani H, Furtwängler B, Blommestijn M, Kaltenytė A, Poel Jvander et al. Adaptive laboratory evolution restores solvent tolerance in plasmid-cured Pseudomonas putida S12; a molecular analysis. bioRxiv 2020
    [Google Scholar]
  49. Lim HG, Fong B, Alarcon G, Magurudeniya HD, Eng T et al. Generation of ionic liquid tolerant Pseudomonas putida KT2440 strains via adaptive laboratory evolution. Green Chem 2020; 22:5677–5690 [View Article]
    [Google Scholar]
  50. Mohamed ET, Werner AZ, Salvachúa D, Singer CA, Szostkiewicz K et al. Adaptive laboratory evolution of Pseudomonas putida KT2440 improves p-coumaric and ferulic acid catabolism and tolerance. Metab Eng Commun 2020; 11:e00143 [View Article][PubMed]
    [Google Scholar]
  51. Li W, Jayakody LN, Franden MA, Wehrmann M, Daun T et al. Laboratory evolution reveals the metabolic and regulatory basis of ethylene glycol metabolism by Pseudomonas putida KT2440. Environ Microbiol 2019; 21:3669–3682 [View Article][PubMed]
    [Google Scholar]
  52. Elmore JR, Dexter GN, Salvachúa D, O'Brien M, Klingeman DM et al. Engineered Pseudomonas putida simultaneously catabolizes five major components of corn stover lignocellulose: Glucose, xylose, arabinose, p-coumaric acid, and acetic acid. Metab Eng 2020; 62:62–71 [View Article][PubMed]
    [Google Scholar]
  53. Bator I, Wittgens A, Rosenau F, Tiso T, Blank LM. Comparison of three xylose pathways in Pseudomonas putida KT2440 for the synthesis of valuable products. Front Bioeng Biotechnol 2019; 7:480 [View Article][PubMed]
    [Google Scholar]
  54. Wang X, Khushk I, Xiao Y, Gao Q, Bao J. Tolerance improvement of Corynebacterium glutamicum on lignocellulose derived inhibitors by adaptive evolution. Appl Microbiol Biotechnol 2018; 102:377–388 [View Article][PubMed]
    [Google Scholar]
  55. Oide S, Gunji W, Moteki Y, Yamamoto S, Suda M et al. Thermal and solvent stress cross-tolerance conferred to Corynebacterium glutamicum by adaptive laboratory evolution. Appl Environ Microbiol 2015; 81:2284–2298 [View Article]
    [Google Scholar]
  56. Wang Y, Fan L, Tuyishime P, Liu J, Zhang K et al. Adaptive laboratory evolution enhances methanol tolerance and conversion in engineered Corynebacterium glutamicum. Commun Biol 2020; 3:1–15 [View Article]
    [Google Scholar]
  57. Leßmeier L, Wendisch VF. Identification of two mutations increasing the methanol tolerance of Corynebacterium glutamicum. BMC Microbiol 2015; 15:1–11 [View Article]
    [Google Scholar]
  58. Stella RG, Wiechert J, Noack S, Frunzke J. Evolutionary engineering of Corynebacterium glutamicum. Biotechnol J 2019; 14:1800444 [View Article][PubMed]
    [Google Scholar]
  59. Wierckx NJP, Ballerstedt H, de Bont JAM, Wery J. Engineering of solvent-tolerant Pseudomonas putida S12 for bioproduction of phenol from glucose. Appl Environ Microbiol 2005; 71:8221–8227 [View Article][PubMed]
    [Google Scholar]
  60. Sanders PP, Parks LW. Some observations on the fluorescence analysis of anthranilic acid. Anal Biochem 1962; 3:354–356 [View Article][PubMed]
    [Google Scholar]
  61. Araki K, Takakura H, Miyajima Y, Akashi Y, Kawanishi K et al. Accumulation of anthranilic acid and N-glucosylanthranilic acid by a Corynebacterium glutamicum mutant resistant to DL-serine hydroxamate. J Gen Appl Microbiol 1999; 45:169–176 [View Article][PubMed]
    [Google Scholar]
  62. Berger L, Lee J. Arylamine-N-glycosides; arylamine-N-D-ribopyranosides and N-D-ribofuranosides. J Org Chem 1946; 11:75–83 [View Article][PubMed]
