1887

Abstract

species are bacterial symbionts of nematodes and pathogens of susceptible insects. Different species of nematodes carrying specific species of can invade the same insect, thereby setting up competition for nutrients within the insect environment. While species produce both diverse antibiotic compounds and prophage-derived R-type bacteriocins (xenorhabdicins), the functions of these molecules during competition in a host are not well understood. (), the symbiont of possesses a remnant P2-like phage tail cluster, 1, that encodes genes for xenorhabdicin production. We show that inactivation of either tail sheath () or tail fibre () genes eliminated xenorhabdicin production. Preparations of xenorhabdicin displayed a narrow spectrum of activity towards other and species. One species, (), was highly sensitive to xenorhabdicin but did not produce xenorhabdicin that was active against . Instead, produced high-level antibiotic activity against when grown in complex medium and lower levels when grown in defined medium (Grace’s medium). Conversely, did not produce detectable levels of antibiotic activity against . To study the relative contributions of xenorhabdicin and antibiotics in interspecies competition in which the respective species produce antagonistic activities against each other, we co-inoculated cultures with both species. In both types of media outcompeted , suggesting that antibiotics produced by determined the outcome of the competition. In contrast, outcompeted in competitions performed by co-injection in the insect , while in competition with the xenorhabdicin-deficient strain (), was dominant. Thus, xenorhabdicin was required for to outcompete in a natural host environment. These results highlight the importance of studying the role of antagonistic compounds under natural biological conditions.

Funding
This study was supported by the:
  • S. Patricia Stock , National Science Foundation , (Award IOS-0919565)
  • Heidi Goodrich-Blair , National Science Foundation , (Award IOS-0920631)
  • Steven Forst , National Science Foundation , (Award IOS-0919912)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000981
2020-10-16
2020-10-27
Loading full text...

Full text loading...

References

  1. Hibbing ME, Fuqua C, Parsek MR, Peterson SB. Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 2010; 8:15–25 [CrossRef][PubMed]
    [Google Scholar]
  2. Ghoul M, Mitri S. The ecology and evolution of microbial competition. Trends Microbiol 2016; 24:833–845 [CrossRef][PubMed]
    [Google Scholar]
  3. Davies J, Spiegelman GB, Yim G. The world of subinhibitory antibiotic concentrations. Curr Opin Microbiol 2006; 9:445–453 [CrossRef][PubMed]
    [Google Scholar]
  4. Keller L, Surette MG. Communication in bacteria: an ecological and evolutionary perspective. Nat Rev Microbiol 2006; 4:249–258 [CrossRef][PubMed]
    [Google Scholar]
  5. Shank EA, Kolter R. New developments in microbial interspecies signaling. Curr Opin Microbiol 2009; 12:205–214 [CrossRef][PubMed]
    [Google Scholar]
  6. Yim G, Wang HMH, Davies J. Antibiotics as signalling molecules. Philos Trans R Soc Lond B Biol Sci 2007; 362:1195–1200 [CrossRef][PubMed]
    [Google Scholar]
  7. Riley MA. Molecular mechanisms of bacteriocin evolution. Annu Rev Genet 1998; 32:255–278 [CrossRef][PubMed]
    [Google Scholar]
  8. Cotter PD, Ross RP, Hill C. Bacteriocins - a viable alternative to antibiotics?. Nat Rev Microbiol 2013; 11:95–105 [CrossRef][PubMed]
    [Google Scholar]
  9. Majeed H, Gillor O, Kerr B, Riley MA. Competitive interactions in Escherichia coli populations: the role of bacteriocins. ISME J 2011; 5:71–81 [CrossRef][PubMed]
    [Google Scholar]
  10. Riley MA, Wertz JE. Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol 2002; 56:117–137 [CrossRef][PubMed]
    [Google Scholar]
  11. Michel-Briand Y, Baysse C. The pyocins of Pseudomonas aeruginosa. Biochimie 2002; 84:499–510 [CrossRef][PubMed]
    [Google Scholar]
  12. Nakayama K, Takashima K, Ishihara H, Shinomiya T, Kageyama M et al. The R-type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the F-type is related to lambda phage. Mol Microbiol 2000; 38:213–231 [CrossRef][PubMed]
    [Google Scholar]
  13. Uratani Y, Hoshino T. Pyocin R1 inhibits active transport in Pseudomonas aeruginosa and depolarizes membrane potential. J Bacteriol 1984; 157:632–636 [CrossRef][PubMed]
    [Google Scholar]
  14. Scholl D. Phage Tail-Like bacteriocins. Annu Rev Virol 2017; 4:453–467 [CrossRef][PubMed]
    [Google Scholar]
  15. Nobrega FL, Vlot M, de Jonge PA, Dreesens LL, Beaumont HJE, Lavigne R et al. Targeting mechanisms of tailed bacteriophages. Nat Rev Microbiol 2018; 16:760–773 [CrossRef][PubMed]
    [Google Scholar]
  16. Bakkal S, Robinson SM, Ordonez CL, Waltz DA, Riley MA. Role of bacteriocins in mediating interactions of bacterial isolates taken from cystic fibrosis patients. Microbiology 2010; 156:2058–2067 [CrossRef][PubMed]
    [Google Scholar]
  17. Dorosky RJ, Yu JM, Pierson LS, Pierson EA. Pseudomonas chlororaphis produces two distinct R-Tailocins that contribute to bacterial competition in biofilms and on roots. Appl Environ Microbiol 2017; 83:e00706–00717 [CrossRef][PubMed]
    [Google Scholar]
  18. Dorosky RJ, Pierson LS, Pierson EA. Pseudomonas chlororaphis produces multiple R-tailocin particles that broaden the killing spectrum and contribute to persistence in rhizosphere communities. Appl Environ Microbiol 2018; 84:e01230–18 [CrossRef][PubMed]
    [Google Scholar]
  19. Snyder H, Stock SP, Kim SK, Flores-Lara Y, Forst S. New insights into the colonization and release processes of Xenorhabdus nematophila and the morphology and ultrastructure of the bacterial receptacle of its nematode host, Steinernema carpocapsae. Appl Environ Microbiol 2007; 73:5338–5346 [CrossRef][PubMed]
    [Google Scholar]
  20. Forst S, Dowds B, Boemare N, Stackebrandt E. Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annu Rev Microbiol 1997; 51:47–72 [CrossRef][PubMed]
    [Google Scholar]
  21. Goodrich-Blair H, Clarke DJ. Mutualism and pathogenesis in Xenorhabdus and Photorhabdus: two roads to the same destination. Mol Microbiol 2007; 64:260–268 [CrossRef][PubMed]
    [Google Scholar]
  22. Kaya HK, Gaugler R. Entomopathogenic nematodes. Annu Rev Entomol 1993; 38:181–206 [CrossRef]
    [Google Scholar]
  23. Singh S, Forst S. Antimicrobials and the natural biology of a bacterial-nematode symbiosis. In Hurst CJ. editor The Mechanistic Benefits of Microbial Symbionts Springer: International Publishing; 2016 pp 101–119
    [Google Scholar]
  24. Sicard M, Ferdy J-B, Pagès S, Le Brun N, Godelle B et al. When mutualists are pathogens: an experimental study of the symbioses between Steinernema (entomopathogenic nematodes) and Xenorhabdus (bacteria). J Evol Biol 2004; 17:985–993 [CrossRef][PubMed]
    [Google Scholar]
  25. Park D, Forst S. Co-regulation of motility, exoenzyme and antibiotic production by the EnvZ-OmpR-FlhDC-FliA pathway in Xenorhabdus nematophila. Mol Microbiol 2006; 61:1397–1412 [CrossRef][PubMed]
    [Google Scholar]