    [Google Scholar]
  63. Daddaoua A, Krell T, Ramos JL. Regulation of glucose metabolism in Pseudomonas: the phosphorylative branch and entner-doudoroff enzymes are regulated by a repressor containing a sugar isomerase domain. J Biol Chem 2009; 284:21360–21368 [View Article][PubMed]
    [Google Scholar]
  64. Wierckx N, Ruijssenaars HJ, de Winde JH, Schmid A, Blank LM. Metabolic flux analysis of a phenol producing mutant of Pseudomonas putida S12: verification and complementation of hypotheses derived from transcriptomics. J Biotechnol 2009; 143:124–129 [View Article][PubMed]
    [Google Scholar]
  65. Eggeling L, Sahm H. The cell wall barrier of Corynebacterium glutamicum and amino acid efflux. J Biosci Bioeng 2001; 92:201–213 [View Article]
    [Google Scholar]
  66. Alderwick LJ, Harrison J, Lloyd GS, Birch HL. The mycobacterial cell wall-Peptidoglycan and arabinogalactan. Cold Spring Harb Perspect Med 2015; 5:a021113 [View Article][PubMed]
    [Google Scholar]
  67. Lee J-Y, Seo J, Kim E-S, Lee H-S, Kim P. Adaptive evolution of Corynebacterium glutamicum resistant to oxidative stress and its global gene expression profiling. Biotechnol Lett 2013; 35:709–717 [View Article][PubMed]
    [Google Scholar]
  68. Wood JM. Bacterial responses to osmotic challenges. J Gen Physiol 2015; 145:381–388 [View Article][PubMed]
    [Google Scholar]
  69. Kusumawardhani H, Hosseini R, de Winde JH. Solvent tolerance in bacteria: fulfilling the promise of the biotech era?. Trends Biotechnol 2018; 36:1025–1039 [View Article][PubMed]
    [Google Scholar]
  70. Segura A, Molina L, Fillet S, Krell T, Bernal P et al. Solvent tolerance in Gram-negative bacteria. Curr Opin Biotechnol 2012; 23:415–421 [View Article][PubMed]
    [Google Scholar]
  71. Weber FJ, Ooijkaas LP, Schemen RM, Hartmans S, de Bont JA. Adaptation of Pseudomonas putida S12 to high concentrations of styrene and other organic solvents. Appl Environ Microbiol 1993; 59:3502–3504 [View Article][PubMed]
    [Google Scholar]
  72. Bennett AF, Dao KM, Lenski RE. Rapid evolution in response to high-temperature selection. Nature 1990; 346:79–81 [View Article][PubMed]
    [Google Scholar]
  73. Oide S, Gunji W, Moteki Y, Yamamoto S, Suda M et al. Thermal and solvent stress cross-tolerance conferred to Corynebacterium glutamicum by adaptive laboratory evolution. Appl Environ Microbiol 2015; 81:2284–2298 [View Article][PubMed]
    [Google Scholar]
  74. Pelosi L, Kühn L, Guetta D, Garin J, Geiselmann J et al. Parallel changes in global protein profiles during long-term experimental evolution in Escherichia coli. Genetics 2006; 173:1851–1869 [View Article][PubMed]
    [Google Scholar]
  75. Tenaillon O, Rodríguez-Verdugo A, Gaut RL, McDonald P, Bennett AF et al. The molecular diversity of adaptive convergence. Science 2012; 335:457–461 [View Article][PubMed]
    [Google Scholar]
  76. Tolker-Nielsen T, Brinch UC, Ragas PC, Andersen JB, Jacobsen CS et al. Development and dynamics of Pseudomonas sp. biofilms. J Bacteriol 2000; 182:6482–6489 [View Article][PubMed]
    [Google Scholar]
  77. López-Sánchez A, Leal-Morales A, Jiménez-Díaz L, Platero AI, Bardallo-Pérez J et al. Biofilm formation-defective mutants in Pseudomonas putida. FEMS Microbiol Lett 2016; 363:fnw127 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000982
Loading
/content/journal/micro/10.1099/mic.0.000982
Loading

Data & Media loading...

Most cited Most Cited RSS feed