  26. Richards GR, Goodrich-Blair H. Examination of Xenorhabdus nematophila lipases in pathogenic and mutualistic host interactions reveals a role for xlpA in nematode progeny production. Appl Environ Microbiol 2010; 76:221–229 [CrossRef][PubMed]
    [Google Scholar]
  27. Gouge DH, Snyder JL. Temporal association of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) and bacteria. J Invertebr Pathol 2006; 91:147–157 [CrossRef][PubMed]
    [Google Scholar]
  28. Singh S, Reese JM, Casanova-Torres AM, Goodrich-Blair H, Forst S. Microbial population dynamics in the hemolymph of Manduca sexta infected with Xenorhabdus nematophila and the entomopathogenic nematode Steinernema carpocapsae. Appl Environ Microbiol 2014; 80:4277–4285 [CrossRef][PubMed]
    [Google Scholar]
  29. Cambon MC, Lafont P, Frayssinet M, Lanois A, Ogier JC et al. Bacterial community profile after the lethal infection of Steinernema-Xenorhabdus pairs into soil-reared Tenebrio molitor larvae. FEMS Microbiol Ecol 2020; 96:fiaa009 [CrossRef][PubMed]
    [Google Scholar]
  30. Skowronek M, Sajnaga E, Pleszczyńska M, Kazimierczak W, Lis M et al. Bacteria from the midgut of common cockchafer (Melolontha melolontha L.) larvae exhibiting antagonistic activity against bacterial symbionts of entomopathogenic nematodes: isolation and molecular identification. Int J Mol Sci 2020; 21:580 [CrossRef][PubMed]
    [Google Scholar]
  31. Koppenhöfer AM, Kaya HK. Coexistence of two steinernematid nematode species (Rhabditida: Steinernematidae) in the presence of two host species. Appl Soil Ecol 1996; 4:221–230 [CrossRef]
    [Google Scholar]
  32. Alatorre-Rosas R, Kaya HK. Interspecific competition between entomopathogenic nematodes in the genera Heterorhabditis and Steinernema for an insect host in sand. J Invertebr Pathol 1990; 55:179–188 [CrossRef]
    [Google Scholar]
  33. Alatorre-Rosas R, Kaya HK. Interaction between two entomopathogenic nematode species in the same host. J Invertebr Pathol 1991; 57:1–6 [CrossRef]
    [Google Scholar]
  34. Sicard M, Tabart J, Boemare NE, Thaler O, Moulia C. Effect of phenotypic variation in Xenorhabdus nematophila on its mutualistic relationship with the entomopathogenic nematode Steinernema carpocapsae. Parasitology 2005; 131:687–694 [CrossRef]
    [Google Scholar]
  35. Ciezki K. New Insights into the role of antimicrobials of Xenorhabdus in interspecies competition.. PhD thesis University of Wisconsin-Milwaukee; 2017
    [Google Scholar]
  36. Singh S, Orr D, Divinagracia E, McGraw J, Dorff K et al. Role of secondary metabolites in establishment of the mutualistic partnership between Xenorhabdus nematophila and the entomopathogenic nematode Steinernema carpocapsae. Appl Environ Microbiol 2015; 81:754–764 [CrossRef][PubMed]
    [Google Scholar]
  37. Akhurst RJ. Antibiotic activity of Xenorhabdus spp., bacteria symbiotically associated with insect pathogenic nematodes of the families Heterorhabditidae and Steinernematidae. J Gen Microbiol 1982; 128:3061–3065 [CrossRef][PubMed]
    [Google Scholar]
  38. Bode HB. Entomopathogenic bacteria as a source of secondary metabolites. Curr Opin Chem Biol 2009; 13:224–230 [CrossRef][PubMed]
    [Google Scholar]
  39. Fodor A, Fodor AM, Forst S, Hogan JS, Klein MG et al. Comparative analysis of antibacterial activities of Xenorhabdus species on related and non-related bacteria in vivo. J Microbiol Antimicrob 2010; 2:36–46
    [Google Scholar]
  40. Pantel L, Florin T, Dobosz-Bartoszek M, Racine E, Sarciaux M et al. Odilorhabdins, antibacterial agents that cause miscoding by binding at a new ribosomal site. Mol Cell 2018; 70:83–94 [CrossRef]
    [Google Scholar]
  41. Paul VJ, Frautschy S, Fenical W, Nealson KH. Antibiotics in microbial ecology: isolation and structure assignment of several new antibacterial compounds from the insect-symbiotic bacteria Xenorhabdus spp. J Chem Ecol 1981; 7:589–597 [CrossRef][PubMed]
    [Google Scholar]
  42. Park D, Ciezki K, van der Hoeven R, Singh S, Reimer D et al. Genetic analysis of xenocoumacin antibiotic production in the mutualistic bacterium Xenorhabdus nematophila. Mol Microbiol 2009; 73:938–949 [CrossRef][PubMed]
    [Google Scholar]
  43. Ciezki K. New Insights into the role of antimicrobials of Xenorhabdus in interspecies competition. PhD thesis University of Wisconsin-Milwaukee; 2017
    [Google Scholar]
  44. Boemare NE, Boyer-Giglio MH, Thaler JO, Akhurst RJ, Brehelin M. Lysogeny and bacteriocinogeny in Xenorhabdus nematophilus and other Xenorhabdus spp. Appl Environ Microbiol 1992; 58:3032–3037 [CrossRef][PubMed]
    [Google Scholar]
  45. Morales-Soto N, Forst SA. The xnp1 P2-like tail synthesis gene cluster encodes xenorhabdicin and is required for interspecies competition. J Bacteriol 2011; 193:3624–3632 [CrossRef][PubMed]
    [Google Scholar]
  46. Baghdiguian S, Boyer-Giglio MH, Thaler JO, Bonnot G, Boemare N. Bacteriocinogenesis in cells of Xenorhabdus nematophilus and Photorhabdus luminescens: Enterobacteriaceae associated with entomopathogenic nematodes. Biol Cell 1993; 79:177–185 [CrossRef]
    [Google Scholar]
  47. Thaler JO, Baghdiguian S, Boemare N. Purification and characterization of xenorhabdicin, a phage tail-like bacteriocin, from the lysogenic strain F1 of Xenorhabdus nematophilus. Appl Environ Microbiol 1995; 61:2049–2052 [CrossRef][PubMed]
    [Google Scholar]
  48. Köhler T, Donner V, van Delden C. Lipopolysaccharide as shield and receptor for R-pyocin-mediated killing in Pseudomonas aeruginosa. J Bacteriol 2010; 192:1921–1928 [CrossRef][PubMed]
    [Google Scholar]
  49. Ciezki K, Murfin K, Goodrich-Blair H, Stock SP, Forst S. R-Type bacteriocins in related strains of Xenorhabdus bovienii: Xenorhabdicin tail fiber modularity and contribution to competitiveness. FEMS Microbiol Lett 2017; 364:fnw235 [CrossRef][PubMed]
    [Google Scholar]
  50. Morales-Soto N, Gaudriault S, Ogier JC, Thappeta KRV, Forst S. Comparative analysis of P2-type remnant prophage loci in Xenorhabdus bovienii and Xenorhabdus nematophila required for xenorhabdicin production. FEMS Microbiol Lett 2012; 333:69–76 [CrossRef][PubMed]
    [Google Scholar]
  51. Gaudriault S, Thaler J-O, Duchaud E, Kunst F, Boemare N et al. Identification of a P2-related prophage remnant locus of Photorhabdus luminescens encoding an R-type phage tail-like particle. FEMS Microbiol Lett 2004; 233:223–231 [CrossRef][PubMed]
    [Google Scholar]
  52. Morales-Soto N. New insights on the role of phage-derived bacteriocins in the life cycle of the mutualistic bacterium, Xenorhabdus nematophila. PhD thesis University of Wisconsin-Milwaukee; 2010
    [Google Scholar]
  53. Ciezki K, Wesener S, Jaber D, Mirza S, Forst S. ngrA-dependent natural products are required for interspecies competition and virulence in the insect pathogenic bacterium Xenorhabdus szentirmaii. Microbiology 2019; 165:538–553 [CrossRef][PubMed]
    [Google Scholar]
  54. Furgani G, Böszörményi E, Fodor A, Máthé-Fodor A, Forst S et al. Xenorhabdus antibiotics: a comparative analysis and potential utility for controlling mastitis caused by bacteria. J Appl Microbiol 2008; 104:745–758 [CrossRef][PubMed]
    [Google Scholar]
  55. Alexeyev MF. The pKNOCK series of broad-host-range mobilizable suicide vectors for gene knockout and targeted DNA insertion into the chromosome of gram-negative bacteria. Biotechniques 1999; 26:824–828 [CrossRef][PubMed]
    [Google Scholar]
  56. Saveliev S, Simpson D, Daily W, Woodroofe C, Klaubert D et al. Improve protein analysis with the new, mass spectrometry-compatible Proteas MAX surfactant. Promega Notes 2008; 99:3–7
    [Google Scholar]
  57. Christie GE, Calendar R. Bacteriophage P2. Bacteriophage 2016; 6:e1145782 [CrossRef][PubMed]
    [Google Scholar]
  58. Lusetti SL, Voloshin ON, Inman RB, Camerini-Otero RD, Cox MM. The DinI protein stabilizes RecA protein filaments. J Biol Chem 2004; 279:30037–30046 [CrossRef][PubMed]
    [Google Scholar]
  59. Oppenheim AB, Kobiler O, Stavans J, Court DL, Adhya S. Switches in bacteriophage lambda development. Annu Rev Genet 2005; 39:409–429 [CrossRef][PubMed]
    [Google Scholar]
  60. Crawford JM, Kontnik R, Clardy J. Regulating alternative lifestyles in entomopathogenic bacteria. Curr Biol 2010; 20:69–74 [CrossRef][PubMed]
    [Google Scholar]
  61. Patz S, Becker Y, Richert-Pöggeler KR, Berger B, Ruppel S et al. Phage tail-like particles are versatile bacterial nanomachines - A mini-review. J Adv Res 2019; 19:75–84 [CrossRef][PubMed]
    [Google Scholar]
  62. Kochanowsky RM, Bradshaw C, Forlastro I, Stock SP. Xenorhabdus bovienii strain jolietti uses a type 6 secretion system to kill closely related Xenorhabdus strains. FEMS Microbiol Ecol 2020; 96:fiaa073 [CrossRef][PubMed]
    [Google Scholar]
  63. Ogier J-C, Duvic B, Lanois A, Givaudan A, Gaudriault S. A new member of the growing family of contact-dependent growth inhibition systems in Xenorhabdus doucetiae. PLoS One 2016; 11:e0167443 [CrossRef][PubMed]
    [Google Scholar]
  64. Sicard M, Hinsinger J, Le Brun N, Pages S, Boemare N et al. Interspecific competition between entomopathogenic nematodes (Steinernema) is modified by their bacterial symbionts (Xenorhabdus). BMC Evol Biol 2006; 6:68 [CrossRef][PubMed]
    [Google Scholar]
  65. van der Hoeven R, Betrabet G, Forst S. Characterization of the gut bacterial community in Manduca sexta and effect of antibiotics on bacterial diversity and nematode reproduction. FEMS Microbiol Lett 2008; 286:249–256 [CrossRef][PubMed]
    [Google Scholar]
  66. Ogier J-C, Pagès S, Frayssinet M, Gaudriault S. Entomopathogenic nematode-associated microbiota: from monoxenic paradigm to pathobiome. Microbiome 2020; 8:25 [CrossRef][PubMed]
    [Google Scholar]
  67. Murfin KE, Lee M-M, Klassen JL, McDonald BR, Larget B et al. Xenorhabdus bovienii strain diversity impacts coevolution and symbiotic maintenance with Steinernema spp. nematode hosts. mBio 2015; 6:e00076 [CrossRef][PubMed]
    [Google Scholar]
  68. Murfin KE, Ginete DR, Bashey F, Goodrich-Blair H. Symbiont-mediated competition: Xenorhabdus bovienii confer an advantage to their nematode host Steinernema affine by killing competitor Steinernema feltiae. Environ Microbiol 2018; 21:3229–3243 [CrossRef][PubMed]
    [Google Scholar]
  69. Bashey F, Young SK, Hawlena H, Lively CM. Spiteful interactions between sympatric natural isolates of Xenorhabdus bovienii benefit kin and reduce virulence. J Evol Biol 2012; 25:431–437 [CrossRef][PubMed]
    [Google Scholar]
  70. Hawlena H, Bashey F, Lively CM. Bacteriocin-mediated interactions within and between coexisting species. Ecol Evol 2012; 2:2521–2526 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000981
Loading
/content/journal/micro/10.1099/mic.0.000981
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